ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Reversible capping/uncapping of phosphorous-centered Keggin-type polyoxoniobate clusters

Jung-Ho Son,*^{*a*} and William H. Casey*^{*b*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Caps in α -Keggin-type $[PM_2Nb_{12}O_{40}]^{9}$ (M: Nb=O or V=O) can be removed in basic condition to produce uncapped $[PNb_{12}O_{40}]^{15}$. Transmetalation or capping occurs from the reaction of $[PNb_{14}O_{42}]^{9}$ or $[PNb_{12}O_{40}]^{15}$ with either Sb₂O₃ or ¹⁰ V₂O₅ to form $[PSb_2Nb_{12}O_{40}]^{9}$ or $[PV_2Nb_{12}O_{42}]^{9}$, respectively.

One interesting mode of heterometal addition to the Keggin-type polyoxometalate clusters is capping, whereby a capping metal reduces the overall charge of the cluster. Several heterometals, such as $V^{IV,V,1}$ Ni^{II,2} Cu^{II,3} Zn^{II,4} Sb^{III,5} and La^{III,6} are known as

¹⁵ caps; among these V^{IV,V} caps are the most common. The number of capping site can vary from 1 to 6. The capped Mo-, V- or Wbased Keggin-type clusters have proven to be useful for spintronics ⁷ and as supramolecular materials for catalytic applications.^{4,8} For the polyoxoniobates, vanadyl-capped Keggin-

 $_{20}$ type polyoxoniobate ions have been synthesized recently, including $[PV_2Nb_{12}O_{40}]^{9\cdot}$ ion $(PV_2Nb_{12}).^9$ Here we expand the library of capped Keggin polyoxoniobates as TMA (tetramethylammonium) salts; Sb^{II}- or Nb^V=O-bicapped α -Keggin polyoxoniobates TMA_9[PSb_2Nb_{12}O_{40}]\cdot 28H_2O~(PSb_2Nb_{12})

²⁵ and TMA₉[PNb₁₄O₄₂]·26H₂O (PNb₁₄). We also isolated novel TMA₁₀H₅[PNb₁₂O₄₀]·30.5H₂O (PNb₁₂) via an uncapping reaction starting from PNb₁₄ in highly basic condition. The synthesis of discrete PNb₁₄ clusters is important because Nb^V-bicapped Keggin niobates have been only isolated as chain structures ³⁰ formed by Nb-(μ₂-O)₂-Nb bridges.¹⁰

Here we show that capping/uncapping reaction can be reversed for vanadyl capping group. Although many kinds of capped-Keggin clusters are known, reversibility is not commonly shown, nor well understood. We believe that reaction studies at the

- $_{35}$ capping site in the Keggin ion can be particularly useful for polymerization studies that exploit reactions at the caps. We note that a controlled capping reaction of $[PMo_{12}O_{40}]^{3-}$ by using electrochemical reduction to produce Co^{II}-, V^{IV}-, and Sb^{III}-capped Keggin ion has been reported previously.¹¹
- ⁴⁰ The PSb₂Nb₁₂ cluster (Fig. 1) was synthesized by hydrothermal reaction of the mixture of stoichiometric amounts of hydrous niobium oxide, Sb₂O₃, TMAOH and phosphoric acid. In the crystal structure, two distinct PSb₂Nb₁₂ clusters are present in the crystallographic lattice; one of them has a pseudo-Keggin
- ⁴⁵ structure, which features central PO₈ with half-occupied oxygen atoms due to rotational disorder. Nearly nine TMA countercations are found per cluster, so the cluster formula is [PSb^{III}₂Nb₁₂O₄₂]⁹. Bond-valence-sum (BVS) values for three

antimony sites are 3.14, 3.07 and 3.26, which agree with the ⁵⁰ oxidation state of Sb^{III}. Electrospray-ionization mass spectrometry (ESI-MS) of the compound provided spectra consistent with the stoichiometry, and the peaks are finely split due to the natural isotopes of antimony (Fig. S1).

Fig. 1 Ball-and-stick models (pink: P, red: O, light blue: Nb, black: Sb) of PNb₁₂ (top), PSb₂Nb₁₂ (bottom left) and PNb₁₄ (bottom right) clusters

A different Keggin-type cluster formed when the hydrothermal reaction was carried out without Sb₂O₃. The product was 60 generally waxy and we crystallized it in a hot concentrated ethanol solution. The crystal structure shows the cluster of $[PNb_{14}O_{42}]^{9}$, with two bicapping *trans* Nb^V=O (Fig. 1). Only seven TMA ions were found in the crystal structure, but elemental analysis and TGA data (Fig. S2) of the compound 65 better agrees with nine TMA, as was the case in PSb₂Nb₁₂ and PV₂Nb₁₂. We thus conclude that two TMA are disordered in the solvent region and thus could not be found during the structure refinement. In the ESI-MS spectra, the products always showed small peaks with lower m/z number and we tentatively assign this ⁷⁰ impurity as the mono-capped [PNb₁₃O₄₁]¹²⁻ (PNb₁₃) (Figure S1). A Ge^{IV}-centered [GeNb₁₃O₄₁]¹³⁻ as Cs⁺ or Rb⁺ salt was structurally characterized recently, and this also supports our assignment of the small impurity peaks as the PNb13.12

In the structure of PNb₁₄, capping Nb^V=O are slightly tilted

70

from the pseudo- C_4 rotational axis of the Keggin ion (angles of P1-Nb13-O41=173.04° and P1-Nb14-O42=170.24°) (Fig. S3). Thermal ellipsoids of the capping Nb^V=O oxygen atoms are horizontally elongated compared to other terminal oxygen atoms, s and the Nb^V=O bond lengths (1.726(13) and 1.735(12) Å) at the

- capping sites are slightly shorter than other $Nb^{V}=O$ bonds (1.741(9) to 1.774(9) Å). These might be due to the rare pentacoordinate Nb^{V} environment in the capping site, ¹³ and explain the reactivity of $Nb^{V}=O$ capping site as described below.
- ¹⁰ We found that bicapping $Nb^{V}=O$ units in PNb_{14} can be uncapped under strongly basic conditions. When PNb_{14} was mixed with TBAOH solution in an open vial and kept at 85°C in a dry oven overnight, crystalline materials of PNb_{12} formed at the bottom of the vial. ESI-MS peaks of the newly formed PNb_{12}
- ¹⁵ appear in lower m/z region relative to spectra for the PNb₁₄ and match well with the composition of PNb₁₂ identified in the crystal structure (Fig. S1). We see an additional peak at m/z=426.6 and tentatively assign it to a lacunary $H_{14}[PNb_{11}O_{39}](H_2O)^4$ ion, which could have formed by fragmentation in ESI-MS.
- ²⁰ The PNb₁₂ cluster in the crystal structure exhibits a pseudo-Keggin structure, similar to one of the clusters in PSb₂Nb₁₂ structure (Fig. 1). The O···O distances between the square-like window for capping (2.65-2.70 Å) in PNb₁₂ are less contracted than those in the Sb^{III}-capped window of same pseudo-Keggin
- ²⁵ unit in PSb₂Nb₁₂ (2.50-2.51 Å), due to the absence of capping metal. Generally, the O···O distances in the capping site are in the order of PNb₁₂>PNb₁₄>PSb₂Nb₁₂>PV₂Nb₁₂ (Fig. S4 and S5). Although PNb₁₂ should possess a -15 charge, only 10 TMA ions are found in the crystal structure, and this number agrees with
- ³⁰ elemental analyses and TGA data (Fig. S2). We propose that five protons are disordered on the PNb_{12} cluster surface, but we are unable to assign the protonation sites by BVS values (1.57 to 1.86) of the surface μ_2 -oxygens. We note that uncapped PNb_{12} Keggin structure has not been reported as a soluble form so far.
- ³⁵ The ³¹P MAS-NMR data of the synthesized Keggin compounds are shown in Fig. 2. The chemical shifts of each Keggin structure are slightly different, with 5.2, 4.0 and 2.4 ppm for PSb₂Nb₁₂, PNb₁₄ and PNb₁₂, respectively. The downfield ³¹P peak shift of PSb₂Nb₁₂ and PNb₁₄ compared to PNb₁₂ can be
- ⁴⁰ attributed to the existence of capping atoms (Sb^{III} or Nb^V), and more downfield shift in PSb_2Nb_{12} is attributed to higher electronegativity of antimony compared to niobium. The spectra of PNb₁₄ features additional small peak at 1.04 ppm. We propose that the small peak arises from PNb₁₃, as indicated by ESI-MS
- ⁴⁵ (Fig. S1). The ³¹P-NMR peak of PNb₁₂ is broader than the peaks of bicapped Keggin compounds, due to less symmetric P-O bonds at the center of the structure. The P-O bonds in PNb₁₂ range 1.500(10)-1.628(11) Å, while the P-O bonds in PSb₂Nb₁₂ and PNb₁₄ have more regular P-O bonds (1.529(7)-1.594(7) Å and ⁵⁰ 1.544(9)-1.559(8) Å, respectively).
- Stability of the clusters in solution was checked by via 31 P NMR (Fig. 2). When the compounds were dissolved in D₂O, PSb₂Nb₁₂, PNb₁₄ and PNb₁₂ showed peaks at 6.4, 5.4 and 5.2 ppm, respectively, and the peak from PNb₁₂ was broad, similarly to
- ⁵⁵ MAS NMR. The PNb₁₄ showed large amount of unassignable broad peaks upfield, suggesting polymerization of PNb₁₄ in water. In methanol, PNb₁₄ shows two peaks at 4.8 and 3.9 ppm with integral ratio 1:0.3, which might correspond to PNb₁₄ and PNb₁₃.

The sharp peaks in methanol confirm that the series of broad ⁶⁰ peaks of PNb₁₄ in D₂O are due to polymerization of the molecules in water. FT-IR spectra (Fig. S6) of the three compounds are all similar to that of previously reported PV₂Nb₁₂, featuring P-O band around 1025 cm⁻¹, Nb=O band around 880 cm⁻¹ and some Nb-O-Nb bands between 850-600 cm⁻¹.¹⁴ We note ⁶⁵ that the FT-IR spectrum of PNb₁₂ generally shows broader bands than other compounds, possibly due to its less compact structure due to the absence of capping ions.

Fig. 2³¹P MAS NMR (left) and ³¹P solution NMR (right) spectra. The apparent peaks at 2.8 ppm (right) is an instrumental artifact.

The stabilities of these clusters were monitored by ESI-MS as a function of pH (Fig. S7 to S9). PSb₂Nb₁₂ was seen to be stable between 4<pH<12, similar to the stability range of PV₂Nb₁₂. The PNb₁₂ was stable in the higher pH region (6<pH<12), which is ⁷⁵ consistent with its formation condition at high pH and its high molecular charge. A solution of PNb₁₂ formed precipitate when pH was reduced to below pH=6, consistent with charge neutralization. In contrast, The PNb₁₄ cluster exhibited a narrower pH stability range (8<pH<12), and the cluster was unstable when ⁸⁰ titrated with acid.

Both PNb_{14} and PNb_{12} can directly react with Sb_2O_3 or V_2O_5 to form PSb₂Nb₁₂ or PV₂Nb₁₂ by simple hydrothermal treatment at nearly quantitative yields. By using ESI-MS, we were able to monitor the reaction in a capped vial at 100°C and 70°C for 85 antimony and vanadium capping, respectively (Fig. S10 and S11). The complete formation of PSb₂Nb₁₂ was slower (~2h) than PV_2Nb_{12} (<1h). When starting from PNb_{14} , the formation of hetero-capped Keggin ions such as $[PSbNb_{13}O_{41}]^{9}$ or $[PVNb_{13}O_{42}]^{9}$ as intermediates was detected by using ESI-MS. 90 The capping reaction of PNb₁₂ was also monitored similarly, and the reaction proceeds with intermediates such as mono-capped $[PVNb_{12}O_{41}]^{12}$ or $[PSbNb_{12}O_{40}]^{12}$ (Fig. 3, Fig. S11). Thus the reaction apparently occurs via stepwise substitution from PNb₁₄, or addition of capping sites to PNb₁₂, respectively. The reaction 95 can be completed even at room temperature after stirring the mixture for a few days. Because the conversion of PNb₁₄ to $\text{PSb}_2\text{Nb}_{12}$ or $\text{PV}_2\text{Nb}_{12}$ apparently involves direct substitution of the capping unit from Nb^V=O to Sb^{III} or V^V=O, this reaction can be regarded as transmetalation. Transmetalation is a well-known 100 synthetic strategy in organometallic chemistry, but rare in polyoxometalates to our knowledge.¹⁵ Similarly to the uncapping reaction of PNb₁₄ to form PNb₁₂, PV₂Nb₁₂ can also be uncapped to form PNb₁₂ in a same condition, thus uncapping/capping reaction of $V^{V}=O$ is reversible. PSb_2Nb_{12} could not be uncapped 105 even with larger amount of base added during attempted reaction.

ChemComm Accepted Manuscript

2 | Journal Name, [year], [vol], 00-00

Fig. 3 ESI-MS monitored during the reaction of 50 mg of PNb_{12} and 5 mg of Sb_2O_3 in 2 mL of water.

Conclusions

- ⁵ We demonstrate that P-centered Keggin polyoxoniobate can be capped or uncapped at certain reaction conditions, and the reaction depends on the stability of the capped niobate. Such a capping or transmetalation reaction, starting from PNb₁₂ or PNb₁₄, is an attractive route for selective capping by various types of
- ¹⁰ transition metals and allows unprecedented control. This control over capping/uncapping can be particularly useful for polymerizing Keggin ions by exploiting the heterogeneity of opposed apical bicaps. The newly isolated and discrete PNb₁₄ ion would be used as a precursor for rational synthesis of oligomeric ¹⁵ chains of Keggin ions in materials science.

Acknowledgement

This work was supported by an NSF CCI grant through the Center for Sustainable Materials Chemistry, number CHE-1102637. Additional support to JHS was via NSF-CHE-1310368 ²⁰ to WHC. The authors thank Dr. Ping Yu, Corey Pilgrim and Gerry Ochoa for help collecting the NMR spectra. We also thank Dana Reusser and prof. Alex Navrotsky for TGA data.

Notes and references

- ^a Dr. J.-H. Son, Department of Chemistry, University of California, Davis
 ²⁵ One Shields Ave. Davis, CA 95616, USA. E-mail: junghoson@gmail.com
 ^b Prof. W. H. Casey; Department of Chemistry, Department of Earth and Planetary Sciences, University of California, Davis, One Shields Ave. Davis, CA 95616, USA. Fax: (+1) (530) 752 8995, E-mail: whcasey@ucdavis.edu
- ³⁰ † Electronic Supplementary Information (ESI) available: Experimental details, crystallographic table, TGA, FT-IR, ESI-MS spectra and pH dependent ESI-MS spectra of the compounds, ESI-MS while monitoring the reactions. See DOI: 10.1039/b000000x/

- (a) Q. Chen, C. L. Hill, *Inorg. Chem.*, 1996, **35**, 2403-2405. (b) M. Yuan, Y. Li, E. Wang, Y. Lu, C. Hu, N. Hu, H. Jia, *J. Chem. Soc.*, *Dalton Trans.*, 2002, **14**, 2916-2920. (c) M. Yuan, Y. Li, E. Wang, C. Tian, L. Wang, C. Hu, N. Hu, H. Jia, *Inorg. Chem.*, 2003, **42**, 3670-3676. (d) J. Sha, J. Peng, H. Liu, J. Chen, A. Tian, P. Zhang, *Inorg. Chem.*, 2007, **46**, 11183-11189. (e) J. Sha, J. Peng, S. Zhou, M. Zhu, L. Han, D. Chen, *J. Cluster Sci.*, 2008, **19**, 499-509. (f) J. Fu, H. Sun, Y. Xu, C. Wang, D. Zhu, Q. Sun, H. Liu, *CrystEngComm*, 2012, **14**, 5148-5150.
- ² (a) J.-W. Cui, X.-B. Cui, H.-H. Yu, J.-Q. Xu, Z.-H. Yi, W.-J Duan, *Inorg. Chim. Acta*, 2008, **361**, 2641-2647. (b) W. Wang, L. Xu, G. Gao, L. Liu, X. Liu, *CrystEngComm*, 2009, **11**, 2488-2493.
- ³ Y. Bai, Y. Li, E. Wang, X. Wang, Y. Lu, L. Xu, J. Mol. Struc., 2005, **752**, 54-59.
- ⁴ B. Nohra, H. El Moll, L. M. Rodriguez-Albero, P. Mialane, J. Marrot, C. Mellot-Draznieks, M. O'Keeffe, R. Ngo Biboum, J. Lemaire, B. Keita, L. Nadjo, A. Dolbecq, *J. Am. Chem. Soc.*, 2011, **133**, 13363-13374.
- ⁵ (a) S.-Y. Shi, H.-H. Teng, L.-M. Chang, Y. Wang, L.-N. Xiao, X.-B. Cui, J.-Q. Xu, *Inorg. Chim. Acta*, 2013, **399**, 172-176. (b) J. Huang, Z. Han, H. Zhang, H. Yu, X. Zhai, *J. Solid State Chem.*, 2012, **194**, 65-70. (c) Y.-K. Lu, J.-N. Xu, X.-B. Cui, J. Jin, S.-Y. Shi, J.-Q. Xu, *Inorg. Chem. Comm.*, 2010, **13**, 46-49.
- ⁶ (a) A. Dolbecq, P. Mialane, L. Lisnard, J. Marrot, F. Sécheresse, *Chem.* - A Eur. J., 2003, 9, 2914-2920. (b) P. Mialane, A. Dolbecq, L. Lisnard, A. Mallard, J. Marrot, F. Sécheresse, *Angew. Chem., Int.* Ed., 2002, 41, 2398-2401.
- ⁷ (a) J. Lehmann, A. Gaita-Ariño, E. Coronado and D. Loss, J. Mater. Chem., 2009, **19**, 1672. (b) J. Lehmann, A. Gaita-Ariño, E. Coronado, D. Loss, Nat. Nanotechnol., 2007, **2**, 312.
- ⁸ (a) A. Müller, M. Koop, P. Schiffels, H. Bögge, *Chem. Comm.* 1997, **18**, 1715-1716. (b) X. Wang, L. Liu, G. Zhang, A. J. Jacobson, *Chem. Comm.* 2001, **23**, 2472-2473. (c) Z. Zhang, Q. Lin, D. Kurunthu, T. Wu, F. Zuo, S.-T. Zheng, C. J. Bardeen, X. Bu, P. Feng, *J. Am. Chem. Soc.* 2011, **133**, 6934–6937.
- ⁹ (a) G. Guo, Y. Xu, J. Cao, C. Hu, *Chem. Comm.*, 2011, **47**, 9411–9413.
 (b) J.-H. Son, C. A. Ohlin, E. C. Larson, P. Yu, W. H. Casey, *Eur. J. Inorg. Chem.* 2013, 1748–1753. (c) J.-H. Son, C. A. Ohlin, R. L. Johnson, P. Yu, W. H. Casey, *Chem. Eur. J.* 2013, **19**, 5191–5197.
 (d) J.-Q. Shen, Y. Zhang, Z.-M. Zhang, Y.-G. Li, Y.-Q. Gao, E.-B. Wang, *Chem. Comm.* 2014, **50**, 6017-6019.
- ¹⁰ (a) M. Nyman, J. P. Larentzos, E. J. Maginn, M. E. Welk, D. Ingersoll, H. Park, J. B. Parise, I. Bull, F. Bonhomme, *Inorg. Chem.* 2007, **46**, 2067-2079. (b) F. Bonhomme, J. P. Larentzos, T. M. Alam, E. J. Maginn, M. Nyman, *Inorg. Chem.* 2005, **44**, 1774-1785. (c) M. Nyman, F. Bonhomme, T. M. Alam, M. A. Rodriguez, B. R. Cherry, J. L. Krumhansl, T. M. Nenoff, A. M. Sattler, *Science* 2002, **297**, 996-998.
- ¹¹ R. Bakri, A. Booth, G. Harle, P. S. Middleton, C. Wills, W. Clegg, R. W. Harrington, R. J. Errington, *Chem. Comm.* 2012, **48**, 2779-2781.
- ¹² Y. Hou , L. N. Zakharov , M. Nyman, J. Am. Chem. Soc., 2013, 135, 16651–16657.
- ¹³ (a) G. Meyer, R. Hoppe, M. Jansen, *Naturwissenschaften*, 1976, 63, 386. (b) M. H. Chisholm, A. H. Cowley, M. Lattman, *J. Am. Chem. Soc.* 1980, 102, 46-50. (c) G. S. McGrady, A. Haaland, H. P. Verne, H. V. Volden, A. J. Downs, D. Shorokhov, G. Eickerling, W. Scherer, *Chem. A Eur. J.*, 2005, 11, 4921-4934.
- ¹⁴ C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot, *Inorg. Chem.* **1983**, 22, 207-216.
- ¹⁵ M. E. Carnes, M. S. Collins, D. W. Johnson, *Chem. Soc. Rev.*, 2014, 43, 1825-1834.

35