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For the construction of mono-BZI functionalized β-CD, we 
decided to carry out the synthesis of mono-2-O-{1-(1H-
benzoimidazol-2-ylmethyl)-1H-[1,2,3] triazol-4-ylmethyl}-β-
cyclodextrin (Compound 3, Scheme 1A). We first synthesize 
mono-2-O-propargyl-β-cyclodextrin (Compound 1) in a facile 5 

route. Taking advantage of terminal alkyne group linked to the 
O2 position, Cu (Ⅰ)-catalyzed azide-alkyne Huisgen 
cycloaddition reactions of Compound 1 was performed with 2-
(azidomethyl)-1H-benzimidazole (Compound 2), which was 
obtained via nucleophilic substitution by using sodium azido 10 

solution, to afford the click product Compound 3 (the detailed 
synthesis process can be seen in ESI†, Scheme S1-S3, Fig. S1-
S3). The self-complexation behaviour of Compound 3 was first 
investigated by 1H NMR spectroscopy. The concentration of 
Compound 3 is below 0.1 mM in order to avoid intermolecular 15 

self-assembly.7 The 1H NMR spectrum of Compound 3 in D2O is 
shown in Fig. 1A. Upon addition of 1 equiv. of DCl (Fig. 1B), the 
peaks for BZI (Ha, Hb) display the substantial downfield shifts 
(∆δa=0.20, ∆δb=0.37 ppm) and a strong spectral simplification of 
the β-CD region is observed. After adjusting to neutral solution 20 

by NaOD, the signals of Ha, Hb as well as H-3 and H-5 (marked 
in Scheme S1, ESI†), which locate inside the cavity of β-CD shift 
remarkably upfield. The cyclic process from Fig.1 indicates the 
self-inclusion of the BZI moiety into the hydrophobic β-CD 
cavity in neutral solution and the dethreading occurs under acidic 25 

environment. The pH-dependent spatial conformation of 
Compound 3 can be further confirmed by 2D ROESY (Fig. S4, 
ESI†). From 2D ROESY analysis, ROE correlations are observed 
between protons of BZI and protons of β-CD at neutral pH and 
disappear in the acidic condition. Further evidence for supporting 30 

switchable action was obtained by UV-vis measurements (Fig S5, 
ESI†). 

Fig. 1.  1H NMR spectra of Compound 3 in D2O: (A) at 25 ℃; (B) 
adding 1.0 equiv. DCl; (C) adding 1.0 equiv. NaOD. 

MCM-41-type MSNs with an average diameter of 150 nm, 35 

specific surface are of 1000.82 m2 g-1 and pore size of  2.29 nm 
were synthesized according to a previously reported method 
(Figure S6, ESI†).9 The hexagonally arranged pores of the MSNs, 
which will accommodate cargo molecules were analysed through 
transmission electron microscopy (TEM) and small-angel X-ray 40 

diffraction (SA-XRD). The synthesis route of MSNPs 1 is shown 
in Scheme S6 (ESI†). Initially, the MSNs used as inorganic 
scaffold were reacted with (3-aminopropyl) trimethoxysilane 

(APTES) to obtain MSNs-NH2. Subsequently, in order to 
facilitate supramolecular nanovalves (Compound 3) to attach the 45 

MSNs-NH2, heptakis (6-deoxy-6-iodo) modified Compound 3 
was prepared (Compound 4, synthesis process is in ESI†). Next, 
Compound 4 was covalently anchored onto the external surface 
of MSNs through nucleophilic substitution reaction to afford 
MSNs-CD-BZI. Finally, the adsorption of p-coumaric acid as 50 

cargo molecules and the closure of supramolecular nanovalves 
were accomplished by precisely adjusting pH values of solution, 
and then MSNPs 1 were assembled.  

FTIR spectra (Figure S7, ESI†) were used to characterize two-
steps functionalization process of MSNs. Compared with the Si-55 

O-Si stretching (1080 cm-1), Si-OH stretching (3434 cm-1) and 
bending vibrations (1621 cm-1) of bare MSNs, the new peaks at 
2933 and 2856 cm-1 in the MSNs-NH2 are due to the asymmetric 
and symmetric C-H stretching vibrations, and the 3078 cm-1 weak 
peak is ascribed to the N-H stretching vibration. Upon 60 

functionalization with Compound 4, the appearance of peaks at 
1539, 1452 and 1386 cm-1 are assigned the characteristic of 
benzene rings, C=N stretching and C-N stretching vibration in 
BZI rings, respectively, which indicates the successful attachment 
of supramolecular nanovalves. The grafting of the different 65 

functional groups onto the surface of MSNs was further 
confirmed by the solid-state 13C and 29Si CP/MAS NMR spectra 
as depicted in Fig. 2. The NMR spectrum of MSNs-NH2 shows 
three resonance signals at about 38, 18 and 5 ppm, which are 
assigned to characteristic carbon peaks of i, j, k on 3-aminopropyl 70 

groups. In the NMR spectrum of MSNs-CD-BZI, apart from the 
peaks of carbons i’, j’, k’, a series of new signals are clearly 
observed owning to the resonances of nanovalves. The additional 
resonances are divided into two regions: (ⅰ) the signals at 97, 78, 
68 and 52 ppm correspond to the carbon peaks of C1, C4, C2/3/5 75 

and C6 on the β-CD, respectively; (ⅱ) the signals at the range of 
158～125 ppm are attributed to the characteristic carbon peaks on 
BZI groups. Additionally, the 29Si spectrum of MSNs-CD-BZI 
reveals bulk silicon peaks (Q region) around -124～-90 ppm and 
T type signals (T region) at about -84～-61ppm, confirming the 80 

functionalized silica resonances. The zeta potentials for MSNs, 
MSNs-NH2 and MSNs-CD-BZI at pH 7.0 are -22.5, +7.5 and 
+1.9 mV, respectively. This changing tendency also supports that 
the two-step functionalization proceeds smoothly.  

Fig. 2. 13C CP-MAS solid-state NMR spectra of (A) MSNs-NH2; 85 

(B) MSNs-CD-BZI and (C) 29Si CP-MAS NMR spectrum of 
MSN-CD-BZI.  
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