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By using alkanes and mercaptans as the nucleophiles, di-tert-

butyl peroxide (DTBP) as the oxidant, I2-catalyzed oxidative 

C(sp3)-H/S-H coupling was achieved. This protocol provided 

a novel process to construct C(sp3)-S bond from commercially 

available hydrocarbons and mercaptans. 

C-S bonds are key structures of many nature products and 

functional molecules which exhibit different biological 

activities, hence much attention has been paid to the formation 

of C-S bond through coupling reactions1. Classically, coupling 

reactions of organic halides/organic boronic acid with 

mercaptans in the presence of bases and catalysts was 

employed to form C-S bonds2. Oxidative coupling between RH 
and R’H, which shortens the synthesis route due to the 

elimination of pre-activation of C-H or X-H bonds, has 

attracted much attention during the past decades3. Although 

transition-metal-catalyzed C(sp2)-H and C(sp)-H 

functionalization were the major force in this field4, they were 

seldom utilized to perform oxidative coupling with S-H bonds5 

due to the strong poisoning effect of mercaptans. Moreover, up 

to now, only isolated reports focus on oxidative C(sp3)-H/S-H 

coupling6. Thus, it is still highly desirable to explore the C-S 

bond formation utilizing C(sp3)-H bonds and mercaptans as the 

nucleophiles. 

C(sp3)-H bonds existed extensively in the nature, and most of 

which were of alkanes. Thus it is a pivotal task to realize the 

functionalization of the abundant C(sp3)-H bonds of alkanes. 

However, they are difficult to be activated in reactions, which 

may be ascribe to their nonpolarity, which weakened the 

interaction between the bonds and other species such as 

transition metals. Consequently, to date, only few reports have 

described oxidative coupling utilizing simple alkanes in highly 

selective manner7 although they are always easy accessible. 

Therefore, it is still a crucial but challenging task to achieve the 

oxidative coupling of the C(sp3)-H bonds of simple alkanes. 

Moreover, there is no report focused on the oxidative C-H/S-H 

coupling of C(sp3)-H bonds between simple alkanes and 

mercaptans, so such topic of C(sp3)-H functionalization would 

provide a new way to construct  C(sp3)-S bonds (Scheme 1). 

 
Scheme 1. New way for C(sp3)-S bond construction 

In consequence of the strong coordination of the mercaptans 

to the transition metals, and the use of metal limited the further 

application of the protocols in industry and pharmacy. We 

initiated the investigation with a metal-free protocol8. Recently, 

iodide catalysts are gaining more attention among the oxidative 

coupling reactions9. Moreover, compared with transition 

metals, iodide catalysts might exhibit weaker interaction with 

mercaptans. Thus, this serious of catalysts were picked out to 

catalyze the oxidative C(sp3)-H/S-H coupling. To figure out the 

best condition, 4-methyl thiophenol 2a was employed to react 

with toluene 1a. After a series of condition optimization, I2 and 

DTBP were selected to be the catalyst and the oxidant 

respectively (see supporting information, Table S1). The 

detailed condition was: 1a (4 mL), 2a (0.3 mmol), DTBP (1.5 

mmol), I2 (0.045 mmol) at 120 oC for 20 h under N2. The 

corresponding sulfide was obtained in the yield of 74% under 

the optimized condition (Scheme 2, 3aa)10. 

Then we began to investigate the substrate scope of the 

reaction. First, various aryl mercaptans were examined to react 

with toluene 1a under optimized condition. Electron-rich 

thiophenols performed the benzylation smoothly and good 

yields were obtained (Scheme 2, 3aa, 3af, 3ag). The electron-

deficient thiophenol, however, exhibited lower activity than the 

electron-rich ones (Scheme 2, 3ae). The halo-substituted 

thiophenols, which allowed further functionalization, were 

tolerated (Scheme 2, 3ab, 3ac, 3ad, 3ah). The steric hindrance 

effect was not obvious in the reactions of thiophenols bearing 

o-Br and p-Br group (Scheme 2, 3ad, 3ah). It was noteworthy 

that both electron-rich and electron-deficient heterocyclic 

mercaptans were also suitable for this transformation (Scheme 

2, 3ai, 3aj). Moreover, 4-mercapto-phenyl sulfide 2k, a 

substrate bearing two mercapto group, also react with toluene 

with good selectivity that only dibenzylated product was 
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obtained (Scheme 2, 3ak). Unfortunately, only trace amount of 

product were detected when aliphatic mercaptans were 

employed to couple with toluene, which might result from the 

over-oxidation of the relatively unstable aliphatic mercaptans. 
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Scheme 2. I2-promoted oxidative C(sp3)-H/S-H coupling of toluene with aryl 

mercaptans. Reaction conditions: 1a (4 mL), 2 (0.3 mmol), DTBP (1.5 mmol), I2 

(0.045 mmol) at 120 oC for 20 h under N2. Yields shown are of isolated products. 

Bn = benzyl. [a] 2k (0.15 mmol). 

Inspired by the encouraging results, the reactivity of methyl 

arenes was further investigated. 4-methoxy-thiophenol 2f was 

selected to react with various methyl arenes due to the easier 

isolation of the products. The methyl arenes bearing multiple 

methyls, which enriched the electron density of the arene 

slightly, exhibited good activity (Scheme 3, 3bf, 3ff). However, 

methyl arenes bearing electron-deficient group such as Cl and 

Br group exhibited lower activity in the reaction (Scheme 3, 

3cf, 3df, 3ef). Steric effect was also not observed since the o-Br 

and p-Br toluenes showed similar activity (Scheme 3, 3df, 3ef). 
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Scheme 3. I2-promoted oxidative C(sp3)-H/S-H coupling of various methyl arenes 

with 4-methoxy-thiophenol. Reaction conditions: 1 (4 mL), 2f (0.3 mmol), DTBP 

(1.5 mmol), I2 (0.045 mmol) at 120 oC for 20 h under N2. Yields shown are of 

isolated products. 

Since the bond dissociation energy (BDE) of toluene C(sp3)-

H bond (89 Kcal/mol11) was low among the C(sp3)-H bonds, 

cyclohexane, another alkane with relatively low C(sp3)-H bond 

energy (96 kcal/mol12), was tested utilizing the standard 

condition. To our delight, the corresponding phenyl alkyl 

sulfide was obtained in the yield of 80% (Scheme 4, 5af). 

Moreover, the BDE of C(sp3)-H bond of acetone was 95 

kcal/mol13, and as the result, acetone, the most simple ketone, 

can also perform the C(sp3)-H/S-H coupling as predicted with 

lower yield (Scheme 4, 5bf). With the C-H bond of acetone 

activated, acetylacetone reacted with 4-methoxy-thiophenol 

smoothly and the yield rose to 90% (Scheme 4, 5cf). 

 
Scheme 4. I2-promoted oxidative C(sp3)-H/S-H coupling of various various 

C(sp3)-H source with 4-methoxy-thiophenol. Reaction conditions: 4 (4 mL), 2f 

(0.3 mmol), DTBP (1.5 mmol), I2 (0.045 mmol) at 120 oC for 20 h under N2. 

Yields shown are of isolated products. 

Furthermore, we wanted to gain some mechanistic insights of 

this oxidative coupling of alkane C(sp3)-H bonds with aryl 

mercaptans. Control experiments were carried out firstly. When 

I2 was excluded from the system, the yield of sulfide lowered 

slightly [Scheme 5, eq(1)]. Which indicated that I2 was involved 

among the transformation. Then, benzyl iodide was employed 

to react with 4-methylthiophenol (see supporting imformation, 

Scheme S1) and only 30% of the aryl alkyl sulfide was 

obtained. This result suggested that the iodization/substitution 

procedure may not be the main access led to the formation of 

product. 

Then in situ IR was selected to monitor the reaction between 

toluene and 4-methylthiophenol to figure out the role of I2. We 

can see that 4-methyl-thiophenol consumed within 3 minutes 

accompanying the generation of 4-methylphenyl disulfide (see 

supporting information, Figure S1). The sampling experiment 

revealed that the disulfide generated very fast with the yield of 

79% (Figure 1, disulfide with I2), and the product did not form 

until the fully consumption of mercaptans (Figure 1, product 

with I2). Slower generation of the disulfide and lower yield of 

the product were observed when I2 was taken away from the 

system (Figure 1, disulfide and product without I2). Therefore, 

we drew the inference that the disulfides may be the 

intermediate of the reaction, and I2 may act as accelerator of the 

generation of disulfide14. The accelerated dimerization might 

prevent the side reactions of mercaptans, which may result to 

the slight promotion of the yield. Another control experiment 

showed that disulfide exhibited similar activity compared with 

mercaptan [Scheme 5, eq(2)], which further confirmed the 

deduction. 

In view of the previous reports employed methyl arenes as 

the benzyl source and DTBP as the oxidant, a single electron 

transfer (SET) process led to the generation of benzyl radical 

might be one step among the reaction7d, 15. Therefore, a radical-

trapping experiment was carried out using butylated 

hydroxytoluene (BHT) as the radical trapper. As predicted, the 

coupling reaction was suppressed by BHT [Scheme 5, eq(3)]. 

Thus we believed that a radical process was involved among 

the reaction. 

Then, to further confirm our speculation, electron 

paramagnetic resonance (EPR) experiments were carried out. A 

complicated spectrum was recorded when 5,5-dimethyl-1-

pyrroline N-oxide (DMPO) was added to the reaction of 

toluene and DTBP [Figure 2(a)]. Moreover, with I2 or both I2 
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and 4-methylphenyl disulfide added to above system, similar 

radical signal was recorded [Figure 2(b, c)]. This result 

excluded I2 and disulfide from the radical signal source. When 

toluene was replaced by cyclohexane, a different signal was 

recorded [Figure 2(d)], which indicated that the radical signal 

was related to the C(sp3)-H bonds, and thus the C(sp3) radical 

generated from the C(sp3)-H bonds may be the intermediate of 

the reaction. 
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Figure 1. The sampling experiment of reaction mixture of 1a (4 mL), 2a (0.3 

mmol), DTBP (1.5 mmol) at 120 oC with and without I2 respectively. 

 
Scheme 5. Control experiments and Radical trapping experiment 
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Figure 2. The electron paramagnetic resonance (EPR) spectra (X band, 9.4GHz, 

RT) of (a) reaction mixture of DTBP (1.5 mmol) in toluene (2 mL) at 120 oC for 5 

h with the addition of DMPO; (b) Reaction mixture of DTBP (1.5 mmol) and I2 

(0.045 mmol) in toluene (2 mL) at 120 oC for 5 h with the addition of DMPO; (c) 

Reaction mixture of DTBP (1.5 mmol), I2 (0.045 mmol) and 4-methylphenyl 

disulfide (0.2 mmol) in toluene (2 mL) at 120 oC for 5 h with the addition of 

DMPO; (d) Reaction mixture of DTBP in cyclohexane (2 mL) at 120 oC for 5 h 

with the addition of DMPO. 

Furthermore, an intermolecular kinetic isotopic effect (KIE) 

experiment was carried out, and a noteworthy KIE was 

observed with the kH/kD = 3.0 (Scheme 6). This result indicated 

that the C(sp3)-H bond activation might be involved in the rate 

determining step.  

 
Scheme 6. KIE experiment 

Based on the experiment results and literature precedent, a 

plausible mechanism was proposed. Initially, an oxidative 

dimerization of aryl mercaptans took place quickly to give 

corresponding disulfide with the I2 as the catalyst and DTBP as 

the oxidant. The homocoupling of the sulfur radical, which 

generated from the S-H bond abstraction by tert-butoxy radical, 

were believed to be the route14. The tert-butoxy radical could 

also abstracted hydrogen from methyl arene to obtained benzyl 

radical with a lower rate that it did not occur before the 

completely consumption of the mercaptan. This step was also 

considered to be the rate determining step (RDS). Afterward, 

there are two possible pathways. Similar to organic peroxides, 

the disulfide might act as a sulfur radical pool that it release the 

sulfur radical slowly through homolysis16. And the sulfur 

radical couple with the benzyl radical to afford the product. 

Another possibility is that radical-substitution occurred between 

benzyl radical and disulfide6b, 10, 17 to give the product and the 

sulfur radical, which dimerized quickly to regenerate the 

disulfide.  

In summary, we have established an oxidative C(sp3)-H/S-H 

coupling of alkanes with mercaptans to afford aryl alkyl 

sulfides with the employment of cheap and nontoxic I2 and 

DTBP in moderate to good yields. This proposal provided a 

novel process to construct C(sp3)-S bond using alkanes and 

mercaptans directly, which eliminate the pre-functionalization 

of the starting materials and might encourage the further 

application. The mechanism study suggested that the disulfides 

were the intermediate and the C(sp3)-H bond cleavage was the 

rate-determing step of the transformation. 
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The C(sp
3
)-S bond formation was achieved utilizing C(sp

3
)-H and S-H as the nucleophiles. Methyl 

arenes, cycloalkanes and aliphatic ketones exhibited reactivity for this transformation. Mechanism 

study revealed that C(sp
3
) radical and disulfide were the intermediates of the reaction. 
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