ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Fixation of CO₂ in bi-layered coordination networks of zinc tetra(4carboxyphenyl)porphyrin with multi-component [Pr₂Na₃(NO₃)(H₂O)₃] connectors

Goutam Nandi* and Israel Goldberg*

s Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

 CO_2 is fixed in a rare $\mu_2 - \eta^2_{0,0}$ bridging mode by bi-layered coordination networks of ZnTCPP tessellated along the four equatorial directions by $[Pr_2Na_3(NO_3)(H_2O)_3]^{8+}$ connecting 10 clusters in a 2:1 ratio (1), but not in the isomorphous free-

base porphyrin analogue $[(TCPPH_2)_2(Pr_2Na_3(NO_3)(H_2O)_3]_n$ (2), revealing the crucial role of the zinc metal in this process.

Photosynthesis and respiration are at equilibrium with one another and play an important role in maintaining the carbon 15 cycle. However, due to different human activities, the amount of CO₂ released into the atmosphere has been rising extensively during the last few decades and has exceeded the amount sequestered in biomass, the oceans, and in other nature sinks. The increased concentration of CO₂ in the atmosphere is directly 20 related to the climate change, and it becomes now a teraton

- challenge to the scientific community.¹ Thus, there is an urgent need to reduce the accumulation of CO_2 in the atmosphere. For inorganic chemists, it is particularly fascinating to synthesize simple complex(es) by common synthetic procedures which will
- ²⁵ bind CO₂ or will activate CO₂ for chemical transformations. Chemists have isolated and structurally characterized several synthetic metal complexes having metal-coordinated CO₂ in neutral or in reduced form.^{2,3} In the case of bi-nuclear metal complexes, four binding modes of CO₂ are possible (Figure 1).⁴

Fig. 1 Possible coordination modes of CO₂ in binuclear metal complexes.

The μ_2 - $\eta^2_{0,0}$ coordination mode is generally rare compared to the others. A first complex of this type was reported by Chang et ³⁵ al, using an external CO₂ source.⁵ Later, Phull et al. reinvestigated the complex by theoretical and spectroscopic analysis and concluded that the bridging ligand is actually NCO anion rather than neutral CO₂.⁶ Recently, Fang et al. have reported another complex featuring this type of coordination mode, albeit with an

This journal is © The Royal Society of Chemistry [year]

⁴⁰ auxiliary ligand similar to the one which caused the formation of the NCO anion in the first case.^{3d} At this point, the nature of the coordinated ligand in those complexes still remains unclear.⁷

Metal-organic frameworks (MOFs) have attracted an extensive interest in recent years because of their stable architectures and ⁴⁵ various potential applications including CO₂ capture and storage.⁸ In some cases, the presence of CO₂ molecules inside the MOFs has been confirmed by crystallographic analysis as well.⁹ MOFs can be readily prepared by the self-assembly through extended coordination between metal ions or metal-containing clusters and ⁵⁰ organic linkers. The use of multiply functionalized rigid and thermally stable tetraarylporphyrins as such linkers has drawn recently particular attention.¹⁰ Thus, extensive application of the tetra(4-carboxyphenyl)porphyrin building block to this end has been widely reported by us as well as by other groups; one of the ⁵⁵ pioneering and most relevant to the present discussion examples

- involves a uniquely structured molecular-sieve-type material composed of anionic networks of ZnTCPP [ZnTCPP = 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrinato-zinc]⁴⁻,
- templated by Na⁺ ion clusters and cross-linked between the zinc ⁶⁰ centers by 4,4'-bipyridyl bridges.¹¹ Based on similar crystalengineering concepts we attempted the synthesis of a series of new ZnTCPP-based coordination polymers capable of trapping CO₂, using both sodium and lanthanoid (Pr, Nd, Sm, Gd and Dy) ions as possible inter-porphyrin connectors. The latter have ⁶⁵ shown to be excellent connectors in the formulation of stable MOFs with the TCPP-type linkers.¹²

The zinc containing natural enzyme carbonic anhydrase is $_{70}$ known to facilitates the reversible hydration of atmospheric CO₂

to bicarbonate.¹³ Several zinc complexes have been used (also as catalysts) in the fixation of atmospheric CO₂ (as carbonate ion).^{14,15} In this context, we report here on the fascinating polymeric structures of the $[(ZnTCPP)_2(CO_2)(Pr_2Na_3(NO_3)(H_2O)_3]_n \text{ solvent } MOF (1) \text{ in }$ which molecules of CO₂ bridge between the zinc centers of parallel zinc-porphyrin species in a rare $\mu_2 - \eta^2_{0,0}$ coordination and of its "empty" mode. structural analogue $[(TCPPH_2)_2(Pr_2Na_3(NO_3)(H_2O)_3]_n$ solvent synthesized in the ¹⁰ absence of the zinc ions (2).

In a typical multi component reaction, a mixture of the tetra(carboxyphenyl)porphyrin, ZnCl₂, Pr(NO₃)₃·6H₂O and 1(M) NaOH in dimethyl acetamide (DMA) was heated (Scheme 1),[‡] which after cooling resulted in the formation of block shaped ¹⁵ crystals of **1**.

Fig. 2 (a) Segment of the bi-layered coordination polymer in 1 showing the CO_2 bridging between two Zn-ions of adjacent metallo-porphyrins. (b) A closer view of the hetero-metallic connecting cluster.

- Single-crystal X-ray analysis of 1 shows that it crystallizes in the ²⁰ monoclinic *C2/m* space group and forms a 2D coordination polymeric network.¹⁶ The network is extended by coordination of the four carboxylate arms of the TCPP to the Pr^{3+} metal ions which in turn are bridged by the NO₃⁻ anion. The inter-porphyrin metal-ion cluster thus formed involves two Pr^{3+} , and three Na⁺
- $_{25}$ ions. The total charge of +9 of this hetero-metallic cluster is counter-balanced by the ligation of eight carboxylate groups of different TCPP moieties and one nitrate ion coming from the Pr(NO₃)₃·6H₂O reactant. The resulting structure (Figure 2) can be best described as composed bi-layered coordination networks of
- ³⁰ the tetra-anionic zinc-porphyrin linkers and the $[Pr_2Na_3(NO_3)(H_2O)_3]^{8+}$ hetero-metallic connectors. Two adjacent five-coordinate zinc centers within the bi-layers are bridged by a CO₂ molecule trapped between them and located on the mirror plane (Figure 2). The observed Zn-O coordination distance is
- ³⁵ 2.070(5) Å. The C-O distance within CO₂ is 1.131(5) Å (at 110 K), which is about 0.2 Å shorter than the recently reported complex with similar binding mode of neutral CO₂.^{3f}

The bridging CO_2 shows a slightly bent arrangement with O-C-O angle of 155.2(10)°, in good agreement with the observed

- ⁴⁰ angle of 158.7(14)° and 166.8(10)° in structures reported earlier.^{3f} Within the connecting clusters every Pr-ion is ten-coordinated to eight O-atoms of four different carboxylate groups and two O-atoms of the nitrate anion (within the corresponding 2.494-2.645(3) Å and 2.485-2.722(3) Å distance ranges), the latter
- ⁴⁵ bridging between the two praseodymium ions in the cluster. Two of the nitrate O-atoms connect to the two different metal ions while the third O-atom coordinates to both metals. Every Na-ion is five coordinated to the O-atoms of four carboxylates and one water molecule at 2.222-2.444(4) Å distance range (Figure 2b).

The presence of CO₂ in this compound is confirmed by infrared spectroscopic analysis. The spectrum of the crystalline sample of **1** exhibits a strong band at 2339 cm⁻¹ for the asymmetric stretching vibration of CO₂ (Figure 3). The observed stretching frequency is somewhat higher than the 2169 cm⁻¹ and ⁵⁵ 2165 cm⁻¹ of the other structures in which two O atoms of CO₂ are linked between Mo^{VI} and Co^{II} from two neighboring polyoxoanions.^{3f} However, this value is quite comparable with the $v_{asym} = 2348 \text{ cm}^{-1}$ of free CO₂.^{3a} This is not surprising considering that the C=O bond distance (1.131(5) Å) observed in **60 1** is comparable with that in the free CO₂ (C=O = 1.16 Å)¹⁷ and is among the shortest distances aver observed in the CO

among the shortest distances ever observed in the CO_2 coordinated metal complexes irrespective of whether the CO_2 is present in a neutral or reduced form.^{2,3}

⁶⁵ Fig. 3 Comparison of IR spectra of 1 (top) and 2 (bottom). The band at 2339 cm⁻¹ indicative of the presence of CO_2 in 1, is missing in the spectrum of 2.

Fig. 4 Face-on (a) and edge-on (b) view of the bi-layered coordination network in 2 with the free-base porphyrin linkers. The composition and ss structure of the inter-porphyrin connecting synthons are similar to those in 1, as shown in Figure 2b. The Pr-O distance range of the ten-coordinate Pr ions is within 2.498-2.703(4) Å. The Na-O distances of the five-coordinate Na ions are within 2.269-2.439(5) Å.

When the reaction shown in Scheme 1 was carried out in ⁹⁰ similar conditions but in the absence of ZnCl₂, the corresponding product **2** was found nearly isomorphous with **1**, crystallizing also in the monoclinic C2/m space group with similar cell parameters.¹⁶ The coordination polymer now formed consists of free-base porphyrin linkers and lacks the zinc binding sites ⁹⁵ responsible for the fixation of CO₂ in structure **1**. Thus, as expected, CO₂ couldn't be trapped in the crystals of compound **2**. 20

Still the connectivity features of the polymeric network and the overall crystal structure in **2** are very similar to that of **1** (Figure 4). The infrared spectrum of the solid sample of **2** doesn't show any band at ~2300 cm⁻¹ in comparison to **1**, while the remaining ⁵ finger print region of the two materials shows a remarkable

similarity (Figure 3). In both crystals (1 and 2) the bi-layered coordination networks are stacked one on top of the other. The intermolecular organization (solvent excluded) shows channel-voids of van der

- ¹⁰ Waals width of ~7.0 Å that propagate through the bilayers (Figure 5), indicating that these solids may be potential reagents for absorption/storage studies of other gas and liquid guest materials as well. In **1** and **2** the interstitial voids within and between the bi-layered polymeric assemblies are accommodated
- ¹⁵ by disordered molecules of the H₂O and DMA crystallization solvent that couldn't be modelled from the diffraction data.

Fig. 5 The space-filling packing diagram of 1 (view along *c*-axis) showing the wide intra-lattice channel voids (denoted by "X"). Nacoordinated water molecules (their H-atoms are not shown) protrude into 25 the other channels.

In conclusion, we have isolated a 2D bilayered MOF with ZnTCPP linkers and multi-component inter-porphyrin connectors, with neutral molecules of CO₂ coordinated to the zinc centers within the bilayers in a rare μ_2 - $\eta^2_{O,O}$ mode. No CO₂ is ³⁰ observed in similarly structured MOF formulated with the free-

- base TCPPH₂ ligands, indicating that zinc is essential for fixation of CO₂ in this type of materials. Remarkably similar fixation of CO₂ within bilayered MOFs of ZnTCPP has been observed also using other lanthanoid ions (Nd, Sm, Gd, Dy) in the reaction ³⁵ shown in Scheme 1, while no fixation occurred in the polymeric product of a similar process involving free-base TCPPH₂ and Dy ions. The corresponding materials have been isolated and their
- ions. The corresponding materials have been isolated and their structures (3-7, see ESI) confirmed by single-crystal X-ray diffraction, providing further support of the above findings. ⁴⁰ Comparative evaluations of their structural, gas absorption,
- luminescence and topological features are under way and will be published elsewhere. These results demonstrate a uniquely elegant application of MOF materials (among the few known to date)^{8-10,18} in binding CO₂. In the presented examples the CO₂ is
- ⁴⁵ attached to specific sites in the structure, one molecule of CO₂ per two porphyrin units, which represents a rather low loading capacity (in **1** nearly 0.5 mmol CO₂/gram sorbent, ~2 wt%). Correspondingly, these materials may not be suitable for practical applications in comparison to other more effective sorbents for ⁵⁰ atmospheric CO₂ capture.^{8-10,18}

At the end a question remains as to whether the CO_2 captured in compounds 1 and 3-6 came from the atmosphere or was generated in situ under the solvothermal conditions. The DMA that was used as solubilising and crystallization solvent may ⁵⁵ hydrolyze in such conditions to yield acetic acid and dimethyl amine in equilibrium with acetate anion and dimethylammonium cation. The acetic acid can further decompose to generate CO₂, but this process requires very harsh condition (500-900°C).¹⁹ Moreover, the yield of **1** was considerably reduced (from 6% to

- 60 2-3%) when the sonication of the solution (after addition of 1N NaOH) was done with properly capped vial suggesting exposure of the solution to air is needed for formation of 1 (this applies to compounds 3-6 as well). In addition, when a "blank" reaction was carried out in the presence of only the free-base porphyrin and 1N
- 65 NaOH (i.e. in absence of both Pr(NO₃)₃·6H₂O and ZnCl₂) in similar conditions, the resulting 3D MOF (8) contained an acetate ion (generated in situ in the reaction medium) incorporated into the supramolecular network to account for charge balance (see ESI). In view of the above it is plausible that the trapped CO₂ in 1 70 and 3-6 is of atmospheric origin.

Notes and references

School of Chemistry, Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, 6997801 Tel-Aviv, Israel. E-mail: gtm.nnd@gmail.com, goldberg@post.tau.ac.il

- 75 † Electronic Supplementary Information (ESI) available: X-ray crystallographic details in CIF format. CCDC 1014715-1014720 (1-6) and 1021602-1021603 (7-8). See DOI: 10.1039/b000000x/ ‡ Synthesis of 1: 7.9 mg (0.01 mmol) of TCPPH₂, 2 mg (0.15 mmol)
- $_{2}$ Symmetries of 1. 7.9 mg (0.01 mmor) of PCPPP₂, 2 mg (0.13 mmor) ZnCl₂ and 17.4 mg Pr(NO₃)₃·6H₂O (0.04 mmol) were taken in a screw so capped glass sample vial (4 mL) containing 2.5 mL DMA. The solution
- was then heated at 120°C for 12 hours in a bath-reactor. Next, 0.5 mL 1(N) NaOH solution was added to it and sonicated for 2 minutes (without the vial cap) to partially dissolve the formed precipitate. The entire solution was then heated at 120°C for additional 24 hours. Block shaped
- ss purple crystals of **1** were obtained on cooling to room temperature. Crystals were separated by filtration and washed with DMA, dried in air. Yield: 6 %. Elem. anal. Calcd (found) for $C_{97}H_{54}N_9O_{25}Na_3Zn_2Pr_2$: C, 52.31 (53.12); H, 2.44 (2.86); N, 5.66 (5.74). FT-IR (cm⁻¹): 2339 (s, v_{CO2} asymmetric) 1582, 1516, 1397, 1180, 993, 872, 845, 791, 714, 591, 476.
- ⁹⁰ Synthesis of 2: 7.9 mg (0.01 mmol) of TCPPH₂ and 17.4 mg Pr(NO₃)₃: 6H₂O (0.04 mmol) were taken in a screw capped glass sample vial (4 mL) containing 2.5 mL DMA. The solution was then heated at 120°C for 3 hours in a bath-reactor. Next, 0.5 mL 1(N) NaOH solution was added to it and sonicated for 2 minutes (without the vial cap) to
- ⁹⁵ partially dissolve the formed precipitate. The entire solution was then heated at 120°C for additional 24 hours. Block shaped purple crystals of **2** were obtained on cooling to room temperature. Crystals were separated by filtration and washed with DMA, dried in air. Yield: 11 %. Elem. anal. Calcd (found) for C₉₆H₅₈N₉O₂₃Na₃Pr₂: C, 56.07 (56.62); H, 2.84 (2.89); N, 100 6.13 (6.24). FT-IR (cm⁻¹): 1586, 1536, 1407, 1187, 995, 963, 871, 845, 797, 711, 592, 476.
- M. Mikkelsen, M. Jørgensen and F. C. Krebs, *Energy Environ. Sci.*, 2010, 3, 43.
- 105 2 (a) M. Aresta, C. F. Nobile, V. G. Albano, E. Forni and M. Manassero, J. Chem. Soc., Chem. Commun., 1975, 636; (b) R. Alvarez, E. Carmona, E. Gutierrez-Puebla, J. M. Marin, A. Monge and M. L. Poveda, J. Chem. Soc., Chem. Commun., 1984, 1326; (c) S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Am. Chem. Soc., 1985, 107, 2986; (d) T. Ishida, T. Hayasbi, Y. Mizobe and M. Hidai, Inorg. Chem., 1992, 31, 4481; (e) P.-F. Fu, M. A. Khan, and K. M. Nicholas, J. Am. Chem. Soc., 1992, 114, 6579; (f) H. Tanaka, H. Nagao, S.-M. Peng and K. Tanaka, Organometallics, 1992, 11, 1450; (g) S. Komiya, M. Akita, N. Kasuga, M. Hirano and A. Fukuoka, J. Chem. Soc., Chem. Commun., 1994, 1115; (h) P.-F. Fu, M. A. Khan, K. M. Nicholas, J. Organomet. Chem., 1996, 506,

49; (i) M. Hirano, M. Akita, K. Tani, K. Kumagai, N. C. Kasuga, A. Fukuoka and S. Komiya, *Organometallics*, 1997, **16**, 4206.

- 3 (a) I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold, K. Meyer, *Science*, 2004, 305, 1757; (b) L. Contreras, M. Paneque,
- ⁵ M. Sellin, E. Carmona, P. J. Pérez, E. Gutiérrez-Puebla, A. Monge and C. Ruiz, *New J. Chem.*, 2005, **29**, 109; (c) C. H. Lee, D. S. Laitar, P. Mueller and J. P. Sadighi, *J. Am. Chem. Soc.*, 2007, **129**, 13802; (d) G. Gao, F. Li, L. Xu, X. Liu and Y. Yang, J. *Am. Chem. Soc.*, 2008, **130**, 10838; (e) D. A. Dickie, E. N. Coker and R. A.
- Kemp, *Inorg. Chem.*, 2011, **50**, 11288; (f) M. Fang, J. H. Farnaby, J.
 W. Ziller, J. E. Bates, F. Furche and W. J. Evans, *J. Am. Chem. Soc.*, 2012, **134**, 6064.
 - 4 D. H. Gibson, Coord. Chem. Rev., 1999, 185–186, 335.
- 5 C.-C. Chang, M.-C. Liao, T.-H. Chang, S.-M. Peng and G.-H. Lee, 15 *Angew. Chem. Int. Ed.*, 2005, **44**, 7418.
- 6 H. Phull, D. Alberti, I. Korobkov, S. Gambarotta and P. H. M. Budzelaar, *Angew. Chem. Int. Ed.*, 2006, **45**, 5331.
- 7 N. J. English, M. M. El-Hendawy, D. A. Mooney and J. M. D. MacElroy, *Coord. Chem. Rev.*, 2014, 269, 85.
- ²⁰ 8 (a) B. Zheng, J. Bai, J. Duan, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, **133**, 748; (b) B. Zheng, Z.Yang, J. Bai, Y. Lia and S. Li, Chem. Commun., 2012, **48**, 7025; (c) Z. Wang, B. Zheng, H. Liu, X. Lin, X. Yu, P. Yi and R. Yun, Cryst. Growth Des., 2013, **13**, 5001.
- ²⁵ 9 (a) R. Vaidhyanathan, S. S. Iremonger, G. K. H. Shimizu, P. G. Boyd, S. Alavi and T. K. Woo, *Science*, 2010, **330**, 650; (b) P-Q. Liao, D-D. Zhou, A-X. Zhu, L. Jiang, R-B. Lin, J-P. Zhang and X-M. Chen, *J. Am. Chem. Soc.*, 2012, **134**, 17380; (c) J-P. Zhang, P-Q. Liao, H-L. Zhou, R-B. Lin and X-M. Chen, *Chem. Soc. Rev.*, 2014, **43**, 5789.
- 10 (a) W-Y. Gao, M. Chrzanowski and S. Ma, *Chem. Soc. Rev.*, 2014,
 43, 5841; (b) W-Y. Gao, L. Wojtas and S. Ma, *Chem. Commun.*,
 2014, 50, 5316; (c) Y. Chen, T. Hoang and S. Ma, *Inorg. Chem.*,
 2012, 51, 12600.
- 35 11 Y. Diskin-Posner, S. Dahal and I. Goldberg, Angew. Chem. Int. Ed., 2000, 6, 1288.
 - 12 (a) S. George, S. Lipstman and I. Goldberg, *Cryst. Growth Des.*, 2006, 6, 2651; (b) S. Muniappan, S. Lipstman, S. George and I. Goldberg, *Inorg. Chem.* 2007, 46, 5544; (c) S. Lipstman, S. Muniappan, S. George and I. Goldberg, *Dalton Trans.*, 2007, 3273.
- A. Looney, R. Han, K. McNeill and G. Parkin, J. Am. Chem. Soc., 1933, 115, 4690.
- 14 (a) Z-P. Qi, S-A. Li, Y-Q. Huang , G-C. Xu, G-X. Liu, L-Y. Kong,W-Y. Sun, Inorg. Chem. Commun., 2008, 11, 929; (b) B.
 ⁵ Zhang, X. Zheng, H. Su, Y. Zhu, C. Du and M. Song, *Dalton Trans.*, 2013, 42, 8571.
- 15 Eu. Pat., EP2759546 A1, 2014.
- 16 Crystal Data of 1, $[C_{97}H_{48}N_9Na_3O_{25}Pr_2Zn_2]_n$ solvent, formula weight 2221.01 (solvent excluded), monoclinic, space group C2/m, a =
- 50 32.9263(6), b = 35.2939(7), c = 11.3229(2) Å, $\beta = 109.952(1)^\circ$, V = 12368.5(4) Å³, Z = 4, T = 110(2) K, $D_{calc} = 1.193$ g.cm⁻³, μ (MoKα) = 1.23 mm⁻¹, 42799 collected data and 11129 unique reflections ($\theta_{max} = 25.06^\circ$), $R_{int} = 0.044$. The final R1 = 0.056 for 7692 observations with $F_o > 4\sigma(F_o)$, R1 = 0.076 (wR2 = 0.176) for all
- ⁵⁵ unique data, $|\Delta \rho| \le 2.26 \ e/Å^3$. CCDC 1014715. Crystal Data of **2**, [C₉₆H₃₃N₉Na₃O₂₃Pr₂]_n solvent, formula weight 2051.26 (solvent excluded), monoclinic, space group C2/m, a = 33.0534(12), b = 35.2658(13), c = 11.3000(6) Å, $\beta = 109.685(3)^\circ$, V = 12402.1(9)Å³, Z = 4, T = 110(2) K, $D_{calc} = 1.099$ g.cm³, μ (MoK α) = 0.84
- ⁶⁰ mm⁻¹, 43564 collected data and 11614 unique reflections ($\theta_{max} = 25.42^{\circ}$), $R_{int} = 0.052$. The final R1 = 0.069 for 6502 observations with $F_o > 4\sigma(F_o)$, R1 = 0.106 (wR2 = 0.195) for all unique data, $|\Delta \rho| \le 2.08 \text{ e/Å}^3$. CCDC 1014716.
- 17 (a) K. K. Pandey, *Coord. Chem. Rev.*, 1995, **140**, 37; (b) X.Yin, J. R. Moss, *Coord. Chem. Rev.*, 1999, **181**, 27.
- 18 (a) S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake and M. Schröder, *Nat. Mater.* 2012, **11**, 710. (b) W. Yang, A. J. Davis, X. Lin, M. Suyetin, R.
- Matsuda, A. J. Blake, C. Wilson, W. Lewis, J. E. Parker, C. C. Tang, M. W. George, P. Hubberstey, S. Kitagawa, H. Sakamoto, E.

Bichoutskaia, N. R. Champness, S. Yang and M. Schröder, *Chem. Sci.*, 2012, **3**, 2993.

- 19 (a) C. H. Bamford and M. J. S. Dewa, J. Chem. Soc., 1949, 2877; (b)
- 75 M. T. Nguyen, D. Sengupta, G. Raspoet and L. G. Vanquickenborne, J. Phys. Chem., 1995, 11883.

4 | Journal Name, [year], [vol], 00-00