ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Visible Light-Induced Intermolecular Radical Addition: Facile Access to γ-Ketoesters from Alkyl-Bromocarboxylates and Enamines

Bei Hu,^a Haixia Chen,^b Yan Liu,^b Wuheng Dong,^a Kai Ren,^a Xiaomin Xie,^a Hao Xu^b and Zhaoguo Zhang^{*a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A highly efficient addition of alkyl α -bromocarboxylates to enamines by means of visible light-induced photoredox catalysis is reported. Comparing with the traditional methods, the reaction described herein provided an alternative route to the construction of valuable γ -ketoesters in generally good yields.

Traditional photo-initiated radical reaction was considered as an alternative method in the field of synthetic chemistry. However, the poor selectivity and the need of specialized UV ¹⁵ reactors greatly limited its application. Visible-light serves as a new energy source of photo-induced radical reactions and photoredox reaction is showing the power of radical-involving reaction in organic synthesis. It has attracted much attention of many researchers ever since and emerged as a growing field

²⁰ because of the C-X bond formation continues to be a demand in organic synthesis.¹ The free radicals, which are generated by photoredox catalysis can react to construct the bond of C-X (X=C, S, N, O) and so on. For C-C bond formation has been documented by the groups of Stephenson,² Gagné,³ Reiser⁴ and

²⁵ Masson.⁵ Xiao *et al.* have also reported the formation of C-O.⁶ In spite of these significant advances, it remains a highly appealing objective to exploit novel and efficient organic radical precursors and extend their application to more reactions.⁷

 γ -Ketoesters are important synthetic intermediates in organic ³⁰ synthesis. The traditional radical synthetic methods are the radicals were irradiated by AIBN or organotin reagent. Hosomi *et al* have reported the reaction of ethyl 2-bromopropanoate with tributylstannyl enolate to give γ -ketoesters initiated by AIBN in benzene at 80 °C (**Scheme 1a**).⁸ Kim *et al* have also shown that

³⁵ the photo-stimulated reaction of ethyl α -iodoacetate with vinyltriflate and hexamethylditin in benzene under irradiation at 300 nm for five hours afforded the target product (**Scheme 1b**).⁹ It is

^aSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; E-mail: zhaoguo@sjtu.edu.cn

This journal is © The Royal Society of Chemistry [year]

still quite limited because organotin compounds were used as either starting material, or a radical initiator, which were not ⁴⁰ benign to the environment in the reaction.

Scheme 1. The addition of radical to the unsaturated compounds

45 Scheme 2. The addition of radical to the unsaturated compounds under visible light catalyzed reaction

A carbon-centered radical adds to an unsaturated carbon atom in an appropriate acceptor, followed by fragmentation of the adduct radical, is the key chain extension method for the ⁵⁰ construction of carbon–carbon bonds. Generation carbonyl alkyl radical is well known from an alkyl α -bromocarboxylates under visible light catalyzed reactions.¹⁰ Lei *et al* have succeeded in the addition of carbonyl alkyl radical and alkene to obtain unsaturated ester compounds (**Scheme 2, path a**). We attempted to ⁵⁵ find an appropriate acceptor to trap the carbon-centered electron

^bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, China

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

deficient radical, followed by the transformation of one electron, to form iminium cation, and eventually, γ -ketoesters was achieved (**Scheme 2, path b**). Considering that the α -carbonyl alkyl radical is relatively electrophilic, electron-rich alkenes may 5 be beneficial to the reaction,¹¹ and therefore, enamines were

preferentially chosen to test the reaction.

We initiated our investigation by examining the reaction of N-(1-styryl)morpholine and ethyl 2-bromopropanoate with Ru(bpy)₃Cl₂ (2 mol%) by employing Et₃N (40 mol%) in DMF

- ¹⁰ under a 23W household fluorescent lamp irradiation (Table 1, entry 1). Fortunately, the reaction occurred in 16% yield. When NaHCO₃ (1eq.) was added, the reaction gave a slightly higher yield (Table 1, entry 2). The base Na₂CO₃ also was examined and a slightly better result was obtained (Table 1, entry 3). When we
- ¹⁵ changed the base to K_2CO_3 , still higher yield was achieved (Table 1, entry 4). However, poor result was obtained when K_3PO_4 or ⁷BuOK was added to the reaction (Table 1, entries 5 and 6). We knew that Et_3N not only played a role as a reductant but also as a base in the reactions, however, when Et_3N (1.5 eq.) was used as
- ²⁰ the base, an even worse result was obtained (Table 1, entry 7). We then screened the solvents in the presence of K_2CO_3 as the base for the reaction. Among the solvents tested, DMF was proved to be the best for this transformation (Table 1, entries 8-13). The reaction proceeded with the formation of acetophenone ²⁵ as a by-product during the reactions. Thus, we tried to add some

Table 1. Optimization of the reaction conditions^a

~		Br			
	N] +		Ru(bpy) ₃ Cl ₂ , base		
\checkmark	\searrow 0	ő	Et ₃ N, additive	0	
1a		2a	Visible light	3a	
Entry	Base	Solvent	Additive	Yield ^b (%)	
1		DMF		16	
2	NaHCO ₃	DMF		31	
3	Na ₂ CO ₃	DMF		55	
4	K_2CO_3	DMF		64	
5	K_3PO_4	DMF		12	
6	'BuOK	DMF		4	
7^c	Et ₃ N	DMF		11	
8	K_2CO_3	CH ₃ CN		40	
9	K_2CO_3	DMA		37	
10	K_2CO_3	DCM		8	
11	K_2CO_3	Toluene		5	
12	K_2CO_3	NMP		35	
13	K_2CO_3	DMSO		16	
14	K_2CO_3	DMF	Pyridine	74	
15	K_2CO_3	DMF	4-Methoxypyridine	90 (86 ^d)	
16^{e}	K_2CO_3	DMF	4-Methoxypyridine	87	
17^{f}	K_2CO_3	DMF	4-Methoxypyridine	89	
18	K_2CO_3	DMF	DMAP	33	
19 ^g	K_2CO_3	DMF	4-Methoxypyridine	0	
20^{h}	K_2CO_3	DMF	4-Methoxypyridine	10	
21^{i}	K_2CO_3	DMF	4-Methoxypyridine	47	
22 ^j	K_2CO_3	DMF	4-Methoxypyridine	35	
^a Conditions: 1a (0.5 mmol) 2a (1 mmol) $\operatorname{Ru}(\operatorname{hnv})_{2}\operatorname{Ch}(0.01 \text{ mmol})$					

^{*a*} Conditions: **1a** (0.5 mmol), **2a** (1 mmol), Ru(bpy)₃Cl₂ (0.01 mmol), Et₃N (0.2 mmol), 4-methoxypyridine (0.2 mmol), base (0.5 mmol), solvent (2 mL), irradiation with a 23 W household light bulb at about 35 °C for 24 h. ^{*b*} GC yields based on dibenzyl ether as an internal standard. ^{*c*} Et₃N (0.75 mmol). ^{*d*} Isolated yield. ^{*e*} 4-methoxypyridine (0.1 mmol) was used. ^{*f*} 4-methoxypyridine (0.4 mmol) ^{*s*} Without light. ^{*h*}Without catalyst. ^{*i*} **1a** (1 mmol), **2a** (0.5 mmol), GC yield based on dibenzyl ether as an internal standard. ^{*i*}O₂ balloon.

pyridine derivatives (Table 1, entries 14-19) which was claimed to be benefit to improve the reactivity in similar reactions.^{1m, 10} ³⁰ When we applied pyridine into the reaction, the yield was slightly

improved (Table 1, entry 14). When 40 mol% of 4methoxypyridine relative to enamine was added to the reaction, an 86% isolated yield was obtained with significantly less byproduct (Table 1, entry 15). There is no obvious influence with 35 slightly less or more 4-methoxypyridine in the reaction (Table 1, entries 16 and 17). Other pyridine derivative, such as DMAP, did not give a satisfactory yield (Table 1, entry 18). Control experiments showed that both Ru(bpy)₃Cl₂ and visible light are essential for this reaction. When the reactions were conducted 40 without catalyst or in the dark, essentially no products were formed regardless of background reaction (Table 1, entries 19 and 20). When the molar ratio of 1a and 2a was exchanged from 1:2 to 2:1, only a 47% yield was obtained (Table 1, entry 21). Besides that, we also conduct the reaction with an O₂ balloon, and 45 only 35% yield was obtained, which indicate the cage effect existing in the reaction (Table 1, entry 22).¹² In the following experiments, different enamines (1a-1d) of acetophenone have been prepared¹³ to test their reaction with 2a (Scheme 3). When 1b was employed as the substrate, the best result (94% yield) was

⁵⁰ obtained. Other enamines, such as **1c** and **1d**, also gave good results.

55 Table 2. Reactions of enamines with 2a^a

	$ \begin{array}{c} $	t $\frac{\text{Ru(bpy)}_3\text{Cl}_2}{\text{visible light}}$ F	
	1b,1e-1l 2a		3b, 3e-3l
Entry	R	\mathbf{R}^1	$\operatorname{Yield}^{b}(\%)$
1	$C_{6}H_{5}(1b)$	Н	94
2	4-Me- $C_6H_4(1e)$	Н	92
3	4-F- C ₆ H ₄ (1f)	Н	92
4	4-Cl- C ₆ H ₄ (1g)	Н	91
5	4-CF ₃ - C ₆ H ₄ (1h)	Н	78
6	$4-MeO-C_6H_4(1i)$	Н	96
7	2-Me- $C_6H_4(1j)$	Н	97
8	$C_6H_5(1k)$	Me	66 ^c
		a (1 1)	\mathbf{D} (1) (1 (0.01)

^{*a*} Conditions: **1b**, **1e-11** (0.5 mmol), **2a** (1 mmol), Ru(bpy)₃Cl₂ (0.01 mmol), Et₃N (0.2 mmol), 4-methoxypyridine (0.2 mmol), base (0.5 mmol), DMF (2 mL), irradiation with 23 W household light bulb at about 35 °C for 24 h. ^{*b*} Isolated yields. ^{*c*} dr=11:1.

With this promising result in hand, we evaluated the substrate scope of this reaction with enamines prepared from piperidine and different ketones. The results are listed in Table 2. ⁶⁰ Enamines **1b**, **1e-11** derived from aryl methyl ketone provided good yields of keto esters. A significant electronic effect was observed in the reaction of **1h** and **1i**. The presence of an electron-withdrawing group decreased the reactivity of the enamine, while an electron-donating group increased the

2 | Journal Name, [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]

reactivity of enamine. As a result, reaction of 1h gave 3h in moderate yield in contrast to that the reaction of 1i gave 3i in excellent yield. It seemed that steric hindrance did not have a remarkable effect on the reaction when 1j was used as substrate;

- 5 3j was obtained in 97% yield. Enamine 1k (E) prepared from propiophenone can react smoothly to give the desired product in 66% yield. Besides that, reaction of enamine of tetralone 11 was also conducted which gave desired product in poor yield (31, 33% yield).
- In addition, we have extended this radical addition reaction 10 to other α -carbonyl alkyl or benzyl bromides as well; similar results were obtained (Table 3). Substrates bearing more than one substituent at α -position of α -brominated carboxylates and ethyl bromoacetate resulted in relatively poor yields (3n-3p) with the
- 15 formation of acetophenone which comes from hydrolysis of enamine. When cinnamyl or allyl α -brominated carboxylates were employed as substrates, moderate yields were obtained without intramolecular cyclization product.

Table 3. Scope of secondary and tertiary α -carbonyl alkyl or aryl 20 bromides reaction with 1b^a

^aConditions: 1b (0.5 mmol), 2m-2r (1 mmol), Ru(bpy)₃Cl₂ (0.01 mmol), Et₃N (0.2 mmol), 4-methoxypyridine (0.2 mmol), base (0.5 mmol), DMF (2 mL), irradiation with 23 W household light bulb at 35 $^{\rm o}{\rm C}$ for 24 h. b Isolated yields.

To make sure whether the reaction occurred via a radical addition reaction irradiated by visible light or a direct substitution 25 reaction under thermal conditions, control experiments were conducted. We conducted the reaction in dark under different temperature ranging from 40 °C to 100 °C, only a little of desired products were isolated. Meanwhile, we ruled out the radical-chain propagation mechanism based on the experiments of turn on/off 30 the light (see supporting information).

On the basis of the above experiments, a plausible mechanism for the reaction is shown in Scheme 4. Excitation of the metal catalyst under the visible light generates the excited $[Ru(bpy)_3]^{2^{+*}}$ species,¹⁴ which oxidizes Et₃N to give the active 35 single electron transfer species, [Ru(bpy)₃]⁺, along with the radical cation of the amine. The electron-rich metal complex $[Ru(bpy)_3]^+$ then reduces the activated C–Br bond^{1m, 10} to furnish the electron-deficient radical **I** and regenerates $[Ru(bpy)_3]^{2+}$. The rapid addition of radical I to the electron-rich enamine forms ⁴⁰ radical **II**, which can be rapidly oxidized to iminium cation **2** and

undergoes single-electron transfer to give $[Ru(bpy)_3]^{2+*,3}$ and

form the metal complex $[Ru(bpy)_3]^+$ to complete the photoredox catalytic cycle. Finally, the γ -keto ester **3** can be obtained by the hydrolysis of the iminium cation 2^{15}

In summary, we have developed an efficient visible light

Scheme 4. Proposed mechanism

mediated photoredox reaction of α -brominated carboxylates with enamines via an intermolecular radical addition reactions. The 50 method provided a novel access to various synthetically important γ -ketoesters in good yields under very mild conditions. Further work towards expanding the use of photoredox catalysis in the context of radical chemistry is underway.

This work was financially supported by National Natural Science 55 Foundation of China. We thank the Instrumental Analysis Center of Shanghai Jiao Tong University for microanalysis.

Notes and references

- 1 (a) K. Zeitler, Angew. Chem. Int. Ed., 2009, 48, 9785; (b) T. P. Yoon, M. A. Ischay and J. Du, Nat. Chem, 2010, 2, 527; (c) J. Xuan and W.-J. Xiao, Angew. Chem. Int. Ed., 2012, 51, 6828; (d) L. Shi and W.-J. Xia,
- Chem. Soc. Rev., 2012, 41, 7687; (e) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (f) D. Ravelli, M. Fagnoni and A. Albini, Chem Soc Rev, 2013, 42, 97. (g) J. Du, L. R. Espelt, I. A. Guzei and T. P. Yoon, Chem. Sci., 2011, 2, 2115; (h) A. E.
- 65 Hurtley, M. A. Cismesia, M. A. Ischay and T. P. Yoon, Tetrahedron, 2011, 67, 4442; (i) P. V. Pham, D. A. Nagib and D. W. C. MacMillan, Angew. Chem. Int. Ed., 2011, 50, 6119; (j) M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny and D. C. Fabry, Chem. Commun., 2011, 47, 2360; (k) M. Rueping, S. Zhu and R. M. Koenigs, Chem. Commun.,
- 2011, 47, 8679; (1) M. Rueping, D. Leonori and T. Poisson, Chem. Commun., 2011, 47, 9615; (m) Y. Su, L. Zhang and N. Jiao, Org. Lett., 2011, 13, 2168; (n) D. I. Perez, M. M. Grau, I. W. C. E. Arends and F. Hollmann, Chem. Commun., 2009, 6848; (o) M. Zhang, C. Chen, W. Ma and J. Zhao, Angew. Chem. Int. Ed., 2008, 47, 9730; (p) M. Zhu
- and N. Zheng, Synthesis, 2011, 2223; (q) F. Su, S. C. Mathew, L. 75 Möhlmann, M. Antonietti, X. Wang and S. Blechert, Angew. Chem. Int. Ed., 2011, 50, 657; (r) J. Xuan, Y. Cheng, J. An, L.-Q. Lu, X.-X. Zhang and W.-J. Xiao, Chem. Commun., 2011, 47, 8337; (s) Y.-Q. Zou, L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen and W.-J. Xiao, Angew.
- Chem. Int. Ed., 2011, 50, 7171; (t) J. W. Tucker, J. M. R. Narayanam, 80 P. S. Shah and C. R. J. Stephenson, Chem. Commun., 2011, 47, 5040; (u) Z. Xie, C. Wang, K. E. deKrafft and W. Lin, J. Am. Chem. Soc., 2011, 133, 2056; (v) M. Rueping, C. Vila, A. Szadkowska, R. M. Koenigs and J. Fronert, ACS Cat., 2012, 2, 2810; (w) Y. Yasu, T.

nemComm Accepted Manuscrip

Koike and M. Akita, *Adv. Synth. Catal.*, 2012, **354**, 3414; (x) G.-B. Deng, Z.-Q. Wang, J.-D. Xia, P.-C. Qian, R.-J. Song, M. Hu, L.-B. Gong and J.-H. Li, *Angew. Chem. Int. Ed.*, 2013, **52**, 1535; (y) Y. Yasu, T. Koike and M. Akita, *Angew. Chem. Int. Ed.*, 2012, **51**, 9567; (x) S.

- ⁵ Zhu and M. Rueping, *Chem. Commun.*, 2012, **48**, 11960; (z) Y.-X. Liu, D. Xue, J.-D. Wang, C.-J. Zhao, Q.-Z. Zou, C. Wang and J. Xiao, *Synlett*, 2013, **23**; (aa) H. Sun, C. Yang, F. Gao, Z. Li and W. Xia, *Org. Lett.*, 2013, **15**, 624; (bb) S. Zhu, A. Das, L. Bui, H. Zhou, D. P. Curran and M. Rueping, *J. Am. Chem. Soc.*, 2013, **135**, 1823; (cc) D. A.
- Nicewicz and D. W. C. MacMillan, *Science*, 2008, **322**, 77; (dd) M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, *J. Am. Chem. Soc.*, 2008, **130**, 12886.
- 2 a) J.W. Tucker, J. M. R. Narayanam, S.W. Krabbe, C. R. J. Stephenson, Org. Lett., 2010, 12, 368; b) L. Furst, B. S. Matsuura, J. M. R.
- ¹⁵ Narayanam, J. W. Tucker, C. R. J. Stephenson, *Org. Lett.*, 2010, **12**, 3104; c) J. W. Tucker, J. D. Nguyen, J. M. R. Narayanam, S. W. Krabbe, C. R. J. Stephenson, *Chem. Commun.*, 2010, **46**, 4985; d) J. W. Tucker, C. R. J. Stephenson, *Org. Lett.*, 2011, **13**, 5468; e) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska, C. R. J. Stephenson, *J. Am.*
- 20 Chem. Soc., 2011, 133, 4160; f) C. Dai, J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem., 2011, 3, 140.
- 3 a) R. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem. 2010, 122, 7432 – 7434; Angew. Chem. Int. Ed., 2010, 49, 7274; b) R. S. Andrews, J. J. Becker, M. R. Gagné, Org. Lett., 2011, 13, 2406.
- ²⁵ 4 T. Maji, A. Karmakar, O. Reiser, J. Org. Chem., 2011, **76**, 736.
- 5. T. Courant, G. Masson, *Chem. Eur. J.*, 2012, **18**, 423.
- 6 Y.-Q, Zou, J.-R. Chen, X.-P. Liu, L.-Q. Lu, R. L. Davis, K. A. Jørgensen, and W.-J. Xiao, *Angew. Chem. Int. Ed.*, 2012, **51**, 784.
- 7 a) Z.-Q. Wang, M. Hu, X.-C. Huang, L.-B. Gong, Y.-X. Xie, and J.-H.
 Li, J. Org. Chem., 2012, 77, 8705; b) H.-X. Zhou, P. Lu, X.-Y Gu, and
 P.-X. Li, Org. Lett., 2011, 15, 5646; c) P. Xu, J. Xie, Q.-C. Xue, C.-D.
 Pan, Y.-X. Cheng, and C.-J. Zhu, Chem. Eur. J., 2012, 19, 14039; d) H.
 Jiang, C.-M. Huang, J.-J. Guo, C.-Q. Zeng, Y. Zhang, S.-Y. Yu, Chem.
- Eur. J., 2012, 18, 15158; e) H. Jiang, Y.-Z. Cheng, R.-Z. Wang, M.-M.
 Zheng, Y. Zhang and S.-Y. Yu, Angew. Chem. Int. Ed., 2013, 52, 13289; f) S. H. Cheng, L. L. Zhao, and S. Y. Yu, Ang. Swith Catel. 2014
- 13289; f) S.-H. Cheng, L.-L. Zhao and S-Y Yu, Adv. Synth. Catal, 2014, 356, 982.
 8 K. Miura, N. Fujisawa, H. Saito, D. Wang and A. Hosomi, Org. Lett.,
- 8 K. Miura, N. Fujisawa, H. Saito, D. Wang and A. Hosomi, *Org. Lett.*, 2001, **3**, 2591.
- 40 9 J. Y. Lee, K.-C. Lim, X. Meng and S. Kim, Synlett, 2010, 1647.
 - 10 Q. Liu, H. Yi, J. Liu, Y.-H. Yang, X. Zhang, Z.-Q. Zeng and A.-W. Lei, *Chem. Eur. J.*, 2013, **19**, 5120.
- 11 Y. Cai, B. P. Roberts, D. A. Tocher and S. A. Barnett, Org. Biomol. Chem., 2004, 2, 2517.
- ⁴⁵ 12 a) J. P. Lorand, R. W. Grant, M. P. A. Samuel, *Tetrahedron Lett.*, 1969, **10**, 4087; b) J. M. Gardner, M. Abrahamsson, B. H. Farnum and G. J. Meyer., *J. Am. Chem. Soc.*, 2009, **131**, 16206
- 13 (a) W.-J. Zhao, M. Yan, D. Huang and S.-J. Ji, *Tetrahedron*, 2005, 61, 5585; (b) H. Sun, C. Yang, F. Gao, Z. Li and W. Xia, *Org. Lett.*, 2013, 0
 15, 624.
- 14 X.-Y. Wang, A. Guerzo, H. Tunuguntla and R. Schmehl, *Res. Chem. Intermed.*, 2007, **33**, 63.
- 15 T. Koike and M. Akita, Chem. Lett., 2009, 38, 166.

This journal is © The Royal Society of Chemistry [year]