This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Lithium anode protection guided highly-stable lithium-sulfur battery

Guoqiang Ma, Zhaoyin Wen, Meifen Wu, Chen Shen, Qingsong Wang, Jun Jin, Xiangwei Wu

Li\textsubscript{3}N protection layer is fabricated on the surface of Li anode by an in-situ method to suppress the shuttle effect on the basis of anode protection. The discharge capacity retains at 773 mAh g-1 after 500 cycles with the average coulombic efficiency of 92.3\% in the electrolyte without LiNO\textsubscript{3}, while the sulfur loading of the simple sulfur cathode was 2.5-3 mg cm-2.

With rapid development in the advanced portable devices, zero-emission electric vehicles (EV) and smart grids, rechargeable batteries with high energy density and long cycle life have been given great demand\cite{1, 2}. Sulfur cathode has a high theoretical capacity (1675 mAh g-1), which is ~5 times that of existing materials based on layered lithium transition metal oxides and lithium metal phosphates. In combination with the natural abundance, low cost and environmental friendliness of sulfur, the Li-S battery becomes a promising candidate for the next generation power source\cite{3-5}.

However, the commercialization of Li-S battery is inhibited by the insulating nature of sulfur, the volume expansion, and the high solubility of lithium polysulfides (PS) in the ether-based electrolyte\cite{6, 8}. The shuttle effect originates from the diffusion of high order polysulfides to the anode side, where they react with metal lithium and form the insoluble Li\textsubscript{2}S/Li\textsubscript{2}S\textsubscript{2}, which irreversibly deposit on the surface of the Li anode. Such corrosion reaction causes the loss of active sulfur materials, leading to low coulombic efficiency, rapid capacity fading and high polarization\cite{9, 10}. Furthermore, complete conversion of sulfur to Li\textsubscript{2}S is difficult owing to the insulating feature of Li\textsubscript{2}S/Li\textsubscript{2}S\textsubscript{2}. Besides, there is some irreversible capacity for Li-S battery because of the side reaction during the charge/discharge process\cite{1}. Many approaches have been made to solve the problems and improve the electrochemical performance of Li-S battery, including the micro structural design of the cathode\cite{12, 13}, the modification of the electrolyte\cite{14} and so on. Encapsulating sulfur into conductive matrix\cite{21-22} and the surface coating of sulfur or sulfur composite with conductive materials\cite{15} are most frequently employed to address these obstacles. The conductive material such as various of carbon and conductive polymer can improve the electrical conductivity of the cathode and suppress the loss of soluble polysulfides intermediates, and thereby improve the active material utilization and cycle stability\cite{16}. In addition, the issue of low coulombic efficiency has been resolved by the addition of lithium nitrate in the electrolyte\cite{16}. However, up to now, few researches on lithium anode for Li-S battery are reported, the modification of the lithium electrode should be a new strategy to improve the performance of Li-S battery\cite{6, 7}.

Li anode for Li-S battery suffers from several problems. Firstly, lithium is so reactive that the electrolyte can be reduced on the surface of the Li anode to form a solid electrolyte interphase (SEI) layer easily, causing a great irreversible capacity loss and low deposition efficiency of Li upon charging\cite{17, 18}. Secondly, the Li dendrites originated from the no uniform deposition of Li deteriorate Li-metal based battery life and even cause safety problem\cite{20, 21}. While the lithium polysulfides in the electrolyte may react with Li dendrites, thus the problem is not as serious as the other Li anode based battery\cite{22}. Thirdly, as shown in Fig.1a, the shuttle effect in Li-S battery, the penetration of soluble lithium polysulfides through the separator will react with Li anode to form the Li\textsubscript{2}S/Li\textsubscript{2}S\textsubscript{2} layer on the surface of lithium anode\cite{23, 24}. Then the insulating Li\textsubscript{2}S/Li\textsubscript{2}S\textsubscript{2} on the surface of Li anode is difficult to be transformed to lithium polysulfides and utilized at the following cycles, leading to the loss of the active material\cite{25}. Furthermore, the insulating layer will retard the rapid diffusion of Li, resulting in poor rate capability and cycle performance\cite{21}. Li-B alloy, Lithium ion conductive solid polymer electrolyte and sulfur powder coating have been employed to protect Li anode during charge/discharge process\cite{26-28}. Polycrystalline Li\textsubscript{3}N has an exceptionally high Li-ion conductivity (approximately 10-3 S cm-1) with potential application as a solid electrolyte in lithium ion batteries\cite{29-30}. As the closest layer to Li metal, Li\textsubscript{3}N can prevent the side reaction between the lithium and the carbonate-based electrolyte, promoting a stable SEI\cite{29}. Furthermore, fast Li+ diffusion from electrolyte to Li surface is built owing to fewer reduction species in the electrolyte with Li\textsubscript{3}N modification on the Li anode surface. Thus it is proposed to employ Li\textsubscript{3}N as the protecting layer to address the obstacles of Li anode for Li-S battery in this work.
Herein, as seen in Fig. 1b, Li$_3$N protecting layer is in-situ fabricated on the surface of Lithium anode by the direct reaction between the Li and N$_2$ gas at room temperature. Firstly, Li$_3$N layer has a high ionic conductivity, which doesn’t hinder the migration of Li$^+$. Secondly, Li$_3$N layer can prevent the side reaction between lithium anode and the electrolyte, forming a stable SEI layer. Thirdly, the contact between the lithium polysulfides and lithium anode is thus prevented, and the undesired corrosive reaction is suppressed. As a result, the migration of lithium polysulfides back to the cathode and reutilization of them at the following cycles are possible, inhibition of capacity fading is thus realized. Furthermore, the Li dendrites originating from an non uniform deposition of Li can be suppressed by the Li$_3$N layer, improving the safety of the battery.

As shown in Fig. S1, the phase of Li$_3$N film formed on Li surface is characterized by XRD analysis. The pure Li$_3$N is fabricated on the surface of Li foil with the simple method, and it is stable in the ether-based electrolyte after 10 days.$^{30, 31}$ The morphologies of the as-received Li and Li$_3$N modified Li electrodes are given in Fig. S2. As seen, both electrode surfaces are homogeneous. It is noticeable that the modified surface is strongly charged by the electron beam since the Li$_3$N film is electronically insulated.

The lithium sheet with Li$_3$N layer is beneficial to form a stable and less resistive SEI in the carbonate-based electrolyte.32 To investigate the interfacial stability of the Li$_3$N protected lithium anode in the ether-based electrolyte, AC impedance measurement for Li/electrolyte/Li batteries is performed17. As seen in Fig. 2, the spectra are composed of a partially overlapping semicircles, corresponding to the SEI film. The equivalent circuit and related analogs fitted to the experimental data are also given in Fig. 2.

In this circuit, R_e is the electrolyte resistance, which corresponds to the high frequency intercept at the real axis. R_f is the resistance of the SEI film.17 In the battery assembled with the primitive Li electrode, the initial resistance of the battery is less than those of the Li electrode with Li$_3$N layer, indicating the existence of protective layer on the surface of lithium anode. However, the R_f value increases from 59Ω to 168Ω after 144h, owing to the gradual growth of SEI between the lithium electrode and the electrolyte. In the battery assembled with the Li$_3$N protected Li electrode, R_f initially increases to the maximum value after 48h and stabilizes at around 92Ω. R_f stabilizes at a lower value after a shorter storage time compared to that of the as-received Li anode, indicating the suppressed undesired side reactions between Li$_3$N protected lithium electrode and the ether-based electrolyte. As a result, the interfacial stability of the lithium electrode is improved by the formation of Li$_3$N protection layer.

The fitted results of the impedance spectra in Fig. 2a and Fig. 2b are given in Table S1 and Table S2, respectively. Among them, $B=I/D^{1/2}$, where I is the length of stagnant layer and D is diffusion coefficient. According to the previous studies, the diffusion coefficient of Li$^+$ in the electrolyte is about 3.4×10$^{-6}$ cm2S$^{-1}$, thus the value of I can be calculated32. As shown, the goodness fit for the whole electrode system is represented by the Chi-square (χ^2) parameter. Comparing R_l and Q_f in the two tables, it indicates that the SEI formed on Li$_3$N protected Li anode surface is smoother and less resistive. As Li$_3$N protective layer is formed previously and used as the close layer to Li sheet, it can effectively prevent the side reactions between Li and electrolyte. Moreover, the high Li conductivity of Li$_3$N can provide much smaller Li$^+$ migration resistance R_e. It is noticeable that the larger value Q_f of “Cothyperbol” element O and shorter lengths of stagnant layers suggest fast Li$^+$ diffusion from electrolyte to Li surface, owing to fewer reduction species in the electrolyte with Li$_3$N modification.

The cyclic voltammogram (CV) profiles are measured to identify the redox reactions for the battery with different anodes (Fig. S3a and b). The electrochemical activation of Li$_3$N protected anode is not as obvious as that of the primitive Li anode. Which can be ascribed to the faster Li$^+$ diffusion from electrolyte to Li surface with the modification of Li$_3$N, owing to fewer reduction species in the electrolyte with Li$_3$N modification, which is consistent with the results of AC impedance.

Figure. 1 Schematic of the design of lithium metal electrode in lithium-sulfur battery configurations. (a) Battery without Li$_3$N layer. (b) Battery with Li$_3$N layer.

Figure. 2 AC impedance spectra of the Li/electrolyte/Li batteries with (a) as received Li and (b) surface protected Li electrodes as a function of storage time at 25°C.

Figure. 3 The initial charge/discharge profiles of Li-S batteries with different lithium anodes at 0.2C(a), the cycle performance and coulombic efficiencies of Li-S batteries at 0.2C with different lithium anodes (b), the prolonged cycle performance and coulombic efficiencies of Li-S batteries at 0.5C with Li$_3$N layer protected Li anode (c).
In a coin type battery for electrochemical test, lithium anode is normally far from sufficient with respect to the active material in the sulfur cathode, so the initial discharge capacity is determined by the state of sulfur cathode. As seen in Fig.3a, the Li-S battery with primitive Li electrode shows a comparable initial discharge capacity with that of Li-S battery with Li$_3$N protected lithium anode. However, the two discharge potential plateaus of battery with Li$_3$N protected anode are higher than those of the battery with primitive Li anode, meanwhile the charge potential plateau is lower for the battery with Li$_3$N protected anode, further proving its lower polarization of the Li$_3$N protected anode in the ether-based electrolyte.

The cycle performance and coulombic efficiencies of Li-S batteries at 0.2C with different lithium electrodes are shown in Fig.3b. As mentioned above, once lithium anode is protected by Li$_3$N layer, the contact between lithium anode and lithium polysulfides can be restricted, so the corrosive reaction between them during the discharge process is suppressed effectively. Furthermore, because of the high Li$^+$ conductivity of Li$_3$N, more insulating Li$_2$S/Li$_2$S$_2$ aggregated on the surface of the cathode Li$_3$N layer will transform to the soluble Li$_2$S$_2$ during the charge process. Consequently, the so called “shuttle effect” is largely restricted, thus the low coulombic efficiencies, redistribution of active material and rapid capacity fading are suppressed significantly. As shown, the discharge capacity of Li-S battery with Li$_3$N protected Li anode remains as high as 956.6 mAh.g$^{-1}$ at 0.2C with a capacity retention of 79.7% after 200 cycles, while Li-S battery with primitive Li anode shows a capacity of 452.2 mAh.g$^{-1}$ at 0.2C with a capacity retention of only 37.2%. It is noticeable that the average coulombic efficiency of Li-S battery with protected Li anode is as high as 91.4% in the electrolyte without LiNO$_3$, which is much higher than that of 80.7% for Li-S battery with primitive Li anode. Moreover, the Li-S battery with the protected Li anode also shows excellent prolonged cycle performance at 0.5C. Over 500 cycles, the capacity retention of 71.1% (from 1087.2 to 773 mAh.g$^{-1}$) is obtained, the decay rate is as low as 0.0578% per cycle, and the average coulombic efficiency is 92.3%. The charge/discharge profiles of the battery with protected Li anode are displayed in Fig.3c, there is no evident evolution of the curves during the prolonged cycles, indicating the highly reversibility of electrochemical reaction during the charge/discharge process. Although the addition of LiNO$_3$ in the electrolyte can increases the coulombic efficiency of Li-S battery, it was reported that LiNO$_3$ was reduced on the cathode below 1.5 V, and that the formed products severely affected the reversibility of sulfur cathode. Moreover, it is gradually consumed on the Li anode, which leads to a decrease in the protection efficiency, and it is a strong oxidative agent, which could cause a safety issue when a high concentration is used, especially at high temperature. The Li-S battery with Li$_3$N modified Li anode shows excellent cycle stability and improved coulombic efficiency in the electrolyte without LiNO$_3$, which can avoid the disadvantages of LiNO$_3$ additives.

Because lithium polysulfides are dissolved in the ethers-based electrolyte once formed, and they will migrate in the electrolyte and reach the surface of lithium anode, followed by immediate reaction with metallic-lithium anode and the formation of Li$_2$S/Li$_2$S$_2$. It results in the rapid loss of the active material and serious anode corrosion. Therefore, the self-discharge of Li-S battery is much more serious than those of the conventional Li-ion batteries. However, as seen in Fig.S5, the self-discharge behavior is effectively suppressed by the protection of Li anode with Li$_3$N.

As shown in Fig.S6, Li$_3$N layer on the surface of lithium anode restricts the contact of lithium anode and lithium polysulfides, the suppressed corrosive reaction promotes more lithium polysulfides to be reutilized at the following cycles, thus the redistribution of insulating active material are suppressed effectively. Therefore, the decreased resistance is obtained for the Li-S battery with Li$_3$N protected Li anode after 100 cycles.

![Figure 4](image)

Figure 4 The cross section morphologies (a, d) and EDS mapping element of sulfur (b, e) and carbon (c, f) of primitive Li anode and Li$_3$N protected Li anode after 100 cycles.

Conclusions

In summary, Li$_3$N protection layer is successfully fabricated on the surface of Li anode through a simple and novel method at room temperature. The protected Li anode show high stability in the electrolyte compared with the primitive Li anode. As the anode of Li-S battery, the protected Li shows an enhanced cycle performance. Firstly, the protective layer has high Li$^+$ conductivity, which does not affect the diffusion kinetics of Li$^+$. Secondly, the Li$_3$N layer on the surface of Li anode is beneficial to suppress the undesired side reactions between the Li anode and the electrolyte, forming a smooth and less resistive SEI. Thirdly, the Li$_3$N layer can separate the contact between Li metal and lithium polysulfides, thus the corrosive reaction between them is inhibited effectively. Finally, the protective layer on the surface of Li anode can suppress the growth of Li dendrites originating from an no uniform deposition of Li, improving the safety of Li-S battery.

This work was financially supported by NSFC Project No. 51373195, No. 51201177 and No. 51272267; research projects from the Science and Technology Commission of Shanghai Municipality No. 08DZ2210900.

Notes and references
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China, 200050
Tel: +86-21-52411704; Fax: +86-21-52413903;
E-mail: zywen@mail.sic.ac.cn

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/