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Asymmetric synthesis of P-chiral phosphorothioic 
monofluoridic acid ammonium salts was achieved via axis-to-
center chirality transfer reactions by using phosphorothioic 
acid O-esters with a binaphthyl group, and the absolute 
stereochemistry of the salts was determined by X-ray 
analyses and by comparison of their CD spectra. 

P-Chiral organophosphorus compounds are important because their 
skeletons are found in biologically active compounds1 and because 
they can be used as optically active ligands and chiral auxiliaries.2  
Many types of reactions have been reported for their synthesis, 
including diastereoselective substitution reactions at the phosphorus 
carbon atoms and the enantioselective deprotonation of achiral 
organophosphorus compounds.3  Meanwhile, reactions involving the 
transfer of stereochemical information from chiral centers and axes 
to prochiral moieties are efficient methods for the synthesis of 
enantioenriched compounds.  In particular, axial chirality transfer 
reactions of allenes have been developed in great depth.4  Binaphthyl 
groups having axial chirality are also potentially useful as a chiral 
origin for the transfer of chirality to prochiral moieties.  In our recent 
studies on organochalcogen compounds,5 we found that fluoride ion 
shows high affinity toward the phosphorus atom of phosphoric acid 
esters and their selenium isologues.6  Herein we report axis-to-center 
chirality transfer reactions of phosphorothioic acid O-esters with a 
binaphthyl group leading to the formation of optically active P-chiral 
phosphorothioic monofluoridic acid ammonium salts. 
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First, we reacted phosphorothioic acid O,O-diphenyl, O-alkyl 
ester 1 with a THF solution of Bu4NF (eqn (1)),5 in a series of 
studies on organochalcogen compounds.6  Aqueous workup gave a 
mixture of two diastereomers of phosphorothioic monofluoridic acid 
ammonium salts Rp-2 and Sp-27 in a nearly equal ratio in low yields.  
In this case, fluorinative hydrolysis of 1 took place, but the chirality 
on a menthyloxy group of 1 had very little influence on the newly 
formed chirality on the phosphorus atom of the product 2. 
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Phosphorothioic acid esters with a binaphthyl group were then 

used in fluorinative hydrolysis (eqns (2) and (3)).  A similar 
fluorinative hydrolysis of 38 and 4 with Bu4NF proceeded highly 
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efficiently to give the corresponding salts 2 and 5 with high 
diastereoselectivity.  The stereochemistry of 2 and 5 was controlled 
by the axial chirality of binaphthyl groups in the starting materials 3 
and 4, and the reaction was noted to be stereospecific, e.g., Sax-4, 
which was the enantiomer of Rax-3, gave Rp-5, which was the 
enantiomer of Sp-2. 

Salt 2 was converted to acid 6 upon treatment with Amberlyst 15 
(H+), but 6 was labile and was treated with tertiary amines to give 
ammonium salts (eqn (4)).  Among them, the use of 4-
methylpyridine gave salts Sp-7 and Rp-7 as fine crystals.  During the 
acid hydrolysis of 2 and neutralization of acid 6, the diastereomeric 
ratio of 2, 6, and 7 was retained.   
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Figure 1. ORTEP drawing of Sp-7. Selected bond distances (Å):
P(1)–S(1) 1.9475(8), P(1)–O(1) 1.5809(14), P(1)–O(2) 
1.4869(14), P(1)–F(1) 1.5694(15), angles O(1)P(1)O(2) 111.39(8), 
S(1)P(1)O(1) 117.33(7), F(1)P(1)S(1) 109.76(7), F(1)P(1)O(1) 
96.39(8).
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The absolute configuration at the phosphorus center of salt Sp-7 
was unequivocally determined by X-ray analyses (Figure 1).  
Structurally, the phosphorus atom in Sp-7 adopts a slightly deviated 
tetrahedral geometry.  The bond length of P(1)- O(2) is clearly 
shorter than that of P(1)-O(1) and is close to the reported bond 
length for a formal P=O double bond (~1.49 Å).9  This implied that 
the negative charge on the S-P-O moiety is localized on the sulfur 
atom.  Nevertheless, the bond length of the P(1)-S(1) bond is the 
nearly midway between those of formal P-S single bonds (~2.1 Å)10 
and P=S double bonds. (~1.9 Å).11  In fluorinative hydrolysis (eqns 
(2) and (3)), the Rax and Sax configurations in 3 and 4 were 
transferred to Sp and Rp configurations in the products, respectively.  
CD spectra of salts Sp-7 and Rp-7 and of Sp-2, Rp-2, Sp-5, and Rp-5 
are shown in Figures 2 and 3, respectively.   

Compound Sp-7 gave a CD curve with a maximum positive peak 
at 220 nm, whereas its diastereomer Rp-7 gave a maximum positive 
peak at 235 nm.  These peaks were clearly due to the chirality at the 
phosphorus atoms in 7, since diastereomers Sp-7 and Rp-7 possessed 
an identical menthyloxy group.  Additionally, the reported CD 
spectra of optically active menthols show peaks only at greater than 

250 nm.12  These trends in the CD spectra were identical to those of 
Sp-2 and Rp-2 and to those of their enantiomers Rp-5 and Sp-5. 
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Figure 2. CD spectra of Sp-7 and Rp-7
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Figure 3. CD spectra of Sp-2, Rp-2, Sp-5, and Rp-5
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To better understand the efficiency of the axis-to-central 

chirality transfer reaction, phosphorothioic acid esters 8 derived 
from chiral optically active alcohols such as (-)-borneol, S-2-octanol, 
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and cholesterol were reacted with Bu4NF (eqn (5)).  In all cases, 
fluorinative hydrolysis proceeded with high efficiency to give the 
corresponding products 9 with high diastereoselectivity.  A slight 
difference in diastereoselectivity was observed, and cholesteryl 
esters showed the highest selectivity.  This implied that the central 
chirality in the alkoxy groups may also affect the selectivity, at least 
to some extent.  The absolute configuration at the phosphorus atom 
was analogized based on a comparison of their CD spectra (details, 
see electronic Supporting Information). 

Finally, to evaluate the applicability of this highly 
diastereoselective chirality transfer reaction to an enantioselective 
version, phosphorothioic acid esters 10 derived from achiral alcohols 
such as 1-octanol, cyclohexanol and 2-adamantanol were subjected 
to the fluorinative hydrolysis (eqn (6)).  The products 11 derived 
from opposite enantiomers showed mirror-image of CD spectra 
(Figures S1–S6), indicating that the reaction of 10 with Bu4NF 
proceeded in an enantioselective fashion.  To determine the 
enantiomeric excess of 11c, several Daicel Chiralcel columns were 
used.  As a result, Chiralcel OZ-H was found to discriminate the 
enantiomers of 11c, as shown in Figure S7 and S8.  The analytical 
results showed that the reaction in eqn (6) proceeded with relatively 
high enantioselectivity. 
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Conclusions 
In summary, we have demonstrated the first example of the 

fluorinative hydrolysis of phosphorothioic acid esters with a 
binaphthyl group.  The reaction proceeded in a stereospecific 
manner, and the axial chirality of the binaphthyl group was highly 
efficiently transferred to the newly formed central chirality in the 
phosphorothioic monofluoridic acid salts.  Although further studies 
are necessary to determine the mechanistic details, an R 
configuration on the binaphthyl group was transferred to an S 
configuration at the phosphorus atom, and vice versa. 
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