ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

The Crucial Roles of MgCl₂ as a Non-innocent Additive in the Ni-Catalyzed Carboxylation of Benzyl Halide with CO₂

50

Fareed Bhasha Sayyed and Shigeyoshi Sakaki*

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX

5 DOI: 10.1039/b000000x

Ni-catalyzed carboxylation of the $C(sp^3)$ -Cl bond with CO_2 in the presence of MgCl₂ was theoretically investigated. MgCl₂ plays three crucial roles to stabilize a Ni¹-CO₂ adduct and accelerate the CO₂ insertion as a non-innocent additive and ¹⁰ one-electron reduction process as one kind of reagent.

The transformation of CO₂ into useful chemicals has been one of the important topics in the last decade.¹ In this regard, various attempts have been made using transition-metal complexes as catalyst for the CO₂ transformation.² Among those efforts, direct ¹⁵ carboxylation of organic halide with CO₂ is in particular attractive because of the importance of carboxylic acid in various applications.³ However, the reports of such direct carboxylation have been elusive except for several pioneering works by Martin

- group⁴ and Tsuji group.⁵ Correa and Martin succeeded to ²⁰ transform aryl bromides to the carboxylic acids with CO₂ using a Pd catalyst.⁴ Tsuji group successfully transformed aryl chloride to carboxylic acids with CO₂, using a Ni⁰ catalyst.⁵ This report is the first example that shows the utilization of an unusual Ni¹ intermediate in the catalytic cycle of a metal-catalyzed CO₂
- ²⁵ fixation. In those reports,^{4,5} the direct carboxylation of the C(sp²)-X (X = Br or Cl) bond was successfully performed but that of the C(sp³)-X bond was not. In general, the C(sp³)-X bond is less reactive than the C(sp²)-X bond.⁶ Interestingly, Martin and coworkers succeeded the transformation of the C(sp³)-Cl bond of
- ³⁰ benzyl halide to phenylacetic acid with CO₂ using a Ni catalyst, very recently (Scheme 1).⁷ This Ni-catalytic system contains Zn powder and MgCl₂. If Zn powder is absent, no catalytic conversion occurs. If MgCl₂ is not added, the yield is very low. The experimentally proposed reaction mechanism suggests that a
- ³⁵ Ni¹ intermediate might be crucial in the catalytic cycle, as shown in Scheme 2. However, mysterious is the role of MgCl₂; it is not clear at all what roles MgCl₂ plays in this catalytic carboxylation to provide good yield of the product.

Herein, we theoretically investigated this Ni-catalyzed 40 carboxylation of benzyl chloride to phenylacetic acid in the

Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho 34-4, Takano, Sakyo-ku, Kyoto 606-8103, Japan E-mail: sakaki.shigeyoshi.47e@st.kyoto-u.ac.jp † Electronic Supplementary Information (ESI) available:

[Computational details and Optimized Cartesian coordinates of all the geometries.]. See DOI: 10.1039/b000000x/

presence of MgCl₂. Our main purpose is to elucidate what roles MgCl₂ plays in this catalytic reaction. All the calculations were carried out with the B3LYP-D functional; see supporting information (ESI) for computational details. The Gibbs activation ⁴⁵ energy ($\Delta G^{\circ \ddagger}$) is defined as an energy difference between the transition state (TS) and the corresponding precursor complex or reactant.

Scheme 2. Plausible mechanism for the Ni-catalyzed carboxylation reaction of PhCH₂Cl with CO₂.

We investigated first the catalytic reaction in the absence of MgCl₂. As suggested experimentally^{5a,7} and shown 55 theoretically,^{5b} it is likely that the first step of the catalytic cycle is the oxidative addition of benzyl chloride 1 to $Ni(PCp_3)_2$ 2 (Cp = cyclopentyl); see scheme 2. In this reaction, 1 interacts with 2to form a Ni⁰ complex of benzyl chloride Ni(η²-PhCH₂Cl)(PCp₃)₂ 3 in which the phenyl group coordinates with the Ni-center in an $_{60}$ η^2 -mode (Fig. 1). The similar precursor complexes were theoretically reported.⁸ Starting from **3**, the oxidative addition of the C(sp³)-Cl bond occurs to afford a four-coordinate Ni^{II}intermediate cis-Ni^{II}(Cl)(CH₂Ph)(PCp₃)₂ 4 via a transition state **TS₃₋₄**. The $\Delta G^{\circ\ddagger}$ is 9.3 kcal/mol, indicating that the oxidative 65 addition easily occurs (Fig 1). The complex 4 isomerizes to a more stable trans-form Ni^{II}(Cl)(CH₂Ph)(PCp₃)₂ 5 (see ESI).

This journal is © The Royal Society of Chemistry [year]

Fig. 1 Changes in the Gibbs energy and geometry in the oxidative addition of 1 to 2. Cp represent a cyclopentyl group. Bond lengths are in s Å and angles in degree.

The next step is either one-electron reduction of **5** to generate a Ni¹ intermediate or direct CO₂ insertion into the Ni^{II}-CH₂Ph bond of **5**. As shown in Fig. 2, the $\Delta G^{\circ \ddagger}$ for the CO₂ insertion is 41.7 kcal/mol, indicating that the direct CO₂ insertion is unlikely. ¹⁰ Thus, **5** must undergo one-electron reduction by Zn to generate a Ni¹ species Ni¹(CH₂Ph)(PCp₃)₂ **7**. The Gibbs energy change (ΔG_1°) for this one-electron reduction (eqn (1)) is -18.5 kcal/mol, indicating that this process easily occurs. Further one-electron reduction of **7** to **2** is difficult because the ΔG_{S3}° value is 1.3 ¹⁵ kcal/mol (see eqn (S3) in ESI).

$$\frac{1}{2} Zn + 5 + DMF \rightarrow \frac{1}{2} ZnCl_2(DMF)_2 + 7$$
 (1)

In the next step, CO₂ coordinates with the Ni-center of **7** to form an η^1 -CO₂ complex Ni(CH₂Ph)(PCp₃)₂(η^1 -CO₂) **8** (Fig. 3). Then, the CO₂ is inserted into the Ni¹-CH₂Ph bond to afford a Ni¹phenylacetate complex Ni(η^1 -OCOCH₂Ph)(PCp₃)₂ **9** via a fourmember transition state **TS**₈₋₉. The $\Delta G^{\circ \ddagger}$ value is 8.6 kcal/mol relative to **7**, indicating that the CO₂ insertion into the Ni¹-CH₂Ph bond occurs much more easily than into the Ni^{II}-CH₂Ph bond (Fig 2). The final step is the one-electron reduction of **9** with Zn. The negative ΔG_2° value (-5.2 kcal/mol) of this one-electron reduction indicates that this reaction can occur; see eqn (S4) in ESI. Based on these results, it is concluded that even in the absence of

³⁰ MgCl₂, benzyl chloride is transformed to phenylacetic acid, which is in accord with the experimental result that the direct carboxylation of benzyl chloride occurs with a poor yield in the absence of MgCl₂.

Next, we investigated the catalytic reaction in the presence of ³⁵ MgCl₂. It is likely that MgCl₂ does not participate in oxidative addition. The next step is the CO₂ insertion. Though a Ni^{II}-CO₂ adduct could not be optimized in the absence of MgCl₂, a Ni^{II}-η¹-CO₂ adduct NiCl(CH₂Ph)(PCp₃)₂·MgCl₂ **10** was optimized, as shown in Fig. 2. This is probably because MgCl₂ stabilizes the

⁴⁰ CO₂ coordinate bond with the Ni^{II} center. However, **10** is considerably less stable than **5** by 15.2 kcal/mol (Fig. 2). Also, the CO₂ insertion needs a very large $\Delta G^{\circ\ddagger}$. Hence, one-electron reduction of **5** to **7** must occur even in the presence of MgCl₂.

Fig. 2 Changes in the Gibbs energy and geometry in the CO₂ insertion into the Ni^{II}-CH₂Ph bond of **5**. Cp represents a cyclopentyl ligand. All the bond lengths in Å and angles are in degree.

- In the presence of CO₂ and MgCl₂, 7 coordinates with CO₂ and MgCl₂ to afford an adduct Ni(CH₂Ph)(PCp₃)₂(η¹-CO₂)(MgCl₂)
 12 (Fig. 3). The Mg-O distance (1.951 Å) and the O-C-O angle (133.6°) in 12 are smaller than in 10. Also, the Ni-C distance (1.957 Å) and the O-C-O angle are considerably smaller than in 8
 without MgCl₂. These geometrical features indicate that the Mg-O and Ni-CO₂ interactions are considerably stronger in 12 than in 8. Consistent with this geometry, the ΔG° is -14.0 kcal/mol relative to 8. Starting from 12, the CO₂ is easily inserted into the Ni¹-CH₂Ph bond via a transition state TS₁₂₋₁₃ to afford a Ni¹-(η¹-60 phenylacetate)-MgCl₂ adduct 13 (Fig. 3). It should be noted that TS₁₂₋₁₃ exists considerably below TS₈₋₉ by 12.0 kcal/mol, which
- is enough to accelerate very much the CO_2 insertion. In the DMF solvent, DMF coordinates with MgCl₂ to afford MgCl₂(DMF)₄. We investigated **TS**₁₂₋₁₃ interacting with MgCl₂(DMF)₃, in which ⁶⁵ one DMF dissociates from the Mg centre because the Mg
- interacts with the O of CO₂: remember that Mg²⁺ is sixcoordinate. When such coordination is considered, **TS**₁₂₋₁₃ is more stable than **TS**₈₋₉ by 7.6 kcal/mol and the $\Delta G^{\circ \ddagger}$ is 1.0 kcal/mol relative to 7 + CO₂ + MgCl₂(DMF)₄; see page S10 in SI
- $_{70}$ for details. Based on these results, it is concluded that MgCl₂ accelerates the CO₂ insertion into the Ni^I-CH₂Ph bond as a noninnocent additive. This is the first theoretical finding showing that MgCl₂ accelerates the CO₂ insertion.

Recently, Knochel group⁹ experimentally observed that MgCl₂ ⁷⁵ accelerates CO₂ insertion into an arylzinc bond but the reason was not discussed. It is of considerable interest to understand the reason for the acceleration of CO₂ insertion by MgCl₂. It should be noted that the electron population of CO_2 is much larger and those of the Ni and benzyl moieties are much smaller in **12** than in **7** (see Fig. S4).¹⁰ These results clearly show that MgCl₂ enhances the charge transfer from the Ni-CH₂Ph moiety to the s CO₂ moiety. This is because the electrostatic interaction between the positively charged Mg atom and the negatively charged O atom of CO₂ stabilizes the π^* orbital energy of CO₂. As the CO₂

 $_{10}$ Fig. 3 Changes in the Gibbs energy and geometry in the CO₂ insertion into the Ni¹-CH₂Ph bond of 7. Cp represents a cyclopentyl ligand. All the bond lengths in Å and angles are in degree.

insertion proceeds, the electron population of the $\rm CH_2Ph$ moiety moderately decreases but that of the $\rm CO_2$ moiety moderately

- ¹⁵ increases. These changes are much smaller than those in the absence of MgCl₂. Hence, it is concluded that the CO_2 moiety has already enough electron population in **12** and thereby the electronic structure does not need to change very much in the CO_2 insertion in the presence of MgCl₂. Also, the Ni¹-O bond
- $_{20}$ energy of **13** is considerably larger than that of **9** by 19.3 kcal/mol. These results indicate that the CO₂ insertion is kinetically and thermodynamically favoured by the interaction with MgCl₂.

The final step is the one-electron reduction of **13** with Zn. The ²⁵ calculated ΔG_{S5}^{0} value for this step is -12.4 kcal/mol (eqn. (S5)).

The anion exchange between $Zn(O_2CCH_2Ph)_2$ and $MgCl_2$ occurs with a considerably negative ΔG_{S6}^{0} of -15.4 kcal/mol, indicating that the formation of $Mg(O_2CCH_2Ph)_2$ is thermodynamically more favourable (eqn. (S6)). These results suggest that $MgCl_2$ ³⁰ also assists the one-electron reduction as a reagent. Because MgCl₂ is consumed in the reaction, two-equivalent of MgCl₂ to benzyl chloride is necessary (Scheme 1).⁷ Gong group¹¹ recently reported that MgCl₂ accelerates the reductive coupling between alkyl iodides and aryl acid chlorides probably because MgCl₂ ³⁵ activates Zn-powder. However, it is shown here that MgCl₂ accelerates one-electron reduction by anion-exchange, which is a new mechanism.

In conclusion, the Gibbs free energy profile for the total catalytic cycle (Fig. S5) clearly indicates that MgCl₂ promotes the ⁴⁰ carboxylation of benzyl chloride with CO₂. Based on the computational results, we disclosed here that MgCl₂ stabilizes the Ni¹-CO₂ adduct and accelerates the CO₂ insertion as a non-innocent additive and one-electron reduction as one reagent. To the best of our knowledge, this is the first report that shows the ⁴⁵ unprecedented roles of MgCl₂. The knowledge of the interplay between the metal catalysis and non-innocent additives is crucial for new development in catalytic reactions by transition metal complexes. Further study is needed about this reaction, on which theoretical study is under progress.

We thank MEXT of Japan for the Grant-in-Aid for Specially Promoted Science and Technology (No. 22000009) and the Institute for Molecular Science (IMS, Okazaki, Japan) for computational resources.

REFERENCES

50

- (1) (a) X. Xiaoding and J. A. Moulijn. *Energy & Fuels* 1996, **10**, 305; (b)
 D. J. Darensbourg. *Chem. Rev.* 2007, **107**, 2388; (c) S. Solomon, G.
 K. Plattner, R. Knutti and P. Friedlingstein. *Proc. Natl. Acad. Sci. U.*
- 5. A. 2009, **106**, 1704; (d) S. N. Riduan and Y. Zhang. Dalton. Trans. 2010, **39**, 3347; (e) M. Mikkelsen, M. Jørgensen and F. C. Krebs. Energy Environ. Sci. 2010, **3**, 43; (f) T. Fan, X. Chen and Z. Lin. Chem. Commun. 2012, **48**, 10808; (g) Y. Tsuji and T. Fujihara. Chem. Commun. 2012, **48**, 9956.
- 65 (2) (a) T. Sakakura, J. C. Choi and H. Yasuda. *Chem. Rev.* 2007, 107, 2365; (b) C. S. Yeung and V. M. Dong. *J. Am. Chem. Soc.* 2008, 130, 7826; (c) K. Kobayashi and Y. Kondo. *Org. Lett.* 2009, 11, 2035; (d) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann and F. E. Kühn. *Angew. Chem. Int. Ed.* 2011, 50, 8510; (e) M. Aresta, A. Dibenedetto and A. Angelini. *Chem. Rev.* 2014, 114, 1709.
- (3) (a) L. J. Gooßen, N. Rodríguez and K. Gooßen. *Angew. Chem. Int. Ed.* 2008, 47, 3100; (b) X. Cai and B. Xie. *Synthesis* 2013, 45, 3305.
- (4) A. Correa and R. Martín. J. Am. Chem. Soc. 2009, 131, 15974.
- (5) (a) T. Fujihara, K. Nogi, T. Xu, J. Terao and Y. Tsuji. J. Am. Chem.
 Soc. 2012, 134, 9106; (b) F. B. Sayyed, Y. Tsuji and S. Sakaki. Chem. Commun. 2013, 49, 10715.
- (6) (a) A. Ariafard and Z. Lin. Organometallics 2006, 25, 4030; (b) N. Kambe, T. Iwasaki and J. Terao. Chem. Soc. Rev. 2011, 40, 4937.
- (7) T. León, A. Correa and R. Martin. J. Am. Chem. Soc. 2013, 135, 1221.
- 80 (8) (a) Y. Y. Ohnishi, Y. Nakao, H. Sato, Y. Nakao, H. Hiyama and S. Sakaki. Organometallics 2009, 28, 2583; (b) W. Guan, F. B. Sayyed, G. Zeng and S. Sakaki. Inorg. Chem. 2014, DOI: 10.1021/ic5003429.
- (9) A. Metzger, S. Bernhardt, G. Manolikakes and P. Knochel. *Angew. Chem. Int. Ed.* 2010, **49**, 4665.
- 85 (10) (a) S. Sakaki, K. Kitaura and K. Morokuma. *Inorg. Chem.* 1982, 21, 760; (b) S. Sakaki, K. Kitaura, K. Morokuma and K. Ohkubo. *Inorg. Chem.* 1983, 22, 104; (c) S. Sakaki. *J. Am. Chem. Soc.* 1990, 112, 7813; (d) Y. Musashi and S. Sakaki. *J. Am. Chem. Soc.* 2002, 124, 7588.
- 90 (11) F. Wu, W. Lu, Q. Qian, Q. Ren and H. Gong. Org. Lett. 2012, 14, 3044.