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The synthesis of nitrogenated carbon nanotubes (N-CNTs) 

with up to 6.1 wt% N, via the use of pyridine as the nitrogen 

containing carbon precursor, can provide a facile route to 

significantly enhance the low intrinsic specific capacitance of 

carbon nanotubes. The nitrogen functionalities determine 

this, at least, five-fold increase of the specific capacitance. 

Carbon nanotubes (CNTs) have long been considered as a suitable 

material for electrochemical energy storage applications.1 However, 

the aggregation problem caused by large van der Waals attractions, 

coupled with the low specific surface area and low microporosity, 

reduces the specific capacitance of CNTs significantly, especially 

when compared with other carbonaceous materials such as activated 

carbons and graphene. Nevertheless, the synergistic effects between 

the electroactive polymers such as polyaniline2 and pseudo-

capacitive metal oxides such as RuO2, in conjunction with CNTs to 

enhance the specific capacitance (Cs), are well documented.3  

 For CNTs, a number of routes for enhancing their Cs have been 

explored including surface activation, enhancement of surface defect 

density and heteroatom doping, especially of electron donor groups 

such as nitrogen.4-6 The heteroatom doping of nitrogen significantly 

alters the microstructure, electrical conductivity, chemical reactivity 

and electrochemical properties of CNTs including their 

pseudocapacitance, wherein the electrochemical behaviour itself is 

dependent on the dominant nitrogen moiety.4-6 In general, the 

additional electrons provided by nitrogen are expected to produce 

electron donor regions.6 Pyridinic and pyrrole-like functionalities are 

considered electroactive due to their electron donor character, 

whereas nitrogen atoms in imides and lactams have been proposed to 

be electroactive as well owing to their edge locations and the 

conjugation within their six-membered rings.7 While all of these 

groups have been reported to improve the Cs of carbon materials,8 

the precise roles of these individual groups are poorly understood.  

 Here we report the exceptionally high Cs of N-doped CNTs (N-

CNTs) synthesized by chemical vapour deposition (CVD) and 

elucidate the individual roles played by pyrrolic, pyridinic and 

quartenary nitrogen groups in both acidic and basic electrolytes. The 

role of structural defects in enhancing the Cs is also analysed via 

comparison with pristine CNTs. Our one-step synthetic route 

provides a rapid way of enhancing the specific capacitance without 

the need of introducing conducting polymers or metal oxides.   

 The synthesis of both CNTs and N-CNTs was conducted using 

iron (Fe) catalyst supported on alumina (γ-Al2O3), with ethylene and 

pyridine as the respective carbon feedstock (see ESI). Thermal 

gravimetric analysis (TGA) of the products reveals the yield of 

CNTs and N-CNTs as ~30 wt% and ~10 wt%, respectively, which is 

consistent with the elemental analysis data (see ESI). As for 

producing N-CNTs, this direct CVD approach takes a clear 

advantage over the mostly used two-step ones where CNTs were 

first synthesized, then they were chemically activated and loaded 

with nitrogen-rich precursor to generate N-moieties on the material 

surface.9 Moreover, the low-cost, easy-to-use of the pyridine 

feedstock, coupled with its structurally high ratio of nitrogen to 

carbon and hence the potentially highly doped nitrogen in the 

product, make the direct CVD route more attractive. In the two-step 

approaches, the surface polymer layer can be electroactive by itself10 

or following a decomposition by heat treatment to produce a 

nitrogen-rich carbonaceous deposit over the CNTs.11,12 However, in 

the direct CVD synthesis nitrogen will be directly introduced into the 

carbon lattice and form structurally in-plane nitrogen groups. 

  Transmission electron microscopy (TEM) analysis revealed the 

microstructure of both pristine and N-doped carbon nanotubes 

produced by the direct CVD method. Both samples displayed 

external diameters of 20-35 nm with typical 10-12 graphene layers 

(Fig. 1, and also ESI). In N-CNTs, the positive curvature induced by 

the formation of possible N-containing pyrrolic structures resulted in 

faster tubular closure and the formation of multi-shell bamboo-like 

tubular structures.13 The length, size and structure of these N-CNTs 

are highly mediated by the N incorporation into the graphitic lattice. 

Additionally, nitrogen can adopt either the sp2 bonding mode 

(pyridinic/pyrrole functionalities) or form three C-N bonds 

(quaternary nitrogen). While the former functionalities are 
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accompanied by a C atom vacancy,14 the enhanced electron transport 

properties could be produced by positively charged, highly 

coordinated nitrogen15 such as quaternary nitrogen. The 

incorporation of nitrogen into carbon nanostructures introduces 

pentagonal defects in the hexagonal structure of graphene sheets, 

creating structural distortion and bending, leading to the graphene 

sheets with high curvatures, cross-linked and defective.16 This 

increase in the defects was further confirmed by the Raman analysis 

(see ESI, Figure S1). 

A B

C D

 

Fig. 1 TEM images of (A,B) N-CNTs, and (C,D) CNTs produced by the direct 

CVD technique (bars length: 5nm). 

 Elemental analysis by CHN analysis and X-ray photoelectron 

spectroscopy revealed nitrogen content of 6.4 wt% and 6.1 wt%, 

respectively, with the oxygen content of N-CNTs less than 1 wt%. 

The core-level N1s XPS spectra was deconvoluted into three 

different peaks, centred at binding energies of 398.4 eV, 400.3 and 

401.2 eV, respectively. They have been respectively assigned to 

pyridinic (N-6), pyrrolic (N-5) and quaternary nitrogen (N-Q).17 Due 

to the low oxygen content, the presence of pyridonic groups (usually 

found at 400.5 eV17) would be very low, and hence the peak at 400.3 

eV is assigned to pyrrolic species. The N-5 groups show the 

maximum contribution (48%), with the contributions from N-6 and 

N-Q groups being 32% and 20%, respectively.  

 Fig. 3 shows the cyclic voltammograms (CVs) (0-1 V vs. RHE) 

recorded for CNTs and N-CNTs in alkaline (6 M KOH) media at a 

scan rate of 50 mV⋅s-1 (ESI Fig. S6 includes the CV in 1 M H2SO4). 

The characterization was done in a 3-electrode cell (see ESI for 

experimental details). The CVs in acidic media exhibits a quasi-

rectangular-like shape for both the electrodes, while in alkaline 

medium the N-CNT sample shows an asymmetric-like shape. The 

shape observed for CNTs in both acidic and basic electrolytes 

indicates the absence of pseudocapacitive contribution. The slope 

observed in the negative sweep for N-CNTs has been attributed to 

the pseudocapacitive contribution of the nitrogen moieties.8  

 For CNT electrodes, the specific capacitances are 14 F g-1 in acid 

medium and 21 F g-1 in alkaline medium, respectively. These Cs 

values are in good agreement with the data for pristine MWCNTs.18 

However, for the N-CNT electrodes, the Cs values are much higher 

at 67 and 160 F g-1 in acid and alkaline medium, respectively. This 

huge increment observed with the N-CNTs is similar to values 

reported for low-porosity melamine-based nanocarbons.19 Our 

literature search seems to suggest that there is a lack of data for the 

capacitance values of N-containing CNTs prepared by a similar 

CVD process. However, the data obtained in this work can be 

compared to the highest values obtained from 3-D graphene-CNT 

network doped with nitrogen,20 and the N-doped carbon nanotubes 

produced by carbonization of melamine shell over a CNT core.9 

However, these values are lower than those of 300 F⋅g-1 reported via 

the carbonization of polypyrrole over KOH-activated CNTs.10,11  

 

Fig. 2 N1s core level XPS spectrum of the N-CNTs. 

 To elucidate how this huge enhancement of specific capacitance 

occurs with N-CNTs in comparison with CNTs, we investigated the 

contribution of each of the nitrogen moieties and the surface defects. 

The difference in the capacitances could arise from either (i) the ion 

accessibility to the nanotube surface, (ii) structural differences or 

(iii) pseudocapacitance and/or enhanced electron transport in N-

CNTs. As for the ion accessibility to the nanotube surface, it is 

known that the N doping can enhance the hydrophilicity and 

improve the wettability of the CNT electrodes by reducing their 

entanglement level, since it weakens the Van der Waals forces, 

therefore disrupting the π-π interactions and leading to weaker 

interactions between nanotubes14. Even so, the measured surface 

areal capacitance for N-CNTs is more than 75 µF·cm-2 (calculated 

from the estimated surface area obtained from the tube diameters), 

which is far over the expected 10-20 µF·cm-2 traditionally assigned 

to graphite-like surfaces. Thus, the capacitance enhancement in N-

CNTs cannot be attributed to better ionic accessibility alone. 

 It is also known that the structural defects in the form of edge 

sites can be generated in N-CNTs via the presence of in-layer 

pyridine groups.21 Since the double-layer capacitance of edge sites is 

reported to be an order of magnitude higher than that of the basal 

plane,22 one of the contributors towards the higher capacitance of the 

N-CNT sample is its higher edge site to basal plane ratio, as 

observed in the higher Raman D/G ratio. By an estimation, we 
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considered that each pyridine group (as measured by XPS) can 

induce the formation of two C vacancies; then one can expect an 

additional 4% of edge sites in N-CNTs which could be responsible 

of a maximum of one-fold increase in the capacitance, which is 

clearly lower than the observed 5 to 7-fold increase. It could be 

argued that the structural defects could bring the internal area of the 

nanotubular structure more exposed to the electrolyte, like for 

chemically activated CNTs,23 increasing the available surface area of 

the tubes. However, this one fold increase ascribed to the formation 

of higher edge sites and enhanced surface area is again not enough to 

explain the huge increase in the specific capacitance. 

 

 
Fig. 3 Steady-state cyclic voltammograms of N-CNT (red line) and CNT (black 

line) electrodes in 6 M KOH solutions at 25 °C temperature. ν = 50 mV s-1. 

Detailed CVs measured at different scan rates can be found in ESI. 

 In addition to the above effects, we believe that the N-Q 

functional groups play a role in enhancing the capacitance. Zhu et 

al.24 have suggested that the N-Q functionalities could be more 

positively charged when used as anode material in supercapacitors, 

attracting the negatively-charged ions more, thereby increasing the 

capacitance. Seredych et al. have proposed that N-Q functionalities 

enhance electron transport through the graphene layers.8 We believe 

that a combination of these mechanisms could partially explain the 

5-fold increment observed in acidic media, but cannot justify the 

very different behaviour observed in the basic media. While, the 

anion size is smaller for KOH than for H2SO4 electrolyte, this 

difference in the ionic size is not enough to explain such a huge 

increment in double layer formation by enhanced ion adsorption by 

N-Q presence when moving from acid to basic electrolyte. 

Therefore, it is proposed that the N-5 and N-6 functionalities can 

also contribute to the capacitance through pseudocapacitance, and 

this contribution would be different with different electrolytes. In 

this regards, Moreno-Castilla et al.25 have observed a good 

correlation between interfacial capacitance and pyrrolic and 

pyridinic nitrogen functionalities in acidic conditions. Thus, part of 

the observed capacitance enhancement of N-doped CNTs in both 

acidic and basic electrolytes can be attributed to the 

pseudocapacitance arising from the N-5 and N-6 moieties. 

Considering that pyrrole moieties are within the nanocaps of the 

bamboo-like structure of CNTs11, and are therefore inaccessible by 

ions, and that Q-N does not contribute, the amount of pyridinic 

functionalities can be estimated to be 2.0 wt% (from XPS analyses). 

Assuming a one electron transfer process, the contribution of 

pyridinic functionalities to the capacitance is of the order of 135 F·g-

1. This value is in good agreement with the capacitance measured in 

alkaline conditions (160 F·g-1), which suggests that most of the 

pyridinic functionalities are accessible to the electrolyte due to their 

location in the outer layers of the N-CNTs. The lower capacitance 

values for N-6 moieties in acid electrolyte can be due to their 

protonation in such conditions. The additional electron that may 

donate the N-6 moieties and the redox processes should be impeded 

in this medium, producing a decrease in capacitance. 

Conclusions 

An efficient one-step procedure of obtaining N-containing CNTs has 

been developed and their electrochemical capacitance measured 

against pristine CNTs. For N-CNTs, a detailed assessment of various 

nitrogen moieties and surface defects allowed us to hypothesize the 

origin of the enhancement of specific capacitance, the effect of 

which is mainly resulting from the contribution of 

pseudocapacitance of redox reactions by N-6 groups, especially in 

basic media. On the other hand, the higher level of structural 

disorder and the presence of N-Q groups further enhance the 

formation of electrical double layer and its interaction with the 

anions in the electrolyte, contributing to the high capacitance. A 

combination of these factors provides a huge capacitance of 160 F·g-

1 in 6M KOH, bringing the possible use of these materials as flexible 

electrodes in micro capacitor devices.  
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