ChemComm

Accepted Manuscript

ChemComm

Chemical Commurications

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012,
Accepted 00th January 2012
DOI: 10.1039/x0xx00000x
www.rsc.org/

Mn(III)/TEMPO-Co-Mediated Tandem
 Azidation/1,2-Carbon Migration Reaction of Allylic Silyl Ethers

Zhi-Min Chen, Zhen Zhang, Yong-Qiang Tu,* Ming-Hui Xu, Fu-Min Zhang, Chen-Chen Li, and Shao-Hua Wang*

temperature showed that these changes would slightly lower either the yield or the diastereoselectivity (entries 9-12). Thus, entry 7 was chosen as the optimal conditions.

Table 1. Optimization of azidation/1,2-migration reaction ${ }^{\text {a }}$

Entry	Temp.	Acid	Additive	Solvent	$\begin{gathered} \text { Yield } \\ (\%) / \text { d.r. }{ }^{\mathrm{b}, \mathrm{c}} \end{gathered}$
1	RT	-	-	$\mathrm{CH}_{3} \mathrm{CN}$	-
$2^{\text {d }}$	RT	4	-	$\mathrm{CH}_{3} \mathrm{CN}$	36/(>10:1)
3	0	TFA	-	$\mathrm{CH}_{3} \mathrm{CN}$	44/(>10:1)
4^{e}	0	TFA	-	$\mathrm{CH}_{3} \mathrm{CN}$	trace
5	0	TFA	$10 \% \mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	40/(>10:1)
6	0	TFA	$10 \% \mathrm{Co}(\mathrm{OAc})_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	47/(>10:1)
7	0	TFA	10\% TEMPO	$\mathrm{CH}_{3} \mathbf{C N}$	86/(6.3:1)
8^{f}	0	TFA	10\% 5	$\mathrm{CH}_{3} \mathrm{CN}$	87/(5.0:1)
9	0	TFA	5\% TEMPO	$\mathrm{CH}_{3} \mathrm{CN}$	79/(6.1:1)
10	0	TFA	20\% TEMPO	$\mathrm{CH}_{3} \mathrm{CN}$	80/(6.5:1)
11	-10	TFA	10\% TEMPO	$\mathrm{CH}_{3} \mathrm{CN}$	68/(6.5:1)
12^{g}	0	TFA	10\% TEMPO	$\mathrm{CH}_{3} \mathrm{CN}$	64/(6.0:1)

Reaction conditions: ${ }^{a} \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol})$ was dissolved in 1.5 mL of solvent followed by addition of $\mathrm{NaN}_{3}(0.10 \mathrm{mmol})$. After $10-20 \mathrm{~min}$, 1a (0.2 mmol) in 0.5 mL of solvent was added. ${ }^{\text {b }}$ Isolated yield. ${ }^{\text {c }}$ Diastereoisomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{d}} 4=\mathrm{CH}_{2} \mathrm{ClCO}_{2} \mathrm{H}$ (9.0 equiv). ${ }^{\mathrm{C}} \mathrm{TMSN}_{3}$ was added instead of $\mathrm{NaN}_{3} .{ }^{\mathrm{f}} 5=4-\mathrm{OH}-\mathrm{TEMPO} .{ }^{8} 3.0$ equiv of NaN_{3} was added.

To test the generality of this transformation, we next subjected allylic silyl ethers $\mathbf{1 b} \mathbf{- l}$ to the optimized conditions. As shown in Table 2, all the substrates performed well and the desired β-azidyl carbonyl derivatives were obtained in moderate to excellent yields. Firstly, for the cyclic substrates with five- and seven-membered rings, this reaction was
Table 2 Substrate scope of the azidation/1,2-migration reaction ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$

${ }^{\text {a }}$ Reaction conditions, please see the SI. ${ }^{\text {b }}$ Yields of 2 and $\mathbf{2 '}^{\text {'. }}{ }^{\text {c Diastereoisomeric }}$ ratio was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\text {d }}$ Determined by the weight of isolated product.
applicable, and the corresponding products $\mathbf{2 b}$ and $\mathbf{2 c}$ could be obtained respectively in 69% and 84% yields with moderate diastereoselectivity. Also, the p-OMe-phenyl- and 2-naphthylsubstituted substrates were also suitable for this transformation (2d, 2e). Compared with 1a, substrates $\mathbf{1 f} \mathbf{- g}$ with an alkyl and an aryl substituent exhibited relatively low reactivities, affording the desired products with exclusive migration of aryl groups in 67% and 61% yields, respectively. Furthermore, silyl ether substrate $\mathbf{1 h}$ derived from corresponding secondary alcohol was also amenable to the protocol, furnishing the products 2 h and $\mathbf{2 h}{ }^{\prime}$ in 64% yield, which could provide an alternative strategy for the synthesis of (\pm)-crinane. ${ }^{13}$ To our delight, the substrate bearing a cyclobutanol motif $1 \mathbf{i}$ also went through smoothly under the stated conditions, albeit in lower diastereoselectivity and yield. Finally, some acyclic substrates were examined and successfully afforded $\mathbf{2 j}, \mathbf{2 k}$, and $\mathbf{2 1}$ in good to excellent yields. It should be noted that the relative configuration of $\mathbf{2 a - i}$ was assigned by X-ray crystallography of 2a as a representative. ${ }^{14}$

Scheme 2 Reaction results of dihydropyran-type allylic silyl ethers $\mathbf{1 m}$ and $\mathbf{1 p}$
Table 3 Substrate scope of the deazidation/1,2-carbon migration.

To further expand the scope of this tandem reaction, the dihydropyran-type allylic silyl ether $\mathbf{1 m}$ was subjected to the standard conditions. Different from the substrates in Table 2, the diazide addition product $\mathbf{3 m}$ was obtained in 30% yield with excellent anti-selectivity. Although no desired β-azidyl ketone was observed, this result also supported a possible azide radical
initiated process, which prompted us to further optimize the conditions for this type of substrates. After some unsuccessful attempts, we accidentally found that the yield of $\mathbf{3 m}$ was notably improved to 62% without using TEMPO (Scheme 2). Considering the valuable synthetic utility of bisazido compounds, ${ }^{12,15}$ we then applied a variety of activated allylic silyl ethers to this diazidation reaction ($\mathbf{1 m} \mathbf{- w}$). All the substrates were well tolerated under the same conditions and produced the corresponding diazide addition products $\mathbf{3 m} \mathbf{- w}$ in moderate to good yields with excellent diastereoselectivity ($35 \%-82 \%$). ${ }^{16}$ The relative configuration of $\mathbf{3 m}-\mathbf{w}$ was deduced by X-ray crystallography of $\mathbf{3 m} .{ }^{14}$ It is worth mentioning that the reaction of $\mathbf{1 p}$ with electron-donating groups at the paraposition of the phenyl moiety not only gave the diazide addition product 3p in 35% yield, but also produced the rearrangement product $\mathbf{2 p}$ in 40% yield, which promoted us to further investigate the possibility of a semipinacol rearrangement with bisazido compounds 3 to afford α-quaternary β-azidyl ketones (Scheme 2). Fortunately, under the promotion of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, a common Lewis acid, the expected rearrangement reaction of $\mathbf{3 m}$-w went through smoothly to give the desired β-azidyl ketones $2 \mathbf{m}-\mathbf{w}$ in moderate to excellent yields with excellent diastereoselectivity (Table 3). The relative configuration of $\mathbf{2 m}$ \mathbf{w} was confirmed by single crystal X-ray analysis of $\mathbf{2 m} .{ }^{14}$

Next, some additional experiments were conducted in order to get a better understanding of the azidation/1,2-migration reaction. When 1.0 equiv of the radical-trapping reagent BHT (2,6-di-tert-butyl-p-cresol) was added instead of TEMPO, the reaction was messy and no desired product but BHT- N_{3} could be detected by GC-MS. ${ }^{17}$ The result suggested the existence of an azidyl radical during this transformation. On the basis of the above experimental results and previous literatures, a proposed reaction mechanism is depicted in Scheme 3. Initially, an azidyl radical generated from the oxidation of sodium azide by manganese(III) acetate would add to allylic silyl ether $\mathbf{1}$ to provide radical intermediate 6. Next, two possible pathways for the transformation could take place. In path 1 , carbon radical species 6 could directly undergo a 1,2-rearrangement to give radical intermediate 8 , which would be further oxidized by manganese(III) acetate to produce the desired product 2 after eliminating a TMS. ${ }^{18}$ In path 2, carbon radical species 6 might first be oxidized by manganese(III) to a carbon cation intermediate 9 , which would subsequently undergo a 1,2migration to afford the corresponding product $\mathbf{2}$. At the moment, it is still unclear which path is dominant based on our preliminary experiments, although we hypothesized that the effect of TEMPO is beneficial to accelerate the rate of path $1 .{ }^{16}$ Also, since the difference between conformation 6-a and 6-b was not very significant, the corresponding diastereoselectivity was not excellent. In contrast, the diazidation reaction might proceed through only one possible way. ${ }^{19}$ As shown in Scheme 4, azidyl radical reacted with activated allylic silyl ether to give carbon radical intermediate $\mathbf{1 0}$, and further oxidation of $\mathbf{1 0}$ would produce the cyclic oxonium intermediate 11, which could go through a sterically favored anti-addition with azide anion to give product 3. While in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, intermediate 12 would be generated upon the release of TMSN_{3}. Accordingly, a subsequent semipiancol rearrangement would afford product 2 with excellent diastereoselectivity, which could be explained by the clear difference between conformation 12-a and 12-b.

In summary, we have $\mathrm{Mn}(\mathrm{III}) /$ TEMPO-co-mediated
developed a novel and mild tandem azidation/1,2-carbon
migration reaction of allylic silyl ethers for the first time. This tandem transformation enables the difunctionalization of unactivated alkenes through simultaneous construction of an alkyl azide and an all-carbon quaternary center and is synthetically valuable since a variety of α-quaternary β-azidyl carbonyl derivatives were obtained in moderate to excellent yields. In addition, the diazidation reaction of activated allylic silyl ethers has also been achieved and the 1,2diazides could further undergo a novel semipinacol rearrangement to produce α-quaternary β-azidyl ketones with the loss of an azide leaving group.

Scheme 3 Proposed mechanism for the azidation/1,2-migration reaction.

Scheme 4 Proposed mechanism for the deazidation/1,2-migration.

Acknowledgements

This work was supported by the NSFC (No.: 21102061, 21202073, 21290180, 21272097, and 21372104), the "973" Program of MOST (2010CB833203), the "111" Program of MOE, the Project of MOST (2012ZX 09201101-003), and the fundamental research funds for the central universities (lzujbky-2014-k20).

Notes and references

State Key Laboratory of Applied Organic Chemistry; School of Pharmacy, Lanzhou University, Lanzhou; and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, (P. R. China); E-mail: tuyq@lzu.edu.cn; wangshh@lzu.edu.cn.
Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

1 For selected recent reviews, see: (a) T. G. Driver, Org. Biomol. Chem. 2010, 8, 3831; (b) E. M. Sletten and C. R. Bertozzi, Acc. Chem. Res. 2011, 44, 666; (c) C. I. Schilling, N. Jung, M. Biskup, U. Schepers and S. Bräse, Chem. Soc. Rev. 2011, 40, 4840; (d) S. Chiba, Synlett 2012, 21.

2 For comprehensive reviews, see: (a) K. Banert in Organic Azides: Syntheses and Applications, (Eds.: S. Bräse and K. Banert), Wiley, Chichester, 2010; (b) Y. Jiang, C. Kuang, C. Han, H. Wang and X. Liang, Chin. J. Org. Chem. 2012, 32, 2231.
3 For selected reviews on hydroazidation and carboazidation, see: (a) M Minozzi, D. Nanni and P. Spagnolo, Chem. Eur. J. 2009, 15, 7830; (b) G. Lapointe, A. Kapat, K. Weidner and P. Renaud, Pure Appl. Chem. 2012, 84, 1633; for recent examples on hydroazidation, see: (c) J. Waser, B. Gaspar, H Nambu and E. M. Carreira, J. Am. Chem. Soc. 2006, 128, 11693; (d) A. Kapat, A. könig, F. Montermini and P. Renaud, J. Am. Chem. Soc. 2011, 133, 13890; (e) E. K. Leggans, T. J. Barker, K. K. Duncan and D. L. Boger, Org. Lett. 2012, 14, 1428; for recent examples on carboazidation, see: (f) B. B. Snider and J. R. Duvall, Org. Lett. 2004, 6, 1265; (g) K. Weidner, A. Giroult, P. Panchaud and P. Renaud, J. Am. Chem. Soc. 2010, 132, 17511 (h) F. Wang, X. Qi, Z. Liang, P. Chen and G. Liu, Angew. Chem. Int. Ed. 2014, 53, 1881
4 For recent examples on aminoazidation, see: (a) F. C. Sequeira, B. W. Turnpenny and S. R. Chemler, Angew. Chem. Int. Ed. 2010, 49, 6365; (b) B. Zhang and A. Studer, Org. Lett. 2014, 16, 1790.

5 (a) B. Zhang and A. Studer, Org. Lett. 2013, 15, 4548; (b) Z. Li, C. Zhang, L. Zhu, C. Liu and C. Li, Org. Chem. Front. 2014, 1, 100; (c) L. Zhu, H. Yu, Z. Xu, X. Jiang, L. Lin and R. Wang, Org. Lett. 2014, 16, 1562; (d) H. Yin, T. Wang and N. Jiao, Org. Lett. 2014, 16, 2302.
6 (a) K. Matcha, R. Narayan and A. P. Antonchick, Angew. Chem. Int. Ed. 2013, 52, 7985; (b) X.-H. Wei, Y.-M. Li, A.-X. Zhou, T.-T. Yang and S.-D.Yang, Org. Lett. 2013, 15, 4158; (c) Y. Yuan, T. Shen, K. Wang and N. Jiao Chem. Asian J. 2013, 8, 2932; (d) J. Qiu and R. Zhang, Org. Biomol. Chem. 2014, 12, 4329; (e) W. Kong, E. Merino and C. Nevado, Angew. Chem. Int. Ed. 2014, 53, 5078.
7 For selected recent reivews, see: (a) Z.-L. Song, C.-A. Fan and Y.-Q. Tu, Chem. Rev. 2011, 111, 7523; (b) S.-H. Wang, B.-S. Li and Y.-Q. Tu, Chem. Commun. 2014, 50, 2393.
8 For selected recent examples, see: (a) C. Müller, H. M. Wilking, A. Rühlmann, B. Wibbeling and U. Hennecke, Synlett 2011, 2043; (b) F. Romanov-Michailidis, L. Guénée and A. Alexakis, Angew. Chem. Int. Ed. 2013, 52, 9266; (c) D. Chen, P. Wu and L. Gong, Org. Lett. 2013, 15, 3958; (d) Q. Yin and S. You, Org. Lett. 2014, 16, 1810; (e) B. Guo, C. Fu and S. Ma Chem. Commun. 2014, 50, 4445; (f) X. Shu, M. Zhang, Y. He, H. Frei and F. D. Toste, J. Am. Chem. Soc. 2014, 136, 5844; (g) X.-Q. Chu, Y. Zi, H. Meng, X.-P. Xu and S.-J. Ji, Chem. Coттип. 2014, 50, 7642.
9 (a) Z.-M. Chen, Q.-W. Zhang, Z.-H. Chen, H. Li, Y.-Q. Tu, F.-M Zhang and J.-M. Tian, J. Am. Chem. Soc. 2011, 133, 8818; (b) Z.-M. Chen, B.-M. Yang, Z.-H. Chen, Q.-W. Zhang, M. Wang and Y.-Q. Tu, Chem. Eur. J. 2012, 18, 12950; (c) Q.-W. Zhang, X. Zhang, B.-S. Li, K. Xiang, F.-M. Zhang, S.-H. Wang and Y.-Q. Tu, Chem. Commun. 2013, 49, 1648.
10 (a) X. Liu, F. Xiong, X. Huang, L. Xu, P. Li and X. Wu, Angew. Chem. Int. Ed. 2013, 52, 6962; (b) Z.-M. Chen, W. Bai, S.-H. Wang, B.-M. Yang, Y.-Q. Tu and F.-M. Zhang, Angew. Chem. Int. Ed. 2013, 52, 9781; (c) H. Egami, R. Shimizu, Y. Usui and M. Sodeoka, Chem. Соттии. 2013, 49, 7346.
11 (a) B. B. Snider, Chem. Rev. 1996, 96, 339; (b) M. Mondal and U. Bora, RSC Adv. 2013, 3, 18716.
12 P. Magnus, M. B. Roe and C. Hulme, J. Chem. Soc., Chem. Commun. 1995, 263.
13 Z. L. Song, B. M. Wang, Y.-Q. Tu, C. A. Fan and S. Y. Zhang, Org. Lett. 2003, 5, 2319.
14 CCDC 997264 (2a), CCDC 997265 (3m) and CCDC 997266 (2m) contain the supplementary crystallographic data for this paper.
15 (a) W. E. Fristad, T. A. Brandvold, J. R. Peterson and S. R. Thompson, J. Org. Chem. 1985, 50, 3647; (b) B. B. Snider and H. Lin, Synth. Commun. 1998, 28, 1913; (c) R. Chung, E. Yu, C. D. Incarvito and D. J. Austin, Org. Lett. 2004, 6, 3881.

16 For details, please see the Supporting Information.
17 When 1.0 equiv of TEMPO was added, TEMPO- N_{3} could also be detected by GC-MS.

18 A. Studer and M. Bossart, Tetrahedron 2001, 57, 9649.
19 For details, please see the Supporting Information.

