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Cation intercalation into nanoporous coordination poly-
mer is utilized in, e.g, Li+/Na+ secondary battery, de-
contamination of radioactive 137Cs+, and so on. Here,
we observed an ultrafast intercalation of Na+ and Rb+

within 1500 ms in a thin film of nickel hexacyanoferrate,
Na0.68Ni[Fe(CN)6]0.675.0H2O, in aqueous solutions. Quan-
titative analyses of the intercalation kinetics revealed that
the high cation diffusion constant (D ∼ 10−9cm2/s) is re-
sponsible for the intercalation.

Coordination polymer consists of metal and ligand unit, and
forms one-, two-, or three-dimensional metal - ligand net-
work. The resultant periodic nanospaces cause useful func-
tionalities. For example, the nanospaces can reversibly store
the neutral molecules,e.g., H2, N2, O2, CO2, and H2O, by
an external gas-pressure.1,2 If the valence of the constituent
metal and/or ligand is controllable, the nanospaces can store
the cations,3–27 e.g. Li+, Na+, K+, Rb+, Cs+, Ca2+, Mg2+,
Sr2+ and Ba2+. In this case, an external voltage reversibly
controls the intercalation/deintercalation of the cation via the
reduction/oxidization process of the host framework.

Among the coordination polymers, Prussian blue (PB)
and its analogues (PBA) are intensively investigated from
a viewpoint of electrochemistry.3–12 PBA, represented as
AxM[Fe(CN)6]yzH2O (A andM are alkali and transition metal,
respectively), forms a three-dimensional (3D) jungle-gym-
type network, which causes cubic nanospace of 5Å at the
edge.28,29 A thin film of PB, FeIII [FeII (CN)6]3/4, exhibits a
reversible blue-transparent electrochromism,3,4 reflecting the
reduction process of FeIII . The mixed-valence state of PB was
thermodynamically analyzed with a solid solution model of
PB and Everitt’s salt (ES).11,12However, the redox process of
PB is rather complicated: several electrogravimetry investiga-
tions5,7 suggest considerable contribution of H+ in addition to
A+. This makes a sharp contrast with the case of nickel hexa-
cyanoferrate8 and cobalt hexacyanoferrate9,10, in which only
A+ takes part in the redox process.

Recentry, the ion storage functionality of PBA gathers in-
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creasing attention of material scientists,13–27because they can
store Li+ and Na+ in aprotic solvent and can be utilized as a
cathode material for Li+ (Na+) secondary battery. For exam-
ple, a thin film of manganese hexacyanoferrate17,18 exhibits
a capacity of 128 (109) mAh/g and an average voltage of 3.8
(3.4) V vs. Li (Na) in the Li+ (Na+) secondary battery. In
addition, PBA can store divalent alkaline-earth metal ion15,27

as well as larger alkali metal ion.30,31 These storage func-
tionalities can be utilized for removal/condensation of specific
cation,e.g., removal of radioactive137Cs+ from aqueous so-
lution. In general, electrochemical kinetic of the electrode re-
action in the solvent (electrolyte) - solid (material) system is
described by the diffusion equations in the both regions with
the boundary condition of Butler-Volmer equation.32 How-
ever, this model is too complicated with many adjustable pa-
rameters to be applied to the actual intercalation kinetics. A
more simple and intuitive model is indispensable to compre-
hend the cation diffusion effect in solid on the intercalation
kinetics in a wide range of nanoporous materials.

In this Communication, we reported a fast intercalation
of Na+ and Rb+ in thin film of nickel hexacyanoferrate,
Na0.68Ni[Fe(CN)6]0.675.0H2O (abbreviated as NNF67). The
intercalation kinetics was analyzed by a phenomenological
model with a time-independent cation transfer rate (α) at the
solvent/solid interface. We ascribed the fast cation interca-
lation to high cation diffusion constant (D) of NNF67: D =
0.9×10−9cm2/s for Na+ and 0.7×10−9cm2/s for Rb+.

The NNF67 film was electrochemically synthesized on an
indium tin oxide (ITO) transparent electrode under potentio-
static conditions at 0.40 V vs. a standard Ag/AgCl electrode
in an aqueous solution containing 0.5mM K3[FeIII (CN)6],
0.5mM NiII (NO3)2, and 1.0M NaNO3.8 The obtained film
was transparent with a thickness of 500 - 600 nm. Chem-
ical composition was determined using the inductively cou-
pled plasma (ICP) method and a CHN organic elementary an-
alyzer. Calcd: Na, 5.2; Ni, 18.3; Fe, 12.3; C, 15.9; H, 3.3;
N, 18.6%. Found: Na, 6.2; Ni, 18.4; Fe, 12.5; C, 15.6; H,
3.3; N, 17.7%. For comparison, we synthesized a thin film
of Na1.52Co[Fe(CN)6]0.883.1H2O (NCF88) in an aqueous so-
lution containing 0.8mM K3[FeIII (CN)6], 0.5mM CoII (NO3)2,
and 5.0M NaNO3.10 The obtained film was transparent green
with a thickness of 600 nm. Chemical composition was de-
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termined using the ICP method and a CHN organic elemen-
tary analyzer. Calcd: Na, 10.4; Co, 17.6; Fe, 14,6; C, 18.9;
H, 1.8; N, 22.0%. Found: Na, 11.2; Co, 17.4; Fe, 15.3; C,
18.5; H, 1.9; N, 20.0%. The XRD pattern of the NNF67 and
NCF88 films can be indexed with the face-centered cubic set-
ting (see Fig. S1). The NNF67 film shows flat surface, while
the NCF88 film consists of small crystals (Fig. S2).

The cation intercalation kinetics was investigated with
a beaker-type three-electrode cell. The working, referen-
tial, and counter electrodes were the PBA film, a standard
Ag/AgCl electrode, and Pt, respectively. The electrolytes
were aqueous solutions of NaCl and RbCl. First, the film
was slowly oxidized under a constant current condition (=
10 µA/cm2) with a cut-off voltage of 1.0 V. In this oxidation
process, Na0.68NiII [FeII (CN)6]0.67 → 0.67e− + 0.67Na+ +
Na0.01NiII [FeIII (CN)6]0.67, the film color changes from trans-
parent to yellow. We confirmed that the reduction of the cation
density (x) is equal to the reduction charge (Fig. S3). The vari-
ation of the Fe valence was confirmed by the IR spectroscopy
(Fig. S4). The intercalation kinetics was monitored by the cur-
rent density (I ) against time (t) under a constant external volt-
age (Vex).

Fig. 1: Current density (I ) of (a) NNF67 and (b) NCF88 in an aque-
ous solution of 1M RbCl under external voltage (Vex) against time
(t). Broken curves are results of the least-squares fitting with an ex-
ponential function,I = I0·exp(-t/τ).

As prototypical example, we show in Fig. 1(a) theI - t
curves of the NNF67 film in an aqueous solution of 1M RbCl.
At Vex = - 1.0 V, the magnitude ofI gradually decreases witht,
and suddenly drops to zero att = 1300 ms. We observed a con-
comitant color change from yellow to transparent (Fig. S5).
The negative current indicates fast intercalation of Rb+ into
the film, 0.67e− + 0.67Rb+ + Na0.01NiII [FeIII (CN)6]0.67 →
Rb0.67Na0.01NiII [FeII (CN)6]0.67. A similar fast intercalation
is observed in an aqueous solution of 1M NaCl:I suddenly
drops to zero att = 1500 ms atVex = - 1.0 V (Fig. S6). The
discontinuous drop of -I is ascribed to completion of the
cation intercalation. Actually, the intercalated cation densi-

Fig. 2: (a) Initial current density (I0), (b) relaxation time (τ), (c)
cation transfer rate (α), and (d) surface coefficient (β) againstVs -
Vex, whereVs andVex is the self-potential and external voltage, re-
spectively. Straight lines in (a) and (c) are results of the least-squares
fitting.

ties (∆x) are close to the ideal value (0.67 per Ni):∆x = 0.80,
0.74, and 0.76 per Ni atVex = - 1.0, - 0.5, and 0.0 V, respec-
tively. On the other hand, the gradual decrease of -I is well
reproduced by an exponential function:I = I0 · exp(−t/τ),
where I0 and τ are the initial current density and the relax-
ation time, respectively [broken curves in Fig. 1(a)]. Figure 2
shows (a)I0 and (b)τ againstVs - Vex, whereVs (= 0.4 V for
NaCl and 0.7 V for RbCl) is the self-potential.|I0| linearly
increases withVs - Vex, while theτ value slightly decreases
asVs - Vex increases. Crosses in Fig, 2 are the parameters of
Na1.48Ni[Fe(CN)6]0.875.5H2O powder (see Fig. S7).

The high-I value [Fig. 1(a)] indicates that the cation quickly
diffuses into the inner side of the solid before the subsequent
cation transfer. Actually, the cation diffusion constant (D) is
significantly high in NNF67:D = 0.9×10−9cm2/s for Na+ and
0.7×10−9cm2/s for Rb+ (Fig. S8). In this situation,i.e., when
the cation transfer from solvent is slower than the diffusion in
solid, the intercalation kinetics is limited by the cation transfer
[Fig. 3(a)]. In the opposite case,i.e., when the diffusion is
slower than the transfer, the kinetics is limited by the cation
diffusion [Fig. 3(b)]. We investigated the kinetics of the Rb+

intercalation in the NCF88 film [Fig. 1(b)], whoseD is much
lower than that of the NNF67 film (Fig. S9). Reflecting the
residual surface cations,∆x is far below the ideal value (= 0.88
per Co):∆x = 0.02, 0.01, and 0.02 per Co atVex = - 1.0, - 0.5,
and 0.0 V, respectively.

Finally, let us phenomenologically analyze the intercalation
kinetics with including the blocking effect by residual cations:

ṅ= α(1−nβ),

whereα, n, andβ are the cation transfer rate, average cation
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Fig. 3: Schematic illustrations of cation intercalation: (a) transfer-
limited and (b) diffusion-limited cases.

density in solid, and residual coefficient, respectively. Note
that n and α is normalized by number of the nanospaces of
PBA, i.e., two spaces per Ni. We assume thatα is indepen-
dent of time, because the cation capacity (= 0.2µmol/cm2) of
the film is too low to seriously alter the electrolyte concen-
tration around the interface.nβ is the density of the resid-
ual cation at the surface, which blocks the subsequent cation
transfer from the solvent. We know thatβ is infinite at t =
0 and gradually decreases witht in a diffusion equation with
semi-infinite boundary condition. Nevertheless, we treatβ as
a material parameter to obtain a perspective view for the cation
diffusion effect on the intercalation kinetics. The cation inter-
calation stops atn = 1/β, because all the cation channels close.
The equation atβ = 1 describes the high-D limit, because the
cation density at the surface is the same as the average (=n).
The parameters,α andβ, are determined byI0 andτ through
the relation:

I(t) ∝ ṅ= α ·exp(−αβt).

In Fig. 2(c) and (d), we plottedα andβ againstVs - Vex. Sig-
nificantly,β in NNF67 is∼ 1 irrespective of the concentration
and kind of the cation in soluvent. We note thatβ for the pow-
der sample is≈ 1 even thoughα is much lower than those in
NNF67. These observations indicate that the fast cation inter-
calation is ascribed to the high-D value of nickel hexacyano-
ferrates. On the other hand,β (∼ 50) in NCF88 is much higher
than unity, indicating that the cation intercalation is limited by
the slow cation diffusion.

In conclusion, we reported an ultrafast cation intercalation
in a thin film of nickel hexacyanoferrate. We ascribed the fast
intercalation to the fast cation diffusion in solid. We proposed
a simple model to evaluate the residual cation effect, which
is easily applicable to the other intercalation phenomena,e.g.,
Li+/Na+ intercalation in aprotic solution (see Fig. S10).
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