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Cation intercalation into nanoporous coordination poly-  creasing attention of material scientisés?’ because they can
mer is utilized in, e.g LiT/Na"t secondary battery, de- store Li" and Na in aprotic solvent and can be utilized as a
contamination of radioactive 3’Cs*, and so on. Here, cathode material for Li (Na) secondary battery. For exam-
we observed an ultrafast intercalation of Na and Rb™ ple, a thin film of manganese hexacyanofert&fé€ exhibits
within 1500 ms in a thin film of nickel hexacyanoferrate, a capacity of 128 (109) mAh/g and an average voltage of 3.6
Nag egNi[Fe(CN)s]o.675.0H,0, in aqueous solutions. Quan-  (3.4) V vs. Li (Na) in the Li- (Na") secondary battery. In
titative analyses of the intercalation kinetics revealed that  addition, PBA can store divalent alkaline-earth metalfot{
the high cation diffusion constant O ~ 10~°cm?/s) is re-  as well as larger alkali metal io#:3! These storage func-
sponsible for the intercalation. tionalities can be utilized for removal/condensation of specific

cation, e.g, removal of radioactivé3’Cs" from aqueous so-

Coordination po|ymer consists of metal and ||gand unit, andution. In general, electrochemical kinetic of the electrode re-
forms one-, two-, or three-dimensional metal - ligand net-action in the solvent (electrolyte) - solid (material) system is
work. The resultant periodic nanospaces cause useful funélescribed by the diffusion equations in the both regions wit:-
tionalities. For example, the nanospaces can reversibly stof@€ boundary condition of Butler-Volmer equatidh How-

the neutral molecule.g, Hy, Ny, O,, CO,, and O, by  €ver, this model is too complicated with many adjustable pa-
an external gas-pressu}é_ If the valence of the constituent rameters to be applled to the actual intercalation kinetics. A
metal and/or ligand is controllable, the nanospaces can stof@ore simple and intuitive model is indispensable to compre-
the cations*?7 e.g. Li*, Nat, K*, Rb", Cst, C&", Mg?t, hend the cation diffusion effect in solid on the intercalation
Sr?t and B&". In this case, an external voltage reversibly Kinetics in a wide range of nanoporous materials.

controls the intercalation/deintercalation of the cation via the |n this Communication, we reported a fast intercalation
reduction/oxidization process of the host framework. of Nat and RO in thin film of nickel hexacyanoferrate,

Among the coordination polymers, Prussian blue (PB)NajggNi[Fe(CN)]o.675.0HO (abbreviated as NNF67). The
and its analogues (PBA) are intensively investigated fromintercalation kinetics was analyzed by a phenomenologic-:
a viewpoint of electrochemistry.*2 PBA, represented as model with a time-independent cation transfer ratpdt the
AM[Fe(CN)]yzH20 (AandM are alkali and transition metal, solvent/solid interface. We ascribed the fast cation interca
respectively), forms a three-dimensional (3D) jungle-gym-|ation to high cation diffusion constanD} of NNF67: D =
type network, which causes cubic nanospace & &t the 0.9x10 9%n?/s for Na" and 0.% 10 2cr?/s for Rb".
edge?829 A thin film of PB, Fé' [F€! (CN)s]5/4, exhibits a

. g i The NNF67 film was electrochemically synthesized on an
reversible blue-transparent electrochromidfrreflecting the y oY

. t e The mi | ¢ indium tin oxide (ITO) transparent electrode under potentio-
reduction process o The mixed-valence state of PB was static conditions at 0.40 V vs. a standard Ag/AgCI electrod =

thermodynamically analyzed with a solid solution model ofin an aqueous solution containing 0.5mNA[Re" (CN)g]
it 1,12 : ’
PB and Everitt's sglt (ES}t12However, the redox process of 0.5mM Ni'(NO3),, and 1.0M NaN@.8 The obtained film

57 iderabl bution of b additi &yas transparent with a thickness of 500 - 600 nm. Chem
tions™* suggest considerable contribution of kh additionto ., composition was determined using the inductively cou-

AT, This makes a sharp contrast with the case of.nickel hex%led plasma (ICP) method and a CHN organic elementary an-
cyanoferraté and cobalt hexacyanoferr&t, in which only alyzer. Calcd: Na, 5.2: Ni, 18.3; Fe, 12.3: C, 15.9: H, 3.3

A .

A" takes part in the redox process. N, 18.6%. Found: Na, 6.2; Ni, 18.4; Fe, 12.5; C, 15.6; H,
Recentry, the ion storage functionality of PBA gathers IN-3 3. N, 17.7%. For comparison, we synthesized a thin film

of Nay 50Co[Fe(CN}]o.883.1H,O (NCF88) in an aqueous so-

a Division of Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba,, .: o I I
Ibaraki 305-7571, Japan. E-mail: moritomo.yutaka.gf@u.tsukba.ac.jp lution containing 0.8mM Ié[Fe (CN)6]’ 0.5mM Cd (NO3)2’

10 i :
b Tsukuba Research Center for Interdisciplinary Materials Science (TIMS),ar_1CI 5-0'\/_' NaN@.™" The obtained fllm was transparent green
University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan with a thickness of 600 nm. Chemical composition was de-
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termined using the ICP method and a CHN organic elemen- () § IMRbCI (NNF67) ()
tary analyzer. Calcd: Na, 10.4; Co, 17.6; Fe, 14,6; C, 18.9; 5 MNaCl (NNEET 05
H, 1.8; N, 22.0%. Found: Na, 11.2; Co, 17.4; Fe, 15.3; C, [ A VRbG (NCESS)

18.5; H, 1.9; N, 20.0%. The XRD pattern of the NNF67 and X IMNaCl - (powder)
NCF88 films can be indexed with the face-centered cubic set-

ting (see Fig. S1). The NNF67 film shows flat surface, while
the NCF88 film consists of small crystals (Fig. S2).

The cation intercalation kinetics was investigated with
a beaker-type three-electrode cell. The working, referen-
tial, and counter electrodes were the PBA film, a standard
Ag/AgQCI electrode, and Pt, respectively. The electrolytes 3
were aqueous solutions of NaCl and RbClI. First, the film AA A n I_C.D 5% % % o
was slowly oxidized under a constant current condition (= 0 1 =
10 pA/cm?) with a cut-off voltage of 1.0 V. In this oxidation VeV (V) VeV (V)
process, NggsNi'[F€'(CN)slos7 — 0.67€ + 0.67Na +
Nag,01Ni" [F€" (CN)g]o.67, the film color changes from trans- Fig. 2: (a) Initial current densityld), (b) relaxation time 1), (c)
parent to yellow. We confirmed that the reduction of the cationcation transfer ratea(), and (d) surface coefficienp) againstVs -
density ) is equal to the reduction charge (Fig. S3). The vari-Vey, whereVs andVey is the self-potential and external voltage, re-
ation of the Fe valence was confirmed by the IR spectroscopgpectively. Straight lines in (a) and (c) are results of the least-squares
(Fig. S4). The intercalation kinetics was monitored by the curditting.
rent density ) against timet( under a constant external volt-
age Vex) ties (AX) are close to the ideal value (0.67 per Nix = 0.80,

0.74, and 0.76 per Ni &t.x = - 1.0, - 0.5, and 0.0 V, respec-
(a) NNF67 1M RbCl (b) NCF88 1M RbCl tively. On the other hand, the gradual decrease lois-well
Vo =-1.0V reproduced by an exponential functioh:= lg - exp(—t/1),
Ve =-0.5V wherelg andt are the initial current density and the relax-
° V= 0.0V ation time, respectively [broken curves in Fig. 1(a)]. Figure 2
shows (a)lo and (b)t againsiVs - Vex, whereVs (= 0.4 V for
NaCl and 0.7 V for RbCI) is the self-potentiallg| linearly
increases with/s - Vey, While theT value slightly decreases
asVs - Vex increases. Crosses in Fig, 2 are the parameters oy
Nag 48Ni[Fe(CN)]o.s75.5H,0 powder (see Fig. S7).

The hight value [Fig. 1(a)] indicates that the cation quickly
diffuses into the inner side of the solid before the subsequent
cation transfer. Actually, the cation diffusion constal) (s
Fig. 1: Current densityl § of (a) NNF67 and (b) NCF88 in an aque- Slgnlflcagtly high in NNF6.7D =0.9x 1(.Tgc'mz/s. for Na~ and
ous solution of 1M RbCI under external voltagéy) against time 0.7x 1C_T cn/s for Rb" (Fig. 58)'_ In this S|tuat|0n,e.,_whe_n .
(t). Broken curves are results of the least-squares fitting with an exthe_ cation transfer from_sol\_/en_t IS sl_ower than the_dlffusmn n
ponential function| = lg-exp(4/1). solid, the intercalation kinetics is limited by the cation transfer

[Fig. 3(a)]. In the opposite casege., when the diffusion is

As prototypical example, we show in Fig. 1(a) the t  slower than the transfer, the kinetics is limited by the cation
curves of the NNF67 film in an aqueous solution of 1M RbCI. diffusion [Fig. 3(b)]. We investigated the kinetics of the Rb
At Vey = - 1.0V, the magnitude dfgradually decreases with  intercalation in the NCF88 film [Fig. 1(b)], whos&is much
and suddenly drops to zerotat 1300 ms. We observed a con- lower than that of the NNF67 film (Fig. S9). Reflecting the
comitant color change from yellow to transparent (Fig. S5).residual surface cation&x is far below the ideal value (= 0.88
The negative current indicates fast intercalation of Rito ~ per Co):Ax=0.02, 0.01, and 0.02 per Co\ = - 1.0, - 0.5,
the film, 0.67¢ + 0.67Rb" + Nayo:Ni'"[F€" (CN)s]os7 —  and 0.0V, respectively.
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Rbp 67Nag o1Ni" [F€' (CN)s]os7. A similar fast intercalation Finally, let us phenomenologically analyze the intercalation
is observed in an aqueous solution of 1M NaClkuddenly  kinetics with including the blocking effect by residual cations:
drops to zero at = 1500 ms aWex = - 1.0 V (Fig. S6). The = a(1—ng)

discontinuous drop of { is ascribed to completion of the
cation intercalation. Actually, the intercalated cation densi-wherea, n, andp are the cation transfer rate, average cation
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(a) transfer-limited

(b) diffusion-limited
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Fig. 3: Schematic illustrations of cation intercalation: (a) transfer-
limited and (b) diffusion-limited cases.

9
density in solid, and residual coefficient, respectively. Note
thatn anda is normalized by number of the nanospaces of 10
PBA, i.e, two spaces per Ni. We assume thais indepen-
dent of time, because the cation capacity (=|@®l/cn?) of
the film is too low to seriously alter the electrolyte concen-
tration around the interfacenp is the density of the resid- 14
ual cation at the surface, which blocks the subsequent cation
transfer from the solvent. We know th@tis infinite att =
0 and gradually decreases witin a diffusion equation with
semi-infinite boundary condition. Nevertheless, we tfeas
a material parameter to obtain a perspective view for the catiot?
diffusion effect on the intercalation kinetics. The cation inter-18
calation stops at = 1/, because all the cation channels close.
The equation a8 = 1 describes the higb-limit, because the
cation density at the surface is the same as the average (= 20
The parametergy andf, are determined bip andt through
the relation:

13

16

21
I(t) On=a-exp(—apt).

In Fig. 2(c) and (d), we plotted andp agains¥s - Vex. Sig-
nificantly, B in NNF67 is~ 1 irrespective of the concentration 23
and kind of the cation in soluvent. We note tRdbr the pow-
der sample is= 1 even thoughu is much lower than those in - ¢
NNF67. These observations indicate that the fast cation inter-
calation is ascribed to the high-value of nickel hexacyano- 26
ferrates. On the other harfél(~ 50) in NCF88 is much higher
than unity, indicating that the cation intercalation is limited by
the slow cation diffusion. o8

In conclusion, we reported an ultrafast cation intercalation
in a thin film of nickel hexacyanoferrate. We ascribed the fast
intercalation to the fast cation diffusion in solid. We proposed
a simple model to evaluate the residual cation effect, Whlcl'éo
is easily applicable to the other intercalation phenomers,
LiT/Na" intercalation in aprotic solution (see Fig. S10).
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