ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Journal Name

COMMUNICATION

Influence of redox non-innocent phenylenediamido ligands on chromium imido hydrogen-atom abstraction reactivity

Received ooth January 2012, Accepted ooth January 2012

Cite this: DOI: 10.1039/x0xx00000x

Wen Zhou,^{*a*} Brian O. Patrick^{*b*} and Kevin M. Smith^{**a*}

DOI: 10.1039/x0xx00000x

www.rsc.org/

Paramagnetic CpCr[(RN)₂C₆H₄] compounds (R = SiMe₃, CH₂CMe₃ and Ph) were treated with R'N₃ azides to generate chromium imido complexes, CpCr[(RN)₂C₆H₄](NR'), with R' = adamantyl, aryl or SO₂Ar. The H-atom abstraction reactivity of the imido complexes differed as the R and R' substituents were varied.

Redox-active ancillary ligands have been used to suppress unwanted single-electron reactivity in first-row transition metal catalysts.¹ However, metal-mediated radical processes often result in useful and complementary reactivity modes compared to the two-electron pathways typically observed for heavier transition metal catalysts.² The hydrogen atom abstraction and N-group transfer reactivity of first-row metal imido complexes has been attributed to the electronic structure of high spin M(NR') species generated by treatment of well-defined metal complexes with organic azides (N_3R') .³

In a new strategy for using non-innocent ligands in catalyst design,⁴ van der Vlugt and co-workers recently reported how redox-active ancillary ligands can facilitate generation of reactive palladium-bound nitrene radicals.⁵ We have pursued a similar approach, using phenylenediamido complexes that can be oxidized to form ligand-based radicals.⁶ As shown in Fig. 1, reaction of CpCr[(RN)₂C₆H₄] intermediates with azides can potentially produce either Cr^V d¹ imido complexes, or Cr^{III} species with radical ancillary and reactive ligands.⁷

Fig. 1 Two possible electronic structures of $CpCr[(RN)_2C_6H_4](NR')$ intermediates.

 moment of 3.49 μ_B for CpCr[(Me₃SiN)₂C₆H₄] (Evans, C₆D₆), was consistent with either a Cr^{III} d³ complex with a dianionic phenylenediamido ligand, or with antiferromagnetic coupling between Cr^{II} d⁴ and a monoanionic diiminosemiquinonate ligand radical.⁶ The N-neopentyl (**2**) and N-phenyl (**3**) derivatives were also generated by analogous routes.¹⁰

RSCPublishing

When **1** was recrystallized in the presence of THF, the THF adduct $CpCr[(Me_3SiN)_2C_6H_4](THF)$ (**1a**) was isolated (Figure 2). Coordination of THF to **1** appeared to be reversible as judged by UV-vis spectroscopy. Reversible THF binding was previously observed for $Cp*Cr(CH_2SiMe_3)_2$.¹¹

Monoanionic, bidentate ligand-based radicals (LX•) can be generated by coordination of neutral ligands $(L_2)^{12}$ such as diimines to $CrCl_2$.¹³ Our previously reported synthesis of CpCr(LX•)(Cl) compounds from sequential treatment of $CrCl_2$ with diimine or pyridine-imine L_2 ligands followed by NaCp relied on this electron transfer reaction from Cr^{II} to the ligand π^* orbital.¹⁴ The reactions shown in Scheme 1 employed a complementary strategy, where the ligand-based radical was generated by single-electron oxidation of a bidentate, dianionic (X_2) ligand coordinated to a Cr^{III} centre. Treatment of **1–3** with

 $PbCl_2$ gave the corresponding $CpCr[(RN)_2C_6H_4](Cl)$ complexes (R = SiMe₃ (4), CH₂CMe₃ (5), or Ph (6)).¹⁵

The chloride complexes 4-6 were all hexanes soluble, forming very dark green solutions with two or more strong absorbance bands ($\epsilon \ge 1500 \text{ M}^{-1} \text{ cm}^{-1}$) at wavelengths longer than 500 nm. The magnetic moments of 2.73 μ_B , 2.62 μ_B , and 2.53 $\mu_{\rm B}$ for complexes 4, 5, and 6, respectively (Evans, C₆D₆) indicated a ground spin state of S = 1, consistent with either a dianionic phenylenediamide (X_2) ligand coordinated to $Cr^{IV} d^2$, or a monoanionic radical antiferromagnetically coupled to a $Cr^{III}\;d^3$ centre. The molecular structures of ${\bf 5}$ (Figure 2) and ${\bf 6}$ (ESI)¹⁰ both displayed the regular three-legged piano stool geometries commonly observed for CpCr^{III} complexes.¹⁶ While twinning problems rendered the detailed structural parameters of 6 unreliable, the N-C and C-C bond lengths of 5 were consistent with those observed by Heyduk for the monoanionic radical $(Me_3CCH_2N)_2C_6H_4$ ligand.⁶ Complexes **4–6** are therefore best considered as CpCr(LX•)(Cl) Cr^{III} complexes with oxidized radical ligands.

Fig. 3 Molecular structures (50% probability ellipsoids) of adamantyl imido complexes 7a (left) and 8 (right).

Whether the CpCr[(RN)₂C₆H₄] intermediates were isolated $(R = SiMe_3 1)$ or generated in situ $(R = Me_3CCH_2 2)$ both species reacted with alkyl and aryl azides to form chromium imido compounds.17 Two $CpCr[(Me_3SiN)_2C_6H_4](NR')$ complexes (R' = Ad 7a, Mes 7b) were isolated as X-ray quality crystals (7a is shown in Figure 3). Based on their solution magnetic moments of 2.09 to 1.69 μ_B , their short Cr–N imido bonds (1.632(4) to 1.676(1) Å) and phenylenediamide bond lengths, complexes **7ab** both appeared to be $Cr^{V} d^{1}$ complexes bound to non-radical ligands. The electronic structure of $CpCr[(Me_3CCH_2N)_2C_6H_4](NAd)$ (8) (Figure 3) was more difficult to assign based on the observed structural parameters, as described in the ESI.¹⁰ The unexpectedly diamagnetic product resulting from treatment of 2 with N3Mes was determined be the bis(imido) complex to $Cr[(Me_3CCH_2N)_2C_6H_4](NMes)_2$ (9), as shown in Scheme 1. Related π -loaded¹⁸ CpCr(NR)₂(X) complexes have previously been shown to be unstable with respect to net loss of a cyclopentadienyl radical.¹⁹ Based on the ancillary ligand N–C and C–C bond lengths, the S = 0 ground spin state was tentatively attributed to an LX• radical antiferromagnetically coupled to a Cr^V d¹ centre. However, Brown has recently demonstrated that similar structural distortions are observed when related dianionic catecholate and amidophenoxide ligands act as π -donors to d⁰ metal centres,²⁰ and so the alternative of X₂ bound to Cr^{VI} cannot be ruled out.

Highly reactive M(NSO₂Ar) intermediates are widely used in catalytic applications for organic synthesis.²¹ While these reactive species are often prepared using isolated or in situ generated PhI=NSO₂Ar reagents, the corresponding N_3SO_2Ar azides have also been employed.²² Reaction of complexes **1** or 2 with N_3Ts resulted in new products 10 and 11 with significantly different colours and UV-vis spectra than those of the Cr^{V} imido compounds 7 and 8 (Scheme 2). The molecular structure of 11 is shown in Figure 4. Based on the Cr-NTs bond length (2.013(4) Å), the Cr–N–S bond angle $(135.2(3)^{\circ})$, and the solution magnetic moment (2.49 $\mu_{\rm B}$), **11** appeared to be the S = 1 complex CpCr[(Me₃CCH₂N)₂C₆H₄](NHTs) 11, the product resulting from addition of a hydrogen atom to the expected Cr=NTs intermediate. The solvent is a likely H-atom source in this process, although this has not yet been verified. Crystals of **10** that were also examined crystallographically were found to be extensively disordered, but the Cr-NHTs portion of the molecule appeared similar to **11**, indicating that the Me₃Si-substituted complex 10 also underwent a H-atom abstraction reaction.

Fig. 4 Molecular structures (50% probability ellipsoids) of 11 (left) and 12 (right).

Journal Name

Zhang and co-workers have used trisyl azide [NTrisyl = NSO₂(2,4,6-ⁱPr₃C₆H₂)] as a substrate for cobalt-catalyzed radical H-atom abstraction and cyclization.²³ When 1 was reacted with N₃Trisyl, the overall colour change to dark green was similar to that observed with N3Ts but was qualitatively much more rapid, consistent with the expected rate increase for an intramolecular H-atom abstraction process (Scheme 2). However, crystals isolated from the reaction of 1 with N₃Trisyl showed that the product $CpCr[(Me_3SiN)_2C_6H_4](NHTrisyl)$ (12) had not undergone cyclization to form the desired benzosultam (Figure 4). The structural parameters and magnetic moment of 12 are again consistent with a Cr^{III} amido complex with a monoanionic diiminosemiquinonate radical ligand. Despite the qualitatively faster reaction, the isopropyl substituents of the trisyl amido ligand in 12 remain intact. It is possible that for the reaction of **1** with N₃Trisyl, H-atom abstraction from the ⁱPr methine carbon was followed by a bimolecular H-atom transfer to generate the structurally characterized product and a second organochromium complex with a H₂C=C(Me)-substituted ligand that did not crystallize with 12.

contrast, the stoichiometric In reaction of $CpCr[(PhN)_2C_6H_4]$ (3) with $N_3Trisyl$ in C_6D_6 at ambient temperature overnight gave the ¹H NMR spectrum of the expected benzosultam product. The organic product was obtained in > 80% isolated yield after chromatography by treating N₃Trisyl with 20 mol% of 3 after 6 days at room temperature, or 65 h at 70 °C. Investigation of the steric and electronic factors responsible for the successful intramolecular C-H amination of N₃Trisyl with phenyl-substituted 3 as catalyst while 1 fails to cyclize will be the subject of upcoming computational studies.

Conclusions

The solid state molecular structures and hydrogen-atom abstraction reactivity of $CpCr[(RN)_2C_6H_4](NR')$ imido complexes were found to depend on both the R substituents on the phenylenediamido nitrogen donor atoms as well as the imido R' group. Improving the C–H functionalization catalysis observed for **3** with N₃Trisyl will require further mechanistic, computational and spectroscopic investigation in order to understand how modifying the redox-active ancillary ligand controls the electronic structure of the Cr(NR') group.

We thank the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation for supporting this research.

Notes and references

^{*a*} Department of Chemistry, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC, Canada. E-mail: kevin.m.smith@ubc.ca; Tel: +1 250 807 9933.

^b Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.

Electronic Supplementary Information (ESI) available: Experimental and crystallographic details and CIF files of 1a, 5, 6, 7a, 7b, 8, 9, 11 and 12 (CCDC 1001249, 1001254-1001257, 1001260-1001263). See DOI: 10.1039/c000000x/

- 1 P. J. Chirik and K. Wieghardt, Science, 2010, 327, 794.
- R. Poli, Angew. Chem. Int. Ed., 2006, 45, 5058; K. C. MacLeod, B.
 O. Patrick and K. M. Smith, Inorg. Chem., 2012, 51, 688; W. Zhou,
 K. C. MacLeod, B. O. Patrick and K. M. Smith, Organometallics,

2012, **31**, 7324; C. K. Prier, D. A. Rankic and D. W. C. MacMillan, *Chem. Rev.*, 2013, **113**, 5322; J. M. Hoover, B. L. Ryland and S. S. Stahl, *J. Am. Chem. Soc.*, 2013, **135**, 2357; D. A. Everson and D. J. Weix, *J. Org. Chem.*, 2014, **79**, 4793.

- C. T. Saouma and J. C. Peters, *Coord. Chem. Rev.*, 2011, 255, 920;
 R. E. Cowley, N. A. Eckert, S. Vaddadi, T. M. Figg, T. R. Cundari and P. L Holland, *J. Am. Chem. Soc.*, 2011, 133, 9796;
 R. T. Gephart, III and T. H. Warren, *Organometallics*, 2012, 31, 7728;
 A. I. Olivos Suarez, V. Lyaskovskyy, J. N. H. Reek, J. I. van der Vlugt and B. de Bruin, *Angew. Chem. Int. Ed.*, 2013, 52, 12510;
 E. T. Hennessy, R. Y. Liu, D. A. Iovan, R. A. Duncan and T. A. Betley, *Chem. Sci.*, 2014, 5, 1526.
- 4 V. Lyaskovskyy and B. de Bruin, ACS Catal. 2012, 2, 270; A. R. Luca and R. H. Crabtree, Chem. Soc. Rev., 2013, 42, 1440; R. F. Munhá, R. A. Zarkesh and A. F. Heyduk, Dalton Trans., 2013, 42, 3751.
- 5 D. L. J. Broere, B. de Bruin, J. N. H. Reek, M. Lutz, S. Dechert and J. van der Vlugt, *J. Am. Chem. Soc.*, in press (doi:10.1021/ja502164f).
- 6 N. A. Ketterer, H. Fan, K. J. Blackmore, X. Yang, J. W. Ziller, M.-H. Baik and A. F. Heyduk, *J. Am. Chem. Soc.* 2008, **130**, 4364.
- 7 C. C. Lu, S. DeBeer George, T. Weyhermüller, E. Bill, E. Bothe and K. Wieghardt, *Angew. Chem. Int. Ed.*, 2008, 47, 6384.
- 8 G. E. Greco, A. I. Popa and R. R. Schrock, *Organometallics*, 1998, 17, 5591.
- 9 J. M. Boncella, S.-Y. S. Wang, D. D. VanderLende, R. L. Huff, K. A. Abboud and W. M. Vaughn, J. Organomet. Chem. 1997, 530, 59.
- 10 See Electronic Supplementary Information (ESI) for details.
- R. A. Heintz, S. Leelasubcharoen, L. M. Liable-Sands, A. L. Rheingold and K. H. Theopold, *Organometallics*, 1998, **17**, 5477.
- 12 M. L. H. Green, J. Organomet. Chem., 1995, 500, 127.
- 13 K. A. Kreisel, G. P. A. Yap and K. H. Theopold, *Inorg. Chem.*, 2008, 47, 5293.
- 14 W. Zhou, L. Chiang, B. O. Patrick, T. Storr and K. M. Smith, *Dalton Trans.*, 2012, **41**, 7920.
- 15 G. A. Luinstra and J. H. Teuben, J. Chem. Soc., Chem. Commun., 1990, 1470.
- 16 R. Poli, Chem. Rev., 1996, 96, 2135.
- 17 W.-H. Leung, Eur. J. Inorg. Chem., 2003, 583.
- 18 S. R. Huber, T. C. Baldwin and D. E. Wigley, *Organometallics*, 1993, **12**, 91.
- N. Meijboom, C. J. Schaverien and A. G. Orpen, *Organometallics* 1990, 9, 774; K. C. Chew, W. Clegg, M. P. Coles, M. R. J. Elsegood, V. C. Gibson, A. J. P. White and D. J. Williams, *J. Chem. Soc.*, *Dalton Trans.*, 1999, 2633.
- 20 S. N. Brown., Inorg. Chem., 2012, 51, 1251.
- J. L. Roizen, M. E. Harvey and J. Du Bois, Acc. Chem. Res., 2012, 45, 911; G. Dequirez, V. Pons and P. Dauban Angew. Chem. Int. Ed., 2012, 51, 7384.
- 22 E. R. King and T. A. Betley, Inorg. Chem. 2009, 48, 2361.
- J. V. Ruppel, R. M. Kamble and X. P. Zhang, *Org. Lett.*, 2007, 9, 4889; H. Lu and X. P. Zhang, *Chem. Soc. Rev.*, 2011, 40, 1899; A. I. Olivos Suarez, H. Jiang, X. P. Zhang and B. de Bruin, *Dalton Trans.*, 2011, 40, 5697; V. Lyaskovskyy, A. I. Olivos Suarez, H. Lu, H. Jiang, X. P. Zhang and B. de Bruin, *J. Am. Chem. Soc.*, 2011, 133, 12264.