ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ChemComm

Journal Name

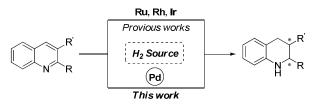
COMMUNICATION

RSCPublishing

Palladium-Catalyzed Asymmetric Hydrogenation of 3-Phthalimido Substituted Quinolines

Cite this: DOI: 10.1039/x0xx00000x

Xian-Feng Cai, Wen-Xue Huang, Zhang-Pei Chen and Yong-Gui Zhou*


Received 00th Jun 2014, Accepted 00th Jun 2014

DOI: 10.1039/x0xx00000x

www.rsc.org/

Homogeneous Pd-catalyzed asymmetric hydrogenation of 3phthalimido substituted quinolines was successfully developed, providing a facile access to chiral substituted tetrahydroquinolines bearing two contiguous stereogenic centers with up to 90% ee.

Palladium complexes have been extensively employed as catalysts for a wide range of reactions, especially for carbon-carbon and carbon-heteroatom coupling reactions.1 In addition, heterogeneous palladium catalysts (e.g., Pd/C) have been used extensively in the hydrogenation of unsaturated double bonds. The interest towards homogeneous palladium catalyzed asymmetric hydrogenation was generated in 2001, when the first example of Pd-catalyzed homogeneous hydrogenation of imino esters was reported by Amii and co-workers by using a $Pd(OCOCF_3)_2$ -Binap complex.² Over the past two decades, Pd has gradually become a new and popular metal used in homogeneous asymmetric hydrogenation, and much progress has been successfully achieved in the catalytic asymmetric reduction of imines, enamines, olefins, ketones and heteroarenes,³⁻⁷ as well as asymmetric hydrogenolysis of hydroxyl groups.⁸ However. compared to the traditional Ru, Rh and Ir catalysts, the substrate scope of the Pd-catalyzed asymmetric hydrogenation was still limited and needed to be further extended.

Scheme 1. Metal-Catalyzed Asymmetric Hydrogenation of Quinolines

Optically pure tetrahydroquinolines exist as key structural elements in many natural alkaloids which display a wide range of physiological activities. In addition, they are useful building blocks for asymmetric synthesis in pharmaceutical and agrochemical industries and for the total synthesis of natural products.⁹ Due to simplicity and atom efficiency, asymmetric reduction of quinolines represents a significant approach to get

these compounds. In 2003, our group reported the first example of highly enantioselective hydrogenation of quinolines with combined chiral catalyst system, which consists of [Ir(cod)Cl]₂ with bisphosphine ligand and I₂, since then, numerous catalytic systems involve various chiral transition-metal catalysts and organocatalysts have been developed for this transformation.¹⁰⁻¹² It is well known that the success of transition metal-catalyzed asymmetric hydrogenation owes much to the proper combination of a metal and a ligand. Nevertheless, compared with the wide range of chiral ligands,¹³ the choice of the metal for the asymmetric hydrogenation of quinolines was limited within the platinum group metals Ru, Rh and Ir. Herein, we report the first homogeneous palladium-catalyzed asymmetric hydrogenation of substituted quinolines, affording the chiral substituted

tetrahydroquinolines bearing two continguous stereogenic

centers in high yields and stereoselectivities (Scheme 1).

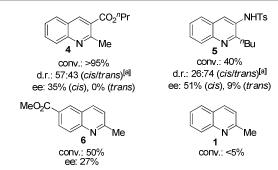
Initially, 2-methylquinoline (1) was selected as model The original hydrogenation experiment was substrate. conducted in trifluoroethanol with (Pd(OCOCF₃)₂/(S,S,Rax)-C₃*-TunePhos and L-CSA as catalyst and activator¹⁴ (1000 psi hydrogen gas, 60 °C, 18 h). Unfortunately, no reaction was observed. Very recently, we have reported the asymmetric reduction of aromatic quinolin-3-amines¹⁵ and 3-phthalimido substituted quinoline (2a) has been studied.^{15a} We envisioned that **2a** could be hydrogenated by the palladium catalyst due to the electron-withdrawing group at the C3 position, which could activate the substrates through decreasing the electron density of the aromatic ring. Thus, 2a was then tested. To our delight, the reaction could proceed, though the conversion and stereoselectivity were low (52% conversion, 45% ee and 4:1 d.r.; entry 1, Table 1). So, the next step is how to improve the activity and stereoselectivity.

The first survey of different additives showed that better results were found when TFA was used in terms of both conversion and diasteroselectivity (85% conversion and 8:1 d.r.;

entry 5, Table 1). Then, the effect of the reaction medium were screened (entries 6-8, Table 1), the results indicated that the reaction could not proceed in toluene or THF (entrie 6 and 7, Table 1), and obvious improvement of enantioselectivity was realized when CH_2Cl_2 was employed (78% ee; entry 8, Table 1). From the survey of different ligands (entries 9-11, Table 1), the best enantio- and diastereoselectivity was obtained with 93% conversion when the electron-rich bisphosphine ligand L4 was used (90% ee and >20:1 d.r.; entry 11, Table 1). By elevating the temperture to 70 °C, we were glad to find that the reaction could proceeded well with >95% conversion (entry 12, Table 1). Thus, the optimized conditions were established as follows: Pd(OCOCF₃)₂/L4, TFA (60 mol%), H₂ (1000 psi), CH₂Cl₂, 70 °C.

NPhth N ⁿ Bu		F	Pd(OCOCF ₃) ₂ , L Additive, Solvent H ₂ (1000 psi), 60 °C		NPhth NPhth				
	2a				3a				
Ent	Additive	L	Solvent	Conv. (%)	$\operatorname{Ee}_{(\%)^b}$	D.r.			
<u>ry</u>	L-CSA	L1	TFE	52	45	4:1			
2	TsOH·H ₂ O	L1	TFE	53	45	4:1			
3	D-CSA	L1	TFE	33 45	40	4:1			
4	PhCO ₂ H	L1	TFE	43 9	40	1:1			
5	TFA	L1	TFE	85	47	8:1			
6	TFA	L1	PhMe	83 <5	4/	0.1			
0 7	TFA			<5 <5					
		L1	THF	-					
8	TFA	L1	CH_2Cl_2	>95	78	14:1			
9	TFA	L2	CH_2Cl_2	>95	80	>20:1			
10	TFA	L3	CH_2Cl_2	72	78^d	15:1			
11	TFA	L4	CH_2Cl_2	93	90^d	>20:1			
12^{c}	TFA	L4	CH_2Cl_2	>95	90^d	>20:1			
PPh ₂ PPh ₂									
(S.S.F	L1 Rax)-C ₃ *-TunePhos		L2 lynPhos	L3 (S)-Binap		3,4-Methyl xyphenyl			
^a Reaction conditions: 2a (0.05 mmol) $Pd(OCOCF_3)_2$ (5.0 mol%)									

^{*a*} Reaction conditions: **2a** (0.05 mmol), Pd(OCOCF₃)₂ (5.0 mol%) and **L** (6.0 mol%), additive (60 mol%), solvent (2 mL), H₂ (1000 psi), 60 °C, 18 h. Reaction conversion and d.r. were determined by ¹H NMR spectroscopy. ^{*b*} Determined by HPLC using a chiral stationary phase. ^{*c*} 70 °C. ^{*d*} The opposite enantiomer was obtained. L-CSA: L-Camphorsulfonic acid. TsOH·H₂O: *p*-Toluenesulfonic acid monohydrate. D-CSA: D-Camphorsulfonic acid. TFA: Trifluoroacetic acid. TFE: 2,2,2-Trifluroroethanol.


In order to probe the generality of the catalytic system, a series of 3-phthalimido substituted quinolines were subjected to hydrogenation under the optimized conditions, and the results were summarized in Table 2. A variety of substrates bearing an alkyl group at the 2-position were hydrogenated smoothly with high yields and 79-90% ee, regardless of the length of the side chain (entries 1-10, Table 2). Notably, there appears to be a trend toward increased enantiocontrol as the relative length of the alkyl increases when the alkyl group were linear carbon chains with less than four carbon atoms (R = Me, 81% ee; R = Et, 85% ee; R = "Pr, 87% ee; R = "Bu, 90% ee; entries 1-4, Table 2). The phenyl substituted substrate **2k** could be transformed smoothly under standard conditions with low enantioselectivity (14% ee; entry 11, Table 2). The C=C double bond in the side chain of substrate **2l** and **2m** could also be

hydrogenated and high enantioselectivity was observed (90% and 88% ee; entries 12 and 13, Table 2).

Table 2. Catalytic Asymmetric Hydrogenation of Quinolines 2^a

R ¹	2 N	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	R^1 N H R^2 R^2 R^2 R^2		
Entry	2	R^1 / R^2	T (°C)	Yield $(\%)^b$	Ee $(\%)^c$
1	2a	H / ⁿ Bu	70	91 (3a)	90 $(S,S)^{e}$
2	2b	H / Me	70	86 (3b)	81 (-)
3	2c	H / Et	80	93 (3c)	85 (-)
4	2d	H / "Pr	80	97 (3d)	87 (-)
5	2e	H / ^c Pr	80	72 (3e)	80 (-)
6	2f	H / ⁱ Bu	80	94 (3f)	90 (-)
7	2g	H / ⁱ Pentyl	80	91 (3g)	90 (-)
8	2h	H / ⁿ Hexyl	70	86 (3h)	90 (-)
9	2i	H / Phenethyl	80	95 (3i)	90 (-)
10	2j	$F / {}^{n}Bu$	80	97 (3j)	79 (-)
11	2k	H / Ph	70	83 (3k)	14 (-)
12	21	$\mathrm{H} / (E)$ -Styryl ^d	80	99 (3i)	90 (-)
13	2m	H / (E)-4- Fluorostyryl ^d	80	86 (3m)	88 (-)

^{*a*} Reaction conditions: **2** (0.10 mmol), Pd(OCOCF₃)₂ (5.0 mol%) and **L4** (6.0 mol%), TFA (60 mol%), CH₂Cl₂ (4 mL), H₂ (1000 psi), 18 h. The d.r. of the products wad determined by ¹H NMR spectroscopy. In all cases the d.r. >20:1. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC using a chiral stationary phase. ^{*d*} The conjugated double bond was also hydrogenated. ^{*e*} The absolute configuration of **3a** was determined to be *cis*-(*S*,*S*) by comparison of the ¹H NMR, HPLC and optical rotation with our earlier reported data. ^{15a}

Scheme 2. Palladium-Catalyzed Asymmetric Hydrogenation of Other Substituted Quinolines. ^{*a*} The Relative Configura-tions were Determined by Comparison of the ¹H NMR with Our Previous Reported Data. ^{15a,16}

This methodology can also be applied in the asymmetric hydrogenation of several other substituted quinolines (Scheme 2). 3-Carbalkoxy substituted substrate 4 could be hydrogenated smoothly with poor diastereoselectivity and moderate enantioselectivity. The reduction of 3-p-toluenesulfonamido substituted quinoline 5 gave the corresponding product with 40% conversion and low distereoselectivity. It is noteworthy that the substrate 6 with a carbalkoxy group at the C6 position could also be transformed, moderate 50% conversion and 27% ee was obtained. Unfortunately, this catalyst system still has no catalytic activity on simple 2-methylquinoline 1.

Conclusions

Journal Name

ChemComm

In conclusion, we have described the first example of homogeneous palladium-catalyzed asymmetric hydrogenation of substituted quinolines, providing a facile access to chiral substituted 1,2,3,4-tetrahydroquinolines bearing two contiguous stereogenic centers with up to 90% ee. This reaction broadens the application scope of palladium catalysts in asymmetric hydrogenation. Our ongoing experiments are focused on homogeneous palladium-catalyzed asymmetric hydrogenation of other aromatics.

This work was financially supported by National Natural Science Foundation of China (21125208 & 21032003) and National Basic Research Program of China (2010CB833300).

Notes and references

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

E-mail: <u>ygzhou@dicp.ac.cn</u>; Homepage: <u>http://www.lac.dicp.ac.cn/</u>

† Electronic Supplementary Information (ESI) available: Experimental details. See DOI:10.1039/c000000x/

- (a) A. J. Canty, Higher Oxidation State Organopalladium and Platinum Chemistry, Springer, Berlin, 2000; (b) J. Tsuji, Palladium Reagents and Catalysts: New Perspectives for the 21st Century, John Wiley and Sons, Chichester, West Sussex, England, 2004; (c) J. Tsuji, Palladium in Organic Synthesis, Springer, Berlin, 2005.
- (a) H. Abe, H. Amii and K. Uneyama, *Org. Lett.* 2001, **3**, 313; (b) A. Suzuki, M. Mae, H. Amii and K. Uneyama, *J. Org. Chem.* 2004, **69**, 5132.
- For reviews, see: Q.-A. Chen, Z.-S. Ye, Y. Duan and Y.-G. Zhou, Chem. Soc. Rev. 2013, 42, 497.
- Pd-catalyzed asymmetric hydrogenation of imines and enamines, see: Ref. [2]; see also: (b) Q. Yang, G. Shang, W. Gao, J. Deng and X. Zhang, Angew. Chem. Int. Ed. 2006, 45, 3832; (c) Y.-Q. Wang, S.-M. Lu and Y.-G. Zhou, J. Org. Chem. 2007, 72, 3729; (d) Y.-Q. Wang, C.-B. Yu, D.-W. Wang, X.-B. Wang and Y.-G. Zhou, Org. Lett. 2008, 10, 2071; (e) C.-B. Yu, D.-W. Wang and Y.-G. Zhou, J. Org. Chem. 2009, 74, 5633; (i) M.-W. Chen, Y. Duan, Q.-A. Chen, D.-S. Wang, C.-B. Yu and Y.-G. Zhou, Org. Lett. 2010, 12, 5075; (j) X.-Y. Zhou, M. Bao and Y.-G. Zhou, Adv. Synth. Catal. 2011, 353, 84; (n) C.-B. Yu, K. Gao, D.-S. Wang, L. Shi and Y.-G. Zhou, Chem. Commun. 2011, 47, 5052; (p) N. S. Goulioukina, I. A. Shergold, G. N. Bondarenko, M. M. Ilyin, V. A. Davankov and I. P. Beletskaya, Adv. Synth. Catal. 2012, 354, 2727;
- Pd-catalyzed asymmetric hydrogenation of olefins, see: (a) D. Drago and P. S. Pregosin, *Organometallics* 2002, 21, 1208; (b) A. Arnanz, C. González-Arellano, A. Juan, G. Villaverde, A. Corma, M. Iglesias and F. Sánchez, *Chem. Commun.* 2010, 46, 3001; (c) M. Boronat, A. Corma, C. González-Arellano, M. Iglesias and F. Sánchez, *Organometallics* 2010, 29, 134.
- Pd-catalyzed asymmetric hydrogenation of ketones, see: (a) N. S. Goulioukina, G. N. Bondarenko, A. V. Bogdanov, K. N. Gavrilov and I. P. Beletskaya, *Eur. J. Org. Chem.* 2009, 510; (b) J. Chen, D. Liu, N. Butt, C. Li, D. Fan, Y. Liu and W. Zhang, *Angew. Chem. Int. Ed.* 2013, **52**, 11632.
- Pd-catalyzed asymmetric hydrogenation of heteroarenes, see: (a) D.-S. Wang, Q.-A. Chen, W. Li, C.-B. Yu, Y.-G. Zhou and X. Zhang, J.

Am. Chem. Soc. 2010, 132, 8909; (b) Y. Duan, M.-W. Chen, Z.-S.
Ye, D.-S. Wang, Q.-A. Chen and Y.-G. Zhou, Chem. Eur. J. 2011, 17, 7193; (c) D.-S. Wang, J. Tang, Y.-G. Zhou, M.-W. Chen, C.-B.
Yu, Y. Duan and G.-F. Jiang, Chem. Sci. 2011, 2, 803; (d) D.-S.
Wang, Z.-S. Ye, Q.-A. Chen, Y.-G. Zhou, C.-B. Yu, H.-J. Fan and Y. Duan, J. Am. Chem. Soc. 2011, 133, 8866; (e) Y. Duan, M.-W.
Chen, Q.-A. Chen, C.-B. Yu and Y.-G. Zhou, Org. Biomol. Chem. 2012, 10, 1235. (f) Y. Duan, L. Li, M.-W. Chen, C.-B. Yu, H.-J. Fan and Y.-G. Zhou, J. Am. Chem. Soc. 2014, DOI: 10.1021/ja502020b.

- 8. C.-B. Yu and Y.-G. Zhou, Angew. Chem. Int. Ed. 2013, 52, 13365.
- (a) J. G. Keay, Comprehensive Organic Synthesis, Pergamon, Oxford, 1991;
 (b) D. H. Barton, K. Nakanishi and O. Meth-Cohn, Comprehensive Natural Products Chemistry, Elsevier, Oxford, 1999.
- For reviews, see: (a) Y.-G. Zhou, Acc. Chem. Res. 2007, 40, 1357; (b)
 D.-S. Wang, Q.-A. Chen, S.-M. Lu and Y.-G. Zhou, Chem. Rev. 2012, 112, 2557; (c) F. Glorius, Org. Biomol. Chem. 2005, 3, 4171; (d) S.-M. Lu, X.-W. Han and Y.-G. Zhou, Chin. J. Org. Chem. 2005, 25, 634.
- For selected examples of catalytic asymmetric hydrogenation of quinolines, see: (a) W.-B. Wang, S.-M. Lu, P.-Y. Yang, X.-W. Han and Y.-G. Zhou, *J. Am. Chem. Soc.* 2003, **125**, 10536; (b) M. Rueping, A. P. Antonchick and T. Theissmann, *Angew. Chem. Int. Ed.* 2006, **45**, 3683; (g) Q.-S. Guo, D.-M. Du and J. Xu, *Angew. Chem. Int. Ed.* 2008, **47**, 759; (j) H. Zhou, Z. Li, Z. Wang, T. Wang, L. Xu, Y. He, Q.-H. Fan, J. Pan, L. Gu and A. S. C. Chan, *Angew. Chem. Int. Ed.* 2008, **47**, 8464; (n) C. Wang, C. Li, X. Wu, A. Pettman and J. Xiao, *Angew. Chem. Int. Ed.* 2009, **48**, 6524; (o) M. Rueping and T. Theissmann, *Chem. Sci.* 2010, **1**, 473; (s) T. Wang, L. Zhuo, Z. Li, F. Chen, Z. Ding, Y. He, Q.-H. Fan, J. Xiang, Z.-X. Yu and A. S. C. Chan, *J. Am. Chem. Soc.* 2011, **133**, 9878; (t) X.-F. Tu and L.-Z. Gong, *Angew. Chem. Int. Ed.* 2012, **51**, 11346.
- 12. For selected examples of catalytic asymmetric hydrogenation of other aromatics, see Ref (7a,d,f); see also: (a) R. Kuwano, K. Sato, T. Kurokawa, D. Karube and Y. Ito, J. Am. Chem. Soc. 2000, 122, 7614; (b) F. Glorius, N. Spielkamp, S. Holle, R. Goddard and C. W. Lehmann, Angew. Chem. Int. Ed. 2004, 43, 2850; (c) C. Y. Legault and A. B. Charette, J. Am. Chem. Soc. 2005, 127, 8966; (d) S.-M. Lu, Y.-Q. Wang, X.-W. Han and Y.-G. Zhou, Angew. Chem. Int. Ed. 2006, 45, 2260; (e) S. Kaiser, S. P. Smidt and A. Pfaltz, Angew. Chem. Int. Ed. 2006, 45, 5194; (f) M. Rueping and A. P. Antonchick, Angew. Chem. Int. Ed. 2007, 46, 4562; (g) R. Kuwano, M. Kashiwabara, M. Ohsumi and H. Kusano, J. Am. Chem. Soc. 2008, 130, 808; (h) W. Tang, L. Xu, Q.-H. Fan, J. Wang, B. Fan, Z. Zhou, K.-H. Lam and A. S. C. Chan, Angew. Chem. Int. Ed. 2009, 48, 9135; (i) S. Urban, N. Ortega and F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 3803; (j) Q.-A. Chen, D.-S. Wang, Y.-G. Zhou, Y. Duan, H.-J. Fan, Y. Yang and Z. Zhang, J. Am. Chem. Soc. 2011, 133, 6126; (k) R. Kuwano, N. Kameyama and R. Ikeda, J. Am. Chem. Soc. 2011, 133, 7312; (1) N. Ortega, S. Urban, B. Beiring and F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 1710; (m) R. Kuwano, R. Morioka, M. Kashiwabara and N. Kameyama, Angew. Chem. Int. Ed. 2012, 51, 4136; (n) L. Shi, Z.-S. Ye, L.-L. Cao, R.-N. Guo, Y. Hu and Y.-G. Zhou, Angew. Chem. Int. Ed. 2012, 51, 8286; (o) Z.-S. Ye, M.-W. Chen, Q.-A. Chen, L. Shi, Y. Duan and Y.-G. Zhou, Angew. Chem. Int. Ed. 2012, 51, 10181; (p) S. Urban, B. Beiring, N. Ortega, D. Paul and F. Glorius, J. Am. Chem. Soc. 2012, 134, 15241; (q) A.

Iimuro, K. Yamaji, S. Kandula, T. Nagano, Y. Kita and K. Mashima, *Angew. Chem. Int. Ed.* 2013, **52**, 2046; (r) Z.-S. Ye, R.-N. Guo, X.-F.
Cai, M.-W. Chen, L. Shi and Y.-G. Zhou, *Angew. Chem. Int. Ed.* 2013, **52**, 3685; (s) T. Wang, F. Chen, J. Qin, Y.-M. He and Q.-H.
Fan, *Angew. Chem. Int. Ed.* 2013, **52**, 7172; (t) N. Ortega, D.-T. D.
Tang, S. Urban, D. Zhao, F. Glorius, *Angew. Chem. Int. Ed.* 2013, **52**, 9500; (u) J. Wysocki, N. Ortega and F. Glorius, *Angew. Chem. Int. Ed.* 2014, DOI: 10.1002/anie.201310985.

- For reviews, see: Ref. [10]; see also: (a) W. Tang and X. Zhang, *Chem. Rev.* 2003, **103**, 3029; (b) A. J. Minnaard, B. L. Feringa, L. Lefort and J. G. de Vries, *Acc. Chem. Res.* 2007, **40**, 1267.
- For review of Brønsted acid activation strategy in transition-metal catalyzed asymmetric hydrogenation, see: Z. Yu, W. Jin and Q. Jiang, *Angew. Chem. Int. Ed.* 2012, **51**, 6060. For selected examples, see: Ref (7a,b,f,8,11n); see also: (a) G. Hou, F. Gosselin, W. Li, J. C. McWilliams, Y. Sun, M. Weisel, P. D. O'Shea, C. Chen, I. W. Davies and X. Zhang, *J. Am. Chem. Soc.* 2009, **131**, 9882; (b) G. Hou, R. Tao, Y. Sun, X. Zhang and F. Gosselin, *J. Am. Chem. Soc.* 2010, **132**, 2124.
- (a) X.-F. Cai, R.-N. Guo, M.-W. Chen, L. Shi and Y.-G. Zhou, *Chem. Eur. J.* 2014, **20**, 7245; (b) X.-F. Cai, R.-N. Guo, G.-S. Feng, B. Wu and Y.-G. Zhou, *Org. Lett.* 2014, **16**, 2680.
- Z.-P. Chen, Z.-S. Ye, M.-W. Chen and Y.-G. Zhou, *Synthesis* 2013, 45, 3239.