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Gallium(I) carbenoid derived from redox-active diimine 1,2-
bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) in 
complexes with molybdenum may serve either as neutral 
[(dpp-bian)Ga:] or anionic [(dpp-bian)Ga:]– two-electron 10 

donor depending on electronic state of the transition metal. 

First anionic 1,3,2-imidazagalol (structure A, Scheme 1), namely 
[{(tBuNCH)2}Ga]–, has been reported by Schmidbaur and co-
workers in 1999.1 During the following decade, the chemistry of 
the related anion [(DAB)Ga:]– [DAB = (2,6-iPr2C6H3NCH)2] was 15 

intensively studied by Jones and co-workers.2 They succeeded in 
preparing complexes of [(DAB)Ga:]– for most of the metals of 
the Periodic Table,3 thus proving the versatility of [(DAB)Ga:]– 
as Ga-donor ligand. Anionic 1,3,2-imidazagalols are isoelectronic 
with neutral N-heterocyclic germylenes (structure C, Scheme 1).4 20 

The latter compounds are the heavier analogues of Arduengo’s 
carbenes, which now represent one of the most useful class of 
ligands. While the existence of radical species like D (Scheme 1) 
is proven,5 neutral radicals of type B were neither observed as 
coordinated ligands nor as free species. Interestingly, radical 25 

R2Ga• (R = (2,6-iPr2C6H3NCH)2B) has been recently reported.6 
 

 
 
Scheme 1 N-Heterocyclic gallium and germanium carbenoids. 30 

 
 Here we report for the first time the generation (in situ) of a 
heterocyclic radical [(dpp-bian)Ga:] (dpp-bian = 1,2-bis[(2,6-
diisopropylphenyl)imino]acenaphthene), which is rather stable 
when coordinated to a transition metal, e.g. molybdenum. On the 35 

other hand, we show here that, if required, electrons can be 
transferred from the transition metal centre to this radical, thus 
providing the formation of a gallen-anion. The interplay between 
[(dpp-bian)Ga:] and [(dpp-bian)Ga:]– is needed to ensure the 
stability of the 18 electron configuration at the transition metal.  40 

 The reaction between (dpp-bian)Ga–Ga(dpp-bian) (1) and an 
excess of Mo(CO)6 proceeds in tetrahydrofurane (THF) at 100 C 
(sealed glass ampoule). Within 15 hours, the reaction mixture 
turns from deep blue to green. The removal of the excess 
carbonyl reagent by sublimation and crystallisation of the product 45 

from benzene gives green crystals of (dpp-bian)Ga–Mo(CO)5 (2) 
in 95 % yield (Scheme 2). A lack of signals in the 1H NMR 
spectrum of compound 2 suggests its paramagnetic character. 
Indeed, EPR spectroscopy proves the presence of an unpaired 
electron in complex 2. The interaction between compound 1 and 50 

[CpMo(CO)3]2 also proceeds in THF, but under less drastic 
conditions (80 C, 1 h) compared to compound 2. The 
diamagnetic product (dpp-bian)Ga–Mo(CO)3Cp (3) was obtained 
in form of dark brown crystals (93 %) from 1,2-dimethoxyethane 
(Scheme 2). Reduction of compound 1 with two equivalents of 55 

sodium in THF resulted (in situ) in (dpp-bian)Ga–Na(THF)4,
7 

which reacts with Mo(CO)6 in THF at 25 C within 1 h to give 
green carbonylate [{(dpp-bian)Ga–Mo(CO)5}{Na(THF)2}]2 (4) 
(97 %) (Scheme 2). 
 60 

 
 
Scheme 2 Syntheses of the compounds 2, 3, and 4.  
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 Compounds 2-4 are thermally quite robust: decomposition of 
crystalline samples takes place above 200 C. The EPR signal of 
a solution of compound 2 (Figure 1) reveals a hyper-fine splitting 
(hfs) due to coupling of the unpaired electron with two pairs of 
protons, two equivalent 14N nuclei and the two magnetic gallium 5 

isotopes, 69Ga (60.11 %) and 71Ga (39.89 %).8 The EPR spectrum 
unequivocally indicates the presence of the heterocyclic radical 
[(dpp-bian)Ga:] in complex 2. This radical acts as a two-electron 
neutral -donor towards molybdenum, thus, providing the 18 
electron configuration of the transition metal centre together with 10 

the five CO ligands. At that stage, we cannot conclude whether 
the back donation from molybdenum to unoccupied pz orbital of 
gallium takes place. Alternatively, this orbital might be populated 
with lone pairs of the nitrogen atoms. Note, that in THF 
compound 2 exhibits thermochromism (green and red at ambient 15 

and low temperature, correspondingly). It seems to be reasonable 
to suggest that this phenomenon reflects the coordination of the 
solvent donor molecule to the empty gallium p orbital because 
not color alteration has been observed in non-coordinating 
solvent like toluene. 20 

 

 
 
Figure 1 EPR spectrum of compound 2: (a) experimental spectrum (toluene, 293 K); 
(b) simulated spectrum (gi = 2.0022; hfs constants: ai(2×14N) = 0.317, ai(2×1H) = 25 

0.116, ai(2×1H) = 0.114, ai(
69Ga) = 1.542, ai(

71Ga) = 1.958 mT). 
 
 Compounds 3 and 4 are diamagnetic: their 1H NMR spectra 
reveal the expected signals for the dpp-bian ligands.† Thus, in 
complex 3 the isopropyl groups in dpp-bian give rise to two 30 

doublets ( 1.34 and 1.15 ppm), and one septet ( 3.83 ppm). The 
cyclopentadienyl protons in 3 result in a singlet at  4.40 ppm. 
 The molecular structures of compounds 2, 3, and 4 were 
determined by single crystal X-ray diffraction,§ and are depicted 
in Figures 2, 3, and 4 respectively. Compound 2 and 4 represent 35 

octahedral Mo(0) d6 complexes. Although the Mo–CO bonds in 
compound 2 lie within a narrow range (1.999(3)-2.042(2) Å), it is 
worth to mention, that the CO ligand trans-positioned to gallium 
exhibits the shortest bond to molybdenum. One might assume a 
weak back donation from the transition metal to the gallium in 40 

compound 2. In complex 4 the Mo–CO bonds (2.004(1)-2.060(2) 
Å) are very similar to those in compound 2. Compound 3 has a 
“four-leg piano stool geometry” and can be viewed as a 
molybdenum gallyl with a Ga–Mo covalent bond. The electron 
count for compound 3 indicates a 18 electron Mo(II) d4 complex. 45 

As in compounds 2 and 3, the Mo–CO bonds lengths in complex 
3 are close to each other (1.977(3)-2.004(4) Å).  

 The Ga–Mo bonds in complexes 2, 3, and 4 are very much 
alike (2: 2.5352(3); 3: 2.5608(4); 4: 2.5678(3) Å) and can be 
compared with those bonds in (Cp*Ga)6Mo (2.3844(6)-50 

2.4930(7)Å),9 (Cp*Ga)3Mo(CO)3 (2.5188(8)-2.5228(8) Å),9 
(Cp*Ga)2Mo(CO)4 (2.537(1) and 2.554(1) Å)11 and 
CpMo(CO)2[(GaL)2(OH)] (L = [N(2,6-iPr2C6H3)]2CN(C6H11)2) 
(2.5728(9) and 2.5896(9) Å).12 

 55 

 
 
Figure 2 Molecular structure of compound 2. Thermal ellipsoids are drawn at 50 % 
probability. Selected bond lengths (Å) and angles ():Ga–N(1) 1.979(1), Ga–N(2) 
1.979(1), Ga–Mo 2.5352(3), Mo–C(20) 2.042(2), Mo–C(20a) 2.042(2), Mo–C(21) 60 

1.999(3), Mo–C(22) 2.032(2), Mo–C(22a) 2.032(2), N(1)–C(1) 1.333(2), N(2)–C(2) 
1.333(2), C(1)–C(2) 1.426(3), N(2)–Ga–N(1) 83.50(7). 

 

 
 65 

Figure 3 Molecular structure of compound 3. Thermal ellipsoids are drawn at 50 % 
probability. Selected bond lengths (Å) and angles (): Ga–N(1) 1.877(2), Ga–N(2) 
1.884(3), Ga–Mo 2.5608(4), Mo–C(42) 1.977(3), Mo–C(43) 1.986(3), Mo–C(44) 
2.004(4), Mo–C(37) 2.355(4), Mo–C(38) 2.358(4), Mo–C(39) 2.338(4), Mo–C(40) 
2.323(4), Mo–C(41) 2.348(4), N(1)–C(1) 1.385(4), N(2)–C(2) 1.387(4), C(1)–C(2) 70 

1.385(4), N(2)–Ga–N(1) 89.97(11). 
 

 
  

Figure 4 Molecular structure of compound 4. Thermal ellipsoids are drawn at 50 % 75 

probability. Carbon atoms of THF molecules are omitted for clarity. Selected bond 
lengths (Å) and angles ():Ga–N(1) 1.903(1), Ga–N(2) 1.917(1), Ga–Mo 2.5678(3), 
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Mo–C(1) 2.021(2), Mo–C(2) 2.055(1), Mo–C(3) 2.060(2), Mo–C(4) 2.013(1), Mo–
C(5) 2.004(1), N(1)–C(6) 1.390(2), N(2)–C(7) 1.383(2), C(6)–C(7) 1.364(2), Na′–
C(33) 2.843(2), N(2)–Ga–N(1) 87.13(5). 

Noteworthy, an attempted synthesis of the analogue of compound 
3 by reacting CpMo(CO)3Cl with [K(tmeda)]+[(DAB)Ga:]– (DAB 5 

= (2,6-iPr2C6H3NCH)2) failed.13  
 The most significant difference between molecule 2 and 
molecules 3 and 4 is related to the geometries of the gallium 
heterocycles. Every reduction state of dpp-bian has its own 
structural “fingerprint”. While evolving from the neutral, to the 10 

radical-anionic, and further to the dianionic state of dpp-bian, the 
C(1)–N(1) and C(2)–N(2) bonds become longer, and the middle 
C(1)–C(2) bond becomes shorter.14 In complex 2 these key bonds 
(N(1)–C(1) 1.333(2), N(2)–C(2) 1.333(2), C(1)–C(2) 1.426(3) Å) 
point out to the radical-anionic character of the dpp-bian ligand. 15 

Note, few other gallium species that consist of radical-anionic 
ligands have been reported.15 However, all of them represent 
Ga(III) derivatives. In comparison to complex 2, the C–N bonds 
within the metalacycles in compound 3 and 4 are about 0.05 Å 
longer, indicating the presence of a dpp-bian dianion in these 20 

complexes. Further, as anticipated, the Ga–N bonds in 
compounds 3 and 4 are notably shorter than those in compound 2.  
 In conclusion, in the present work we invented a new redox-
active ligand – heterocyclic gallium carbenoid. Since it is 
sensitive to the electronic configuration of the coordination centre 25 

and may behave adaptively, we believe that this ligand can be 
used to tune the reactivity of transition metal complexes. One of 
the phenomena that could be observed in the metal complexes of 
this ligand is redox-isomerism. In the case of compound 2, its 
redox-isomers may have the following electronic distribution: 30 

[(dpp-bian)1–Ga–Mo0(CO)5] and [(dpp-bian)2–Ga–Mo+1(CO)5]. 
Indeed, the former isomer is reported in this paper. In order to 
detect the second one, temperature dependent spectroscopic and 
magnetic measurements are required. To get more insight in the 
electronic structure of the complexes reported, and especially to 35 

find out whether back donation takes place, theoretical and 
experimental studies are required. We also plan to synthesize and 
characterize complexes of heterocyclic gallium carbenoids 
derived from dpp-bian with metals of the s, p and f blocks of the 
Periodic Table.      40 
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