ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Thermo-regulated Phase Separable Catalysis (TPSC)-Based Atom Transfer Radical Polymerization in Thermo-Regulated Ionic Liquid †

Xiangyang Du, Jinlong Pan, Mengting Chen, Lifen Zhang, Zhenping Cheng* and Xiulin Zhu*

Received (in XXX, XXX) Xth XXXXXXXX 201X, Accepted Xth XXXXXXXX 201X 5 First published on the web Xth XXXXXXXX 201X DOI: 10.1039/b000000x

A thermo-regulated phase separable catalysis (TPSC) system for AGET ATRP based on a thermo-regulated ionic liquid was developed for the first time. The corresponding transition metal 10 catalysts could be easily recovered and reused for several times with negligible loss of catalytic activity.

AGET ATRP (activators generated by electron transfer for atom transfer radical polymerization) has gained much more attention since it was developed by Matyjaszewski's group in ¹⁵ 2005.¹ It is also one of the reversible-deactivation radical polymerization (RDRP) methods, through which not only well-defined polymers² with pre-designed molecular weight and narrow molecular weight distribution but also various functional polymers with complex architectures such as block

- ²⁰ copolymers,³ star block copolymers,⁴ etc. can be conveniently prepared. Utilizing oxidative stable catalyst precursors and reducing agents, AGET ATRP has all benefits of normal ATRP plus the benefits of more facile preparation, more convenient catalyst storage and so on. Generally, AGET
- ²⁵ ATRP is carried out under heterogeneous conditions; to the contrast, homogeneous catalyst is of higher catalytic activity, but it's difficult to separate from the resultant polymers and therefore colors/pollutes the products. This further limits application of ATRP in an industrial scale.
- ³⁰ To deal with this problem, a variety of techniques have been developed, such as solid-liquid biphasic catalysis systems (solid phase ATRP,⁵ solid-supported catalysts by physical adsorption⁶ and by covalent bonding,⁷ soluble/recoverable supported catalysts,^{7a,8} immobilized/soluble hybrid⁹ system
 ³⁵ and reversible supported catalysts¹⁰) and liquid-liquid biphasic systems (fluorocarbon-organic¹¹ solvents, water-

organic¹² solvents, thermo-regulated phase transfer catalysis biphasic system¹³ and ionic liquid-organic solvents¹⁴). These techniques are mainly used in normal ATRP, which is 40 sensitive to oxygen and the post-polymerization should be carried out under N₂ protection. Moreover some of these techniques were just used to separate catalysts, and still some of the others displayed either poor control over polymerization, low initiator efficiency or unsatisfying ⁴⁵ recovery.

As one of the three "green solvents", ionic liquids (ILs) have attracted increasing attentions in organic synthesis and polymer science owing to their unique properties such as negligible volatility, excellent thermal stability, high design-

- ⁵⁰ ability and good solubility to inorganic/organic substances. However, in most cases, the polymerization systems involving ionic liquids are either mono-phase allowing for fast polymerization or bi-phase facilitating separation of catalysts from products during the whole polymerization process.
- ⁵⁵ Therefore, to seek new catalyst systems that might combine the advantages of both homogeneous and heterogeneous catalysis will have a significant impact.

In organic synthesis, based on the critical solution temperature (CST) of nonionic phosphine ligand, a novel catalytic system a termed thermo regulated phase separable actalysis (TDSC)

⁶⁰ termed thermo-regulated phase separable catalysis (TPSC) was proposed by Jin's group¹⁵ and applied in the hydroformylation of cyclohexene. After that, this novel catalytic system has been successfully used in various organic reactions (e.g., selective hydrogenation, ¹⁶ hydroformylation, ¹⁷
 ⁶⁵ hydroaminomethylation, ¹⁸ Heck reaction, ¹⁹ Knoevenagel

condensation,²⁰ and Stetter reaction²¹), which allows for an efficient homogeneous catalytic reaction, easy biphasic separation and catalyst recycle.

To solve the catalyst residue problems in ATRP and expect to 70 reuse the catalyst in next turn, we investigated the possibility of applying TPSC catalytic system based on a thermoregulated ionic liquid to an AGET ATRP (TPSC-based AGET ATRP) system for the first time. Herein, a Cu (II)-mediated polymerization of styrene was used to establish the concept of 75 TPSC in AGET ATRP based on a thermo-regulated ionic liquid, $[CH_3(OCH_2CH_2)_n N^+Et_3][CH_3SO_3^-]$ (MPEG₇₅₀NIL, n = 16). The general principle of TPSC-based AGET ATRP of styrene was illustrated in Scheme 1. In the polymerization, catalysts are soluble in MPEG750NIL, which is immiscible so with the mixed solvent of toluene and n-heptane at room temperature, while at reaction temperature (T>CST), the mixture homogenizes and the polymerization proceeds under homogeneous conditions. The system separates into a biphasic system composed of ionic liquid phase containing catalyst 85 complex and organic phase containing polymers upon cooling to room temperature after polymerization. By simple

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China *Corresponding authors. E-mail: <u>chengzhenping@suda.edu.cn</u>, Fax: 86-512-65882787; <u>xlzhu@suda.edu.cn</u>, Fax: 86-512-65112796 † Electronic Supplementary Information (ESI) available: Experimentalsection giving materials, instrumentation, and typical recipe details. See DOI: 10.1039/b000000x/

decanting, the bottom ionic liquid phase containing catalyst complex can be recovered and reused easily. Therefore, the highlights of TPSC ATRP mainly relied on: (1) it allows highly efficient homogeneous polymerization at reaction 5 temperature and easily remove catalyst from the resultant polymers by changing temperature without complex post-

- treatment and recycle the catalyst by simple decantation; (2) the catalyst could be reused for several times without the evident loss of catalytic activity; (3) it successfully combines ¹⁰ the advantages of both homogeneous and heterogeneous
- catalysis and apply to AGET ATRP in the presence of a limited amount of air, which simplifies the operation procedure of ATRP significantly.

Recycling

15 Scheme 1. General principle of thermo-regulated phase separable catalysis (TPSC) based AGET ATRP

Firstly, the ionic liquid, MPEG₇₅₀NIL was synthesized according to the literature^{17a}, the synthetic route is shown in Scheme S1 (ESI). Then, the effect of the components of ACNT ATROP

- ²⁰ AGET ATRP such as the type of catalysts (e.g., FeCl₃·6H₂O, $CuCl_2 \cdot 2H_2O),$ CuBr₂ and ligands (PPh₃, tris(3,6-2,2'-dipyridyl dioxaheptyl)amine (TDA-1), (bpy), pentamethyldiethylene triamine (PMDETA), tris(2pyridylmethyl)amine (TPMA)) and reducing agents (ascorbic
- $_{25}$ acid (AsAc), sodium ascorbate (AsAc-Na), glucose, phenol, Sn(EH)₂ and triethyl amine) on TPSC ATRP was investigated. The results are shown in Table S1 and Table S2 (ESI). Considering the good controllability and the higher initiator efficiency of the polymerization, CuCl₂·2H₂O, TPMA and
- ³⁰ glucose were chosen as the catalyst, ligand and reducing agent, respersively. Besides, the effects of different amount of catalysts, ligands and reducing agents as well as the designed polymerization degree on polymerization were investigated and the results are in Table S3 and Table S4 (ESI),
- ³⁵ respectively. All the results indicated that the polymerization were affected mainly by the ligand but slightly by the amount of the reducing agent and the catalyst. The more the ligand used, the faster of the polymerization but the broader of the molecular weight distribution became slightly.
- ⁴⁰ In order to further investigate the polymerization behaviour, polymerization kinetics of TPSC-based AGET ATRP of styrene in the ionic liquid was studied in the presence of a limited amount of air, using ethyl 2-bromoisobutyrate (EB*i*B) as the initiator, CuCl₂·2H₂O as the catalyst, TPMA as the
- ⁴⁵ ligand and glucose as the reducing agent, and the results are shown in Figure 1. Figure 1 (a) showed a linear relationship between $ln([M]_0/[M])$ and the polymerization time, which

demonstrates the polymerization was a first order reaction with the respect to the monomer conversion, and the number 50 of active radicals remained constant during the polymerization. An induction period of 4 h exited in the early stage of the polymerization. This suggests that it needed a certain time to generate Cu(I) species and establish a dynamic equilibrium between the catalyst CuCl/TPMA and the catalyst precursor 55 CuCl₂/TPMA species in the process of the polymerization. Figure 1 (b) describes the molecular weight and molecular weight distribution as functions of the monomer conversion. The molecular weight of the polymers increased linearly with the conversion and the molecular weight distribution remained 60 narrow $(M_w/M_n < 1.30)$ during the polymerization; besides the molecular weights $(M_{n,GPC}s)$ of the polymers determined by GPC were close to the corresponding theoretical ones $(M_{n,th}s)$, indicating a well-controlled manner.

Figure 1. $\ln([M]_0/[M])$ as a function of time (a) and number-average molecular weight $(M_{n,GPC})$ and molecular weight distribution (M_w/M_n) versus conversion (b) for TPSC-based AGET ATRP of styrene in the presence of a limited amount of air at 100 °C. Polymerization conditions: $[St]_0/[EBiB]_0/[CuCl_2 \cdot 2H_2O]_0/[TPMA]_0/[Glucose]_0 = 400/1/1/1.5/2, V_{St} = 2.0 \text{ mL}, V_{heptane} = 1.0 \text{ mL}, V_{toluene} = 1.0 \text{ mL}, MPEG_{750}\text{NIL} = 0.5 \text{ g}, [O_2]_0 = 7.9 \times 10^{-3} \text{ mol/L}.$

The chain-end of the PS prepared by TPSC-based AGET 75 ATRP with EBiB as the initiator in ionic liquid was analyzed by MALDI-TOF MS as shown in Figure 2, in which there was one main series of peaks whose interval was regular, ca. 104.06, the molar mass of St, and the observed experimental isotopic mass distribution values in main peak series of 80 MALDI-TOF spectrum (with the subtraction of m/z value of sliver cation (Ag⁺, 106.91)) are in good agreement with the (1)

theoretical values in eq 1:

 $M_{\text{theory}} = 104.06 \text{ n} + M (C_6 H_{11} O_2) + M (Ag^+)$

The lower intensity of peak series can be assigned to a reaction product with water due to the moisture in the air and 5 the solvent.²³

Figure 2. MALDI-TOF MS spectrum of polystyrene ($M_{n,GPC} = 7000$ g/mol, $M_w/M_n = 1.12$) obtained from TPSC-based AGET ATRP.

- In addition, chain extension of the obtained polystyrene was to carried out with fresh styrene under AGET ATRP in bulk. Here, the obtained polystyrene ($M_{n,GPC} = 7000 \text{ g/mol}, M_w/M_n = 1.12$) was used as the macro-initiator in chain-extension experiment. Figure S2 (ESI) shows that the molecular weight of the resultant polymer ($M_{n,GPC} = 57200 \text{ g/mol}, M_w/M_n = 1.17$)
- ¹⁵ increased obviously in comparison with the macro-initiator, which further confirmed the "living" features of TPSC-based AGET ATRP of styrene in the ionic liquid.

Figure 3. Photographs of TPSC-based AGET ATRP of styrene in ²⁰ ionic liquid: (a) before polymerization at room temperature; (b) during polymerization at 100 °C; and (c) after polymerization and cooled down to room temperature.

The general principle of TPSC-based AGET ATRP of styrene was illustrated in Scheme 1 and the photographs of phase ²⁵ transformation process were shown in Figure 3. Before polymerization, the system formed two phases, the lower phase is the ionic liquid, MPEG₇₅₀NIL, containing the catalyst; the upper phase is the monomer solution. At reaction

- temperature (100 °C), the system became homogenous and ³⁰ transparent solution. After polymerization, two phases formed
- gradually when cooled down. The lower phase was the ionic liquid, MPEG₇₅₀NIL, containing the catalyst; the upper phase was the polymer solution. The light yellow of the polymer solution was caused by a small amount of the ionic liquid
- 35 residue. At the beginning, the catalyst was reused for the

polymerization without adding extra ligand, TPMA. Unfortunately, the polymerization rate decreased obviously, although the molecular weight distribution remained narrow. This may due to somewhat loss of ligand during the recovery 40 of the catalyst. To further confirm the assumption, the partition coefficient of TPMA between ionic liquid and the mixture of toluene and heptane was measured by Ultraviolet and visible spectroscopy (UV-*Vis*). The results indicated that the concentration of TPMA in the mixture of toluene and 45 heptane decreased slightly after adding CuCl₂·2H₂O. The partition coefficient of TPMA between the mixture solvent of toluene and *n*-heptane and MPEG₇₅₀NIL are 3.82 and 1.74 without and with adding CuCl₂·2H₂O, respectively. Because of good solubility of TPMA in organic phase, extra amount of the ligand should be added to make up for the loss of TPMA

⁵⁰ ligand should be added to make up for the loss of TPMA when employing the recycled catalyst.

To investigate catalyst recycle performance of the TPSCbased AGET ATRP, the recycling experiments were conducted in the presence of a limited amount of air using 55 ionic liquid phase containing catalyst complex directly and the results are shown in Figure 4. It can be seen that the copper concentraion decreased in MPEG₇₅₀NIL after several recovery polymerization slightly. For example, even if after sixth recycles, the copper content remained 96.0% of the original 60 catalyst amount. The loss of the copper was mainly caused by the wrap of the polymer solution due to its higher viscosity. At the same time, the conversion changed slightly and all the polymerizations were under control $(M_w/M_n \le 1.41)$, indicating high recycle efficiency of the catalyst. The catalyst could be 65 recovered and used 5 additional times with the polymerization under control. In addition, besides styrene, we also extend this novel TPSC-based AGET ATRP system to the monomers of n-butyl acrylate, methyl acrylate and methyl methacrylate. It was found that 99.5% (Figure S3, ESI), 97.5% (Figure S4,

⁷⁰ ESI) and 99.6% (Figure S5, ESI) of copper catalyst were remained after the first cycle for the cases of n-butyl acrylate, methyl acrylate and methyl methacrylate, respectively, indicating good monomer universality of this polymerization system.

65

100

calculated by the partition coefficient of TPMA between the mixture solvent of toluene and *n*-heptane and MPEG₇₅₀NIL which was measured by UV-*vis* was added additionally. Polymerization condition: t = 14 h, $[O_2]_0 = 7.9 \times 10^{-3} mol/L$.

- ⁵ In summary, a novel TPSC-based AGET ATRP system was successfully constructed in thermo-regulated ionic liquid in the presence of a limited amount of air, using styrene as the model monomer, CuCl₂, TPMA, EB*i*B and glucose as the catalyst, ligand, initiator and reducing agent and respectively.
- ¹⁰ This novel catalysis strategy allows not only highly efficient homogeneous polymerization but also easy catalyst recovery and reuse by simply decanting because of the phase separation when the temperature goes down. The catalyst could be reused for 5 times with negligible loss of catalytic activity. The
- ¹⁵ polymerizations proceeded in a well-controlled manner as evidenced by polymerization kinetics and chain-extension experiment.

The financial support from the National Natural Science Foundation of China (Nos. 21174096, 21274100 and

²⁰ 21234005), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103201110005), the Project of International Cooperation of the Ministry of Science and Technology of China (No.2011DFA50530).

References

- ²⁵ 1. (a) W. Jakubowski and K. Matyjaszewski, *Macromolecules*, 2005, **38**, 4139; (b) K. Min, H. Gao and K. Matyjaszewski, *J. Am. Chem. Soc.*, 2005, **127**, 3825.
- (a) W. W. He, L. F. Zhang, J. Miao, Z. P. Cheng and X. L. Zhu, Macromol. Rapid Commun., 2012, 33, 1067; (b) J. K. Oh, K. Min
- and K. Matyjaszewski, *Macromolecules*, 2006, **39**, 3161; (c) F. Xu,
 K. Neoh and E. Kang, *Prog. Polym. Sci.*, 2009, **34**, 719; (d) T. Guo,
 L. F. Zhang, H. J. Jiang, Z. B. Zhang, J. Zhu, Z. P. Cheng and X. L.
 Zhu, *Polym. Chem.*, 2011, **2**, 2385; (e) L. J. Bai, L. F. Zhang, Z. B.
 Zhang, J. Zhu, N. C. Zhou, Z. P. Cheng and X. L. Zhu, *J. Polym.*
- Sci., Part A: Polym. Chem., 2011, 49, 3970; (f) L. J. Bai, L. F. Zhang, Z. P. Cheng and X. L. Zhu, Polym. Chem., 2012, 3, 2685; (g) Y. Ping, C. D. Liu, G. P. Tang, J. S. Li, J. Li, W. T. Yang and F. J. Xu, Adv. Funct. Mater., 2010, 20, 3106; (h) W. W. He, L. Cheng, L. F. Zhang, Z. Liu, Z. P. Cheng and X. L. Zhu, ACS Appl. Mater.
- 40 Interfaces, 2013, 5, 9663; (i) J. Miao, W. W. He, L. F. Zhang, Y. Wang, Z. P. Cheng and X. L. Zhu, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 2194; (j) H. J. Jiang, L. F. Zhang, J. L. Pan, X. W. Jiang, Z. P. Cheng and X. L. Zhu, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 224; (k) J. Miao, H. J. Jiang, L. F. Zhang, Z. Q.,
- Wu, Z. P. Cheng and X. L. Zhu, *RSC Advances*, 2012, 2, 840; (1) J.
 L. Liu, W. W. He, L. F. Zhang, Z. B. Zhang, J. Zhu, L. Yuan, H.
 Chen, Z. P. Cheng and X. L. Zhu, *Langmuir*, 2011, 27, 12684; (m)
 T. Zhao, L. F. Zhang, Z. B. Zhang, N. C. Zhou, Z. P. Cheng and X.
 L. Zhu, *J. Polym. Sci.*, *Part A: Polym. Chem.*, 2011, 49, 2315; (n) L.
- J. Bai, L. F. Zhang, Z. B. Zhang, J. Zhu, N. C. Zhou, Z. P. Cheng and X. L. Zhu, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 3980.
- (a) F. Stoffelbach, B. Belardi, J. M. Santos, L. Tessier, K. Matyjaszewski and B. Charleux, *Macromolecules*, 2007, 40, 8813; (b) F. J. Xu, H. Li, J. Li, Z. Zhang, E. T. Kang and K. G. Neoh, *Biomaterials*, 2008, 29, 3023.
- 4. W. Li and K. Matyjaszewski, J. Am. Chem. Soc. 2009, 131, 10378.
 - 5. S. Faucher and S. Zhu, Macromol. Rapid Commun., 2004, 25, 991.
- (a) D. Haddleton and A. Radigue, *Chem. Commun.*, 1999, 99; (b) S. Ding, Y. Xing, M. Radosz and Y. Shen, *Macromolecules*, 2006, **39**, 6399.
- (a) Y. Shen and S. Zhu, *Macromolecules*, 2001, **34**, 8603; (b) Y.Shen,
 S. Zhu, F. Zeng and R. Pelton, *J. Polym. Sci. Part A: Polym. Chem.*,
 2001, **39**, 1051; (c) G. Kickelbick, H. J. Paik and K. Matyjaszewski,
 Macromolecules, 1999, **32**, 2941; (d) S. C. Hong and K.

Matyjaszewski, *Macromolecules*, 2002, **35**, 7592; (e) M. E. Honigfort and W. J. Brittain, *Macromolecules*, 2003, **36**, 3111.

- (a) D. E. Bergbreiter, *Chem. Rev.*, 2002, **102**, 3345; (b) M. E. Honigfort, W. J. Brittain, T. Bosanac and C. S. Wilcox, *Macromolecules*, 2002, **35**, 4849; (c) S. Liou, J. T. Rademacher, D. Malaba, M. E. Pallack and W. J. Brittain, *Macromolecules*, 2000, **33**, 4295.
- (a) S. C. Hong, J.-F. Lutz, Y. Inoue, C. Strissel, O. Nuyken and K. Matyjaszewski, *Macromolecules*, 2003, **36**, 1075; (b) S. C. Hong, H. J. Paik and K. Matyjaszewski, *Macromolecules*, 2001, **34**, 5099.
- 10. J. Yang, S. Ding, M. Radosz and Y. Shen, *Macromolecules*, 2004, **37**, 1728.
- 11. D. M. Haddleton, S. G. Jackson and S. A. Bon, *J. Am. Chem. Soc.*, 2000, **122**, 1542.
- 12. T. Sarbu, T. Pintauer, B. McKenzie and K. Matyjaszewski, J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 3153.
- (a) L. J. Bai, L. F. Zhang, J. L. Pan, J. Zhu, Z. P. Cheng and X. L. Zhu, *Macromolecules*, 2013, **46**, 2060; (b) J. L. Pan, L. F. Zhang, L. J. Bai, Z. B. Zhang, H. Chen, Z. P. Cheng and X. L. Zhu, *Polym. Chem.*, 2013, **4**, 2876.
- ⁸⁵ 14. (a) A. J. Carmichael, D. M. Haddleton, S. A. F. Bon and K. R. Seddon, *Chem. Commun.*, 2000, 1237; (b) T. Biedroń and P. Kubisa, *Macromol. Rapid Commun.*, 2001, **22**, 1237; (c) S. Ding, M. Radosz and Y. Shen, *Macromolecules*, 2005, **38**, 5921.
- Y. Wang, J. Jiang, X. Wu, F. Cheng and Z. Jin, *Catal. Lett.*, 2002,
 79, 55.
 - 16. (a) Y. Xu, Y. Wang, Y. Zeng, Y. Song, J. Zhao, J. Jiang and Z. Jin, *Chin. J. Catal.*, 2012, **33**, 1871; (b) Y. Zeng, Y. Wang, J. Jiang and Z. Jin, *Catal. Commun.*, 2012, **19**, 70.
 - 17. (a) B. Tan, J. Jiang, Y. Wang, L. Wei, D. Chen and Z. Jin, *Appl. Organomet. Chem.*, 2008, **22**, 620; (b) Y. Xu, Y. Wang, Y. Zeng, J. Jiang and Z. Jin, *Catal. Lett.*, 2012, **142**, 914.
 - K. Li, Y. Wang, Y. Xu, W. Li, M. Niu, J. Jiang and Z. Jin, *Catal. Commun.*, 2013, 34, 73.
 - (a) Y. Zeng, Y. Wang, Y. Xu, Y. Song, J. Jiang and Z. Jin, *Catal. Lett.*, 2013, **143**, 200; (b) X. Liu, K. Yao, Y. L. Hu and M. Lu, *J. Chem. Res.*, 2011, **35**, 731.
 - 20. J. Luo, T. Xin and Y. Wang, New J. Chem., 2013, 37, 269.
 - F. L. Yu, R. L. Zhang, C. X. Xie and S. T. Yu, *Tetrahedron*, 2010, 66, 9145.
- 105 22. K. Matyjaszewski, D. A. Shipp, J. L. Wang, T. Grimaud and T. E. Patten, *Macromolecules*, 1998, **31**, 6836.
 - 23. K. Kim, A. Hasneen, H. J. Paik and T. Chang, *Polymer*, 2013, 54, 6133.