This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Modification of Fulleropyrazolines Modulates Their Cleavage by Light

Reida N. Rutte,a Thomas B. Parsons,a and Benjamin G. Davisa*

The extraordinary electrochemistry and the tunability of their energy levels allows the use of fulleropyrazolines in photovoltaics and charge-transfer systems. Here we show that substitution in position 1 tunes photolytic stability; electron-donating groups facilitate 1,3-dipolar cycloreversion to fullerene. This discovery has implications not only for photovoltaic stability but also highlights a potential strategy for photo-controlled fullerene release systems (‘photo-caged’ / ‘photo-activated’ fullerene).

The unique electronic properties of fulleropyrazolines have enabled their use in photovoltaics.1 Their photoactivity arises from the ability of fulleropyrazolines to undergo photonic excitation, charge separation and stabilisation, and then subsequent recombination (Scheme 1).2 The effect of altering the C-3 pyrazoline substituent has been investigated both experimentally1a, 2c and computationally.2d Modification of fulleropyrazolines at C-3 is essential for the energy transfer required in photovoltaic applications.3 Substituents on the N-phenyl group (N-1) showed stronger electronic interaction with the fullerene moiety and were found to be essential for the charge transfer process.4 However, to the best of our knowledge, the stability of fulleropyrazolines towards light has not been previously investigated.

Scheme 1 Fulleroheterocycles can charge separate upon photoirradiation, Substituents have potential to tune reactivity & stability and to deliver cargo.

The fundamental properties of photovoltaic substrates are the excitation energy and the lifetime of charge separated species. The lifetime of these substrates, especially fulleropyrazolines, may be tuned by incorporation of groups that can participate in charge transfer and stabilise or destabilise the radical cation formed upon excitation and charge separation.2e, 5 Intermediates of this type have the potential to disproportionate, as reported recently during the photocleavage of para-dimethylaminophenyl fullerisoaxazoline.6 Yet, it is notable that despite the wide range of cycloaddition-type reactions which have been utilised in functionalization of fullerences, the only reports of photoinduced cycloreversion (de-functionalization) are limited to the [3+2]-isoxazoline systems and the inefficient [2+2] reaction.7 Limitations of these reactions are the uncontrollable equilibrium state of the photocycloaddition-reversion as well as their lack of functionality.

Unlike isoxazolines, pyrazolines possess a second nitrogen atom (N-2) enabling further functionalization. This intriguing substrate class inspired us to combine dual functionalization and photocleavage in modified fulleropyrazolines (Scheme 1) for photoinduced cycloreversion as a technologically useful delivery system for drugs,8 dyes,9 or targeting moieties.10 A representative range of 1,3-disubstituted fulleropyrazolines was prepared from the appropriate aryl hydrazones, which in turn were readily accessed by condensation of the corresponding 4-substituted-benzaldehydes & phenylhydrazines (Table 1).5b Treatment of aryl hydrazones 1-4 with N-bromosuccinimide and triethylamine generated the nitric imine in situa, 11 which in the presence of C60 fullerene gave the [3+2] fulleropyrazoline cycloadducts 6-9 in 15-51% yield. In all cases the pyrazoline was formed at the dipolarophilic 6,6-bond†.12 Hydrazone 5 and fulleropyrazoline 10 were found to be very unstable in solution and could not be synthesised by this approach; instead basic milling13 was used to generate 5 which was then halogenated with (diacetoxyiodo)benzene1d to give 10. The labile amino derivative 11 was accessed by reduction of 7 using tin.14 To introduce a putative carboxylate handle for further, future modification, the benzoic acid derivative 13 was also accessed by photolytic generation of the 1,3-dipole from tetrazole 12.14

We found that the modified fullerenes were soluble in a number...
of solvents. 1,3-Dipolar cycloreversion of fulleropyrazolines would, in principle, release pristine fullerene. Initial investigations into the photocleavage reaction were conducted in degassed toluene with an excess of maleic anhydride. Based on previous reversible cleavage reactions, we initially included this trapping alkene in the reaction mixture to prevent re-addition of the released 1,3-dipole with free C_{60}. Photocleavage reactions were monitored by t.l.c., HPLC, NMR, and mass spectrometry. Where possible, the photocleavage products were isolated and fully characterised († see ESI). Various light sources of different $\lambda_{\text{max}}$ were investigated. Medium-pressure mercury, handheld U.V. ($\lambda = 365$ nm), Rayonet ($\lambda = 350$ nm), filtered medium-pressure mercury ($\lambda = 313$ nm), and commercial halogen lamps all gave cycloreversion products with comparable efficiency (60-75% conversion after 1.5 hours). For ease of practicality all subsequent experiments used the Hg lamp.

Table 1 Synthesis of hydrazones and fulleropyrazolines.

<table>
<thead>
<tr>
<th>Precursor</th>
<th>Fulleropyrazoline</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
</tr>
<tr>
<td><img src="image3.png" alt="Image" /></td>
<td><img src="image4.png" alt="Image" /></td>
</tr>
<tr>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
<tr>
<td><img src="image7.png" alt="Image" /></td>
<td><img src="image8.png" alt="Image" /></td>
</tr>
<tr>
<td><img src="image9.png" alt="Image" /></td>
<td><img src="image10.png" alt="Image" /></td>
</tr>
</tbody>
</table>

Fulleropyrazolines which possessed a para-methoxyphenyl substituents on N-1 (7, 10, 11, and 13) underwent photo-induced cycloreversion to produce C_{60} and C_{60}O whereas those carrying a para-nitro group (6 and 9) were unreactive under the same conditions. We speculated that the strong positive mesomeric effect of the methoxy group stabilises the development of the ensuing radical cation during the transition state of the 1,3-dipolar cycloreversion (Scheme 2). This was confirmed by fulleropyrazoline 8 that bears a less $+M$ para-chloro substituent, which was cleaved but far more slowly than the methoxy analogue. The importance of the substituent at N-1 confirmed a key role of this atomic centre, perhaps through the lone pair of the sp$^2$ nitrogen, in charge transfer processes.  

Table 2 Photocleavage of Fulleropyrazolines

<table>
<thead>
<tr>
<th>R$^1$</th>
<th>R$^2$</th>
<th>Fulleropyrazoline</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_2$</td>
<td>NO$_2$</td>
<td>6</td>
<td>no reaction</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>OMe</td>
<td>7</td>
<td>cleavage</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Cl</td>
<td>8</td>
<td>cleavage</td>
</tr>
<tr>
<td>OMe</td>
<td>NO$_2$</td>
<td>9</td>
<td>no reaction</td>
</tr>
<tr>
<td>OMe</td>
<td>OMe</td>
<td>10</td>
<td>cleavage</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>OMe</td>
<td>11</td>
<td>cleavage</td>
</tr>
<tr>
<td>COOH</td>
<td>OMe</td>
<td>13</td>
<td>cleavage</td>
</tr>
<tr>
<td>CONH$_2$-Gly–OBu$^t$</td>
<td>OMe</td>
<td>15</td>
<td>cleavage</td>
</tr>
</tbody>
</table>

Reagents & conditions: toluene or chloroform [1 mM], 20 eq. maleic anhydride, medium pressure mercury lamp, 4 min-12 h. Notably, photocleavage of fulleropyrazolines gave not just pristine C_{60} but a mixture of mono-oxidised C_{60}O and C_{60}O$_2$ in varying ratios. The proportions of C_{60}O and C_{60}O$_2$ obtained did not show any simple correlation with reaction conditions (solvent, trapping alkene, degassed or anhydrous solvent, irradiation wavelength). Irradiation of pristine C_{60} gave oxidation to C_{60}O as previously reported. Oxidation of C_{60}O occurred only at a 6,6-bond, an observation which is in accordance with previous reports. Surprisingly, the use of non-degassed solvent shortened the reaction time to around one quarter, but only marginally increased the ratio of C_{60}O/C_{60}. These results together suggested that C_{60}O resulted from the in situ generation of singlet oxygen and subsequent reaction with the photo-released C_{60}O and not as a direct result of photo-cleavage.

To test the necessity and role of dipolarophile traps, various other alkenes were investigated as additives in the photocycloreversion of fulleropyrazoline 7 (Table S2). The rate of the photocleavage could be improved in the presence of 3,3-dimethylallylbromide or para-chlorostyrene. Pleasingly the cycloreversion also proceeded efficiently without alkene (Table S2,
Entry 8), thus confirming the utility of this process even in the absence of a trapping partner.

The reaction rate for photocleavage showed clear solvent effects; it was enhanced in more polar solvents such as chloroform and benzonitrile and further enhanced in mixed aqueous/organic solvent systems. This supports suggested formation of a charge-separated diradical species (Scheme 2). Notably in the presence of base (pyridine as solvent, DABCO as additive) the photocleavage does not occur, presumably because the putative pyrazoline radical cation is quenched under these conditions.20

In this mechanism, under photoradiation fulleropyrazolines form a charge separated diradical species.2c, 3, 5b, 6, 21 The positive charge that is formed can be stabilised particularly effectively by the N-1 methoxy group, which promotes bond cleavage to release free C60.

Finally to test utility in future applications, the reaction was tested in various mixed aqueous solvent systems (see ESI); pleasingly, it proceeded efficiently in all and with rates enhanced by the presence of water. This could vitally enable the use of fulleropyrazolines under conditions suitable for biologically-relevant photostimulated substrates when e.g. used in putative drug-delivery systems or for ‘1,3-dipole delivery’ to olefin-containing biomolecules. The proof-of-principle for such a system was demonstrated by the construction of the amino-acid-carrying fulleropyrazoline 15 and subsequent successful ‘photo-release’ under aqueous conditions (see ESI).

In conclusion we have shown that the reactivity of fulleropyrazolines may be tuned to enable highly efficient photocleavage. The reaction proceeds efficiently in various solvent systems and without the need for additional trapping agents to remove 1,3-dipolar species generated in situ. An electron donating substituent on N-1 of the pyrazoline is sufficient to enable the reaction to proceed; various substituents are tolerated at C-3. This synthetic flexibility and the aqueous compatibility could enable the use of C60 fullerenes as carriers for prodrugs or other photocontrolled elements.

Notes and references

We thank the EU FP7/2007-2013 (REA grant n° 290023) for funding and Dr S. van Berkel for tetrazole 12.


