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Sparse sampling offers dramatic increase in power and 
efficiency of magnetic resonance techniques in, chemistry, 
molecular structural biology, and other fields. Here we show 
that use of the causality property of an NMR signal is a 
general approach for major reduction of measuring time and 
quality improvement of the sparsely detected spectra. 

The invention of multidimensional magnetic resonance (MR) 
experiments 40 years ago led to success of the modern MRI and 
NMR spectroscopy in medicine, chemistry, molecular structural 
biology, and other fields. The approach, however, has an important 
weakness: the detailed site-specific information and ultimate 
resolution obtained in two and higher dimensional experiments are 
contingent on the lengthy data collection required for systematic 
uniform sampling of the large multidimensional space spanned by 
the indirectly detected spectral dimensions1. A fundamental solution 
for this problem stems from an observation that upon appropriate 
transform, e.g. from the NMR time to frequency domain, MR signal 
becomes nearly-black or sparse, i.e. essentially zero in the vast 
majority of points and thus largely redundant. Darkness of the MR 
images and NMR spectra is a key for the remarkable success and 
rapid development of the non-uniform sampling (NUS) methods 1, 2, 

3, 4-7. The darker an object is, the less experimental measurements are 
needed for its recovery 8. The transform that brings data into a dark 
presentation is called sparsifying transform. In NMR, the Fourier 
transform connects complex free induction decay (FID) signal in 
time domain and frequency spectrum. A properly phased spectrum 
consists of the real absorption part used for the analysis and the 
redundant imaginary dispersion part. Since an absorption signal is 
much narrower than the dispersion, the latter contribute the most to 
the total spectrum brightness. The main result of this paper is the 
notion that for most of the currently used algorithms, e.g. 
compressed sensing 4, 5, SIFT 9, maximum entropy 2, 7, MINT 6, etc. 
it is the dispersion part that sets the lower limit for the amount of 
measured data required for the high quality spectrum reconstruction 
from the NUS signal. We show that the causality property of the 
NMR signal can be used to construct a sparsifying transform, which 
eliminates the spectral dispersion part from the time domain signal 
and, thus, allows spectrum reconstruction with better fidelity and 
from fewer measurements. In NMR, the causality reflects the fact 

that the FID signal is only observed after excitation of the spin 
system, e.g. by a radiofrequency pulse, and is zero before the 
excitation. 
Figure)1.%Illustration%of%the%Kramers–Kronig%relations.%(a)%FID%and%(c)%virtual<echo%
representations%of%the%NMR%time%domain%signals%with%the%corresponding%spectra%
(b%and%d,%respectively).%Real%and%imaginary%parts%are%shown%in%bold%and%thin%lines,%
respectively.%Note%that%the%spectrum%in%panel%(d)%has%zero%imaginary%part.%Small%
zero%order%phase%0.15π%is%used%to%illustrate%the%effect%of%non<zero%phase%on%the%
signal%in%the%time%and%frequency%domains.%

It is well known that the Fourier transform of a causal time signal 
S(t) leads to spectrum, whose real and imaginary parts can be 
produced from each other using the Kramers–Kronig relations also 
known as the Hilbert transform 10. The Kramers–Kronig relations are 
illustrated in Fig. 1. Signal !!"# !  (Fig. 1a) and the corresponding 
spectrum in Fig. 1b are related via the Fourier transform. Spectrum 
in Fig. 1d is produced from the one in Fig. 1b by zeroing its 
imaginary part. The inverse Fourier transform of real spectrum in 
panel d gives a complex time domain signal (Fig. 1c), whose real 
and imaginary parts are essentially even and odd parts of the real and 
imaginary components of the FID (Fig 1a), respectively. Thus, 
signal in Fig. 1c is can also be produced by time reversal and 
complex conjugate of the FID. 

!!" ! = !!"# ! ! ≥ 0
!!"#∗ −! ! < 0 (1) 

a b

c d

ωt
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In the following, we call !!" !  signal in Eq. 1 virtual-echo (VE). 
The original signal !!"# !  can be obtained from !!" !  by 
zeroing the signal for negative time. Direct transition from panel d to 
panel b in Fig. 1 is done by the Hilbert transform. In practice, the 
Hilbert transform algorithm takes the detour d → c → a → b (Fig. 1) 
in order to use the computationally efficient fast Fourier transform.  
The spectrum (Fig. 1d) obtained from the VE representation (Fig. 
1c) consists of the traditionally looking real part and zero imaginary 
part. Depending on the signal phase, the real part can contain 
absorption, dispersion, or mixture of the both modes. Given a priori, 
the phase, Eq. 1 allows us to obtain time domain signal 
corresponding to the pure absorption spectrum and, thus, to construct 
a sparsifying transform that produces significantly darker spectrum 
than the traditional Fourier transform of the original FID. 
Obtaining NMR spectrum from a time-domain signal is a typical 
example of the mathematical inverse problem. When all data points 
in the signal are present, the solution of the problem is trivial and is 
given by the Discrete Fourier Transform (DFT). In case of NUS, 
most of the data in the time-domain signal is missing and the 
unconstrained inverse problem has infinite number of solutions (i.e. 
spectra). A unique and “correct” spectrum is obtained by introducing 
additional assumptions such as minimal power, maximum entropy, 
maximal sparseness, etc. The VE presentation is equally applicable 
to traditional fully sampled and NUS signals. When the former is 
processed using DFT, FID and VE presentations lead to the 
equivalent spectra as illustrated in Fig. 1. However, when 
reconstructing spectra form NUS signal and in some other cases 11, 
use of the Kramers–Kronig relations, namely path a → c → d in Fig. 
1 represents a significant advantage over the traditional processing, 
which is a → b → d.  
Fig. 2 demonstrates benefits of the VE signal for two modern spectra 
recovering algorithms used for NUS signal: Spectroscopy by 
Integration of Frequency and Time Domain (SIFT)9 and Compressed 
Sensing by Iterative Reweighted Least Squares (CS-IRLS)4, 12. 
Similar results for alternative CS algorithm, Iterative Soft 
Thresholding (CS-IST)4, 13, 14 are presented in Supplementary Fig. 
S3. Both CS algorithms and SIFT can be applied without 
modifications to either traditional FID or VE signal. With SIFT 
making use of the prior knowledge about positions of dark regions in 
a spectrum and CS searching for the darkest among all possible 
spectra consistent with the measured data, both methods are 
expected to benefit from the darker representation of the spectrum 
provided by VE.  
For a given number of NUS measurements, quality of the SIFT 
reconstruction improves, when the larger fraction of the spectrum 
area is free from signals and contains only the baseline noise. In our 
calculations, the signal-free area is defined by a mask, which 
excludes rectangles of a defined size around all peaks in the 
spectrum. This corresponds, for example, to a set-up in relaxation 
and kinetics studies 15, where the peak positions are known and only 
their intensities or integrals need to be defined. Figs. 2a and 2b show 
reconstructions of a 2D 1H-15N HSQC spectrum of human alpha-
synuclein obtained using only 15% of the data from the full 
experiment. 
By avoiding broad dispersion peaks, the VE signal ensures that 
larger fraction of the spectrum is ”dark” and thus SIFT produces 
much better spectrum (Fig. 2b, Supplementary Fig. S4) and more 
accurate peak intensities in comparison to the reconstruction from 
the original FID (Fig. 2e and Supplementary Fig. S5). Fig. 2e (inset) 
illustrates that prior information about the signal phase does not have 
to be exact. For SIFT example, the peak intensities in the VE 
reconstruction obtained for uncorrected phase up to 15° are still 
better reproduced then those measured in the spectrum calculated for 
the traditional FID representation. Similar behaviour is also observed 

for the CS algorithms. For most of the multidimensional 
experiments, zero order phases for the indirect spectral dimensions 
are known and thus can be corrected in the time domain to values 
close to zero prior to the spectrum reconstruction.  
Similarly to SIFT, CS also assumes, that the major part of a 
spectrum is dark. However, no assumption is made about the exact 
location of the dark regions, which creates an apparently unsolvable 
combinatorial problem. Yet, it has been recently reformulated as a 
relatively simple task of spectral lp-norm (0<p≤1) minimization16:  

Figure) 2.% Comparison% of% SIFT% (a,b,e)% and% CS% (c,d,f)% spectral% reconstructions%
obtained% using% time<domain% signal% in% traditional% FID% (a,c)% and% VE% (b,d)%
presentations.% (a,b)% 2D% 1H<15N%HSQC% of% alpha<synuclein% (15%%NUS).% (c,d)% 13C<
15N%%projection%from%a%3D%HNCO%spectrum%of%ubiquitin%(0.7%%NUS).%In%the%pairs%
of%spectra,%the%contours%are%shown%at%the%same%level.%Arrows%in%panel%(c)%indicate%
several% true% weak% signals% present% in% the% VE% reconstruction% (d)% but% missing% in%
panel% (c).% Histograms% (e,f)% show% distribution% of% the% correlation% coefficients%
between%signal% intensities%measured%in%the%reference%spectrum%and%the%spectra%
reconstructed%with% VE% (red)% and% FID% (blue)% (e)% SIFT:% 500% resampling% trials%with%
15%%NUS.%Inset%in%panel%(e)%the%median%(over%25%resampling%trials)%of%correlation%
coefficients% for% the%VE% processing% versus% uncorrected% zero% order% phase.% (f)% CS:%
200% resampling% trials%with% 0.7%%NUS.% Inset% in% panel% (f)% Residual% of% the% CS<IRLS%
reconstructions%versus%the%sampling%level%obtained%using%FID%(blue)%and%VE%signal%
representations% (red% line).% The% residuals% are% defined% as% an% RMSD% of% the%
difference% between% the% reference% spectrum% and% the% corresponding% CS<IRLS%
reconstruction% measured% over% the% signal% regions% (±50% Hz% in% all% spectral%
dimensions%around%every%peak%in%a%complete%manually%verified%peak%list).%As%the%
reference% we% use% 6%% NUS% HNCO% averaged% over% the% reconstructions% obtained%
with%and%without%VE.%

!"#!! ! ∙ ! − ! !"
! + ! !"

!    (2) 

where F and S are the frequency spectrum and time domain signal, 
respectively; A is matrix derived from the inverse Fourier transform 
matrix; and lp-norm is defined as: 

! !" = !! ! + !! ! +⋯+ !! ! !/!   (3) 
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In the present paper the p=1 is used for IST algorithm 13 and lp-norm 
with p iteratively approaching 0 for IRLS algorithm 4, 17. The 
applicability of the CS method in NMR spectroscopy has been 
commented recently by many authors 4, 5, 18, 19, with important 
conclusions on the limited applicability to non-random sampling 20 
and superior performance of non-convex lp-norms (p<1) 19, 21.  
Here we apply CS IRLS algorithm 4 to reconstruct a 3D HNCO 
spectrum sampled at the level of 0.7 %, without VE (Fig. 2c) and 
with VE in both indirect dimensions (Fig. 2d). It can be seen, that 
VE improves the reconstruction significantly by providing better line 
shapes, more accurate peak intensities (Fig. 2f), and revealing low 
intensity signals. Supplementary Fig. S3 shows a notable 
improvement for the 2D 1H-15N HSQC spectrum of intrinsically 
disordered protein alpha-synuclein processed with CS-IST. 
The effect can be explained by the basic CS theorem, binding the 
number of properly reconstructed spectral points, which is 
essentially a measure of spectrum darkness, with the sampling level 
16. With the VE, fewer points contribute to each peak in the spectrum 
and thus relatively low sampling level is sufficient to fulfil the 
condition for the successful CS reconstruction. It should be 
emphasized, that the striking advantage of the VE demonstrated in 
Fig. 2 and Supplementary Fig. S3-5, is mostly due to the very low 
sampling level. Without the VE, high quality reconstructions by CS 
and SIFT are also possible, but require at least twice as many 
sampling points for the presented spectra (inset in Fig. 2f and 
Supplementary Fig. S4).  
As it was pointed by Donoho, at al. 8 there is an unambiguous 
relation between the darkness of NMR spectrum and quality of the 
spectral reconstruction by the Maximum Entropy or minimum l1-
norm minimisation. It is therefore likely that most of related methods 
including FM-reconstruction 22, MINT 6, hmsIST 14, QME 7 etc. will 
also benefit from the VE signal.  

Conclusions 
We show that the causality property of the NMR signal can be 
exploited to dramatically enhance performance of the CS, SIFT and 
probably many other algorithms commonly used for the 
reconstruction of NUS spectra. Our findings open a way to 
significant reduction in measurement time and improvement of the 
quality of NUS spectra and thus to increase of power and appeal of 
multidimensional NMR spectroscopy in multitude of its existing and 
future applications. The method is particularly useful for short living 
systems, time resolved measurements, and high-dimensional 
experiments on intrinsically disordered proteins.  
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