ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

www.rsc.org/xxxxx

ARTICLE TYPE

Recent developments in anion induced capsular self-assemblies

Ranjan Dutta^{*a*} and Pradyut Ghosh^{**a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

⁵ This feature article covers recent developments in anion induced capsular self-assemblies, with particular focus on important reports from 2011-2013. Contemporary studies on the capsular binding of environmentally and biologically relevant anions in aqueous medium are described. Emerging reports of such systems reveal their potential utility towards various functional aspects like anion separation, CO₂ fixation, hydrated halide recognition and anion transportation. This article also highlights potential ¹⁰ applications of anion induced molecular capsules.

1. Introduction

Non-covalent synthesis of supramolecular structures with an internal cavity to accommodate guest molecules has attracted much attention in recent times. This is because, these aggregates

- ¹⁵ are important in molecular recognition, selective guest-inclusion and in the catalysis of specific reactions.¹⁻¹⁰ In particular, anions have shown to be very versatile templates for the synthesis of a wide range of supramolecular assemblies over the last ten years.¹¹⁻¹⁹ This article aims to present a comprehensive update on
- ²⁰ the most important reports on capsular recognition of anions published in the last few years. As a proceeding of our previous article,²⁰ more importance will be given to studies in aqueous solvents and potential application towards environmental and industrial issues.
- ²⁵ In recent times, new platforms are introduced to design synthetic receptors for capsular recognition of anions which will be a part of our discussion. Nature's sulfate binding protein binds SO_4^{2-} in its synthetic pocket *via* neutral functionalities²¹ which indeed inspires researchers to design synthetic neutral receptors
- ³⁰ for capsular recognition of anions in highly competitive aqueous medium. Thus, special attentions are also directed towards recognition of anions in aqueous medium by capsular assemblies which may resemble to the natural-world. However, there are other systems for anion recognition studies in aqueous medium ³⁵ which are not included in this article.²²

One of the major reasons for global warming is due to the increase of CO_2 concentration in the atmosphere.²³ Metal-organic frameworks (MOFs), organic cages, zeolites, amines etc. are widely explored for the removal and storage of CO_2 .²⁴⁻²⁶ One of

⁴⁰ the possible remedies to control aerial CO₂ concentration is its chemical conversion to other species. Synthetic anion receptors are emerging to accomplish this purpose *via* CO₃²⁻ encapsulation from aerial CO₂.²⁷⁻³⁰ On the other hand, anions present in groundwater, specifically, few inorganic oxyanions can be toxic

⁴⁵ to the human health even at submicromolar concentration.³¹⁻³⁴ Removal of SO_4^{2-} from radioactive nuclear waste is essential for

improved vitrification of the waste and excess SO₄²⁻ is also responsible for permanent hardness of water.³⁵ Competitive crystallization technique or liquid-liquid anion exchange ⁵⁰ technology provides suitable strategy for SO₄²⁻ removal using synthesized anion receptors.^{35,36} Importance will be given to studies which have potential applications towards the above mentioned environmental and industrial issues. In that direction, interesting properties of capsular assemblies such as capsular ⁵⁵ binding of CO₃²⁻ via sequestration of aerial CO₂ and separation of SO₄²⁻ from water will be discussed in separate sections (Chart 1). Anion binding within covalent capsules and metal-coordinated capsules will not be the part of our discussion.

60 Chart 1 Schematic presentation of various features of anion induced molecular capsules.

2. Anion induced dimeric capsular assembly

In this section, recent development of anion receptors on different platforms namely (i) tris(2-aminoethyl)amine (tren), (ii) 65 rigid platforms like benzene, cyanuric acid, triazine and iii) macrocyclic backbone which are relevant in capsular assembly will be discussed.

2.1 TREN based tripodal anion receptors

Literature survey reveals tren scaffold based tripodal receptors 70 are widely used in the formation of anion induced capsular assemblies. Straightforward synthesis of tren based receptors and their complementarity with certain class of anions make them

www.rsc.org/xxxxxx

ARTICLE TYPE

attractive scaffolds in anion coordination chemistry. A recent review has elaborated the development of self-assembled s capsules of tren based urea/thiourea receptors towards tetrahedral oxyanion recognition and their separation.³⁷

- Generally, tripodal ammonium and amide receptors on tren scaffold do not have the tendency to form capsular assembly upon anion binding.³⁸⁻⁴⁰ We have extended our investigation on the solid and solution states binding properties of triprotonated tripodal amine 1 (Chart 2) with wide varieties of anions. Tripodal amine 1 has previously shown monotopic recognition of Cl⁻ and Br⁻ in its triprotonated state.⁴¹ Recently, it has been found that $[H_31]^{3+}$ also shows monotopic F⁻ encapsulation *via* C_{3v}-symmetric
- ¹⁵ cleft formation as usual for spherical anion (Fig. 1a).⁴² Interestingly, octahedral SiF_6^{2-} dianion induces dimeric capsular assembly of $[H_31]^{3+}$ *via* multiple N-H…F and C-H…F interactions (Fig. 1b). Monotopic F⁻ encapsulation *vs.* SiF_6^{2-} induced capsular assembly by $[H_31]^{3+}$ could be due to the difference in charge and ²⁰ shape of the encapsulated guest. However, potentiometric
- titration of $[H_31]^{3+}$ in MeOH/H₂O solvent shows high affinity towards more basic F⁻ and AcO⁻ over other anions.

Fig. 1 Single crystal X-ray structures of anion complexes of $[H_31]^{3+}$ 25 showing a) monotopic F⁻ encapsulation by $[H_31]^{3+}$ and b) encapsulation of $\mathrm{SiF_6}^{2-}$ in the dimeric capsular assembly of $[H_31]^{3+}$. Non-bonding hydrogens and lattice anions are omitted for clarity.

Sun and Singh have employed tren based extended tripodal amide receptor **2** (Chart 2) towards solvent dependent reversible ³⁰ nitrate binding and dimeric capsule formation.⁴³ Reaction of methanolic solution of **2** with aqueous HNO₃ yields **2·HNO₃**, which is structurally characterised as a NO₃⁻ encapsulated complex of [H**2**]⁺. Tris-amide **2** forms a mixture of NO₃⁻ complex of **2** and **3** upon treatment with HNO₃ in methanol/chloroform ³⁵ binary solvent. On the contrary, when HNO₃ is added to acetonitrile solution of **2**, formation of **3**·HNO₃ is observed as evident from NMR and ESI-MS studies. Titration of **3**·HNO₃ in DMSO-*d*₆ with less polar CDCl₃ results the formation of homodimeric capsular assembly of **3** with release of NO₃⁻ as ⁴⁰ evident from ¹H-NMR, ESI-MS studies (Chart 3). Upon lowering the solvent polarity, intramolecular H-bonding interactions between amide –NH and O atom of *ortho*-nitro group predominate over the interactions between amide and NO₃⁻, thus, facilitate the formation of a homodimer **3**₂ with the release of ⁴⁵ NO₃⁻. Evaporation of CDCl₃ regenerates the NO₃⁻ encapsulated product **3**·HNO₃, which suggests the reversibility of the process. Interestingly, upon standing of DMSO/CHCl₃ solution of **3**·HNO₃, formation of NO₃⁻ trapped self-assembled capsule, [NO₃⁻·H3₂]⁺ is observed, which is described as a ⁵⁰ thermodynamically stable product.

Chart 3 Solvent dependent formation of different NO_3^- complexes of 2, 3 and dimeric capsules of 3.

Apart from the works by Sun and co-workers, Das *et al.* have reported halide induced dimeric capsular assembly of a tren based extended amide receptor **4** (Chart 2).⁴⁴ They have designed tren scaffold based highly organized amide receptor **4** where the amide groups are placed far away from the bridgehead nitrogen. Upon protonation of the bridgehead nitrogen with HCl/HBr, dimeric capsular assembly of [H**4**]⁺ is observed. Dimeric assemblies are found to encapsulate a halide-water cluster with the composition [X₂(H₂O)₂]²⁻ (X= Cl⁻, Br⁻) (Fig. 2a,b). Widely spaced amide groups in **4** are forced to bind planar parallelogram shaped [X₂(H₂O)₂]²⁻ cluster rather than a single halide anion. Dimension of the capsular assemblies vary from 20.62 Å to 20.75 Å moving from smaller Cl⁻ to Br⁻ anion. Authors have claimed solution state existence of $[X_2(H_2O)_2]^{2^2}$ clusters by 2D-NOESY NMR, where strong NOE coupling between the amide NH and the encapsulated water is observed. However, I induces polymeric assembly of $[H4]^+$ with the rearrangement of C_{3v} to C_{2v} s conformation of the receptor. Squaramide functionalization on tren scaffold also results suitable receptors for different oxyanions in solution. Squaramide-based tripodal receptor **5** (Chart 2) forms the dimeric pseudo-capsular assembly with $SO_4^{2^2}$ (Fig. 3), where the $SO_4^{2^2}$ binding occurs in the cleft of **5** in 2:2 10 (host/guest) stoichiometry. Solution state selective binding of

SO₄²⁻ is observed *via* 1:1 (host/guest) stoichiometry.⁴⁵

Fig. 2 X-ray crystal structures of dimeric capsular assemblies of $[H4]^+$ showing encapsulation of a) $[Cl_2(H_2O)_2]^{2^-}$ and b) $[Br_2(H_2O)_2]^{2^-}$ cluster. 15 Non-bonding hydrogens are omitted for clarity.

Fig. 3 View of binding of two SO_4^{2-} in the dimeric assembly of 5. Nonbonding hydrogens and countercations are omitted for clarity.

Tren based urea/thiourea receptors are the intriguing class of ²⁰ anion receptors, particularly, towards the tetrahedral oxyanions.³⁷ Dimeric assembly of this class of receptors assisted by encapsulated tetrahedral anions is the most common feature observed in the reported anion complexes. From the first report of anion binding tren-based urea/thiourea receptors by Morán *et* ²⁵ *al.*⁴⁶ many groups have established 2:1 (host/guest) complexation with tetrahedral oxyanions. Recently, Gale *et al.* have reported the solid and solution states anion binding affinity of a series of fluorinated tren based urea/thiourea receptors **6-13** (Chart 4) and also studied their transmembrane transport activity.⁴⁷ Synthesis ³⁰ and anion binding studies of tris-urea **12** are well studied by our group previously.^{30,48-50} Structural analysis reveals tendency of

group previously.^{30,48-30} Structural analysis reveals tendency of the thiourea receptors to form dimeric capsular assembly upon tetrahedral anion encapsulation. Both the sulfate and phosphate complexes of thiourea 7 show SO_4^{2-} and PO_4^{3-} templated dimeric

35 assemblies of the receptor (Fig. 4a,b).

Dimension of the dimeric capsules are quite similar, 10.06 Å for SO_4^{2-} and 10.03 Å for PO_4^{3-} , as measured from the apical N···N 40 distances. Tris-urea receptor 10 forms dimeric capsular assembly upon encapsulation of CO322, which is similar to our previously reported CO₃²⁻ complex of **12** (Fig. 4c).³⁰ Thiourea analogue of 10 i.e. 11 forms PO_4^{3-} templated dimeric capsular assembly of 10.13 Å (Fig. 4d). Single crystal X-ray structural analysis of 45 phosphate complex of 13 shows encapsulation of two H₂PO₄ anions in the pseudo-capsular assembly of 13 (Fig. 5a) like $[(H_2PO_4)_2 \mathbf{12_2}]^2$ via multiple N-H···O and anion- π interactions.⁴⁸ Encapsulated H₂PO₄ anions are hydrogen bonded to each other as that observed in case of $[(H_2PO_4)_2\mathbf{12}_2]^{2^-}$. On the other hand, $_{50}$ SO₄²⁻ encapsulation by **13** is found to be assisted by two tetrabutylammonium countercations along with the urea -NH group of 13 (Fig. 5b). All the receptors show strong binding with SO_4^{2-} (log K >10⁴) in DMSO- $d_6/0.5\%D_2O$ solvent with 1:1 hostguest stoichiometry as evident from ¹H-NMR titration study. 55 Dihydrogenphosphate also shows moderate binding affinities even in highly competitive solvent medium. All the tris-urea receptors show higher binding affinity than the corresponding more acidic thiourea receptor. Furthermore, the binding affinities of the receptors decrease with the addition of increasingly 60 electron-withdrawing groups. This reverse trend is rationalised by favourable interaction of the more electron-withdrawing groups with polar DMSO- d_6/D_2O solvent mixture.

Our continuous investigation of anion binding properties of tris-urea 12 have resulted many interesting properties like H₂PO₄⁻ ⁶⁵, ⁴⁸ SO₄²⁻ encapsulation, ⁴⁹ CO₂ fixation³⁰ *etc.* Phosphate selectivity pattern of 12 is also established by ¹H-NMR titration study. Further we have demonstrated acid/base controllable capsular size modulation of phosphate capsules of 12. ⁵⁰ Crystallization of H₂PO₄⁻ complex with TBAOH results the formation of HPO₄²⁻ encapsulated tight dimeric capsular assembly of 12 (Fig. 6b). HPO₄²⁻ encapsulation in 12 is observed *via* fifteen hydrogen bonding interactions. Capsular size of HPO₄²⁻⊂12₂ is measured as 9.92 Å higher than CO₃²⁻ and SO₄²⁻ encapsulated capsules. Interestingly, H₂PO₄⁻ pseudo-capsule of 12 can be regenerated 75 upon simple acid treatment of the HPO₄²⁻⊂12₂ capsule (Chart 5).

www.rsc.org/xxxxx

ARTICLE TYPE

Fig. 4 View of X-ray crystallographic structures of a) SO_4^{2-} C_7_2 , b) PO_4^{3-} C_7_2 , c) CO_3^{2-} CO_2^{-2-} 10_2 and d) PO_4^{-3-} $C1_2$ showing anion templated formation of dimeric capsular assemblies of the receptors. Non-bonding hydrogens, countercations and solvents are omitted for clarity.

Fig. 5 X-ray structures of a) $(H_2PO_4)_2^{2-} \subset \mathbf{13}_2$ and b) TBA₂SO₄ $\subset \mathbf{13}_2$. Nonbonding hydrogens and countercations are omitted for clarity.

Capsular transformation of the phosphate capsules are corroborated by ³¹P-NMR in DMSO- d_6 . H₂PO₄⁻ complexation of

- 10 **12** is demonstrated by 8.33 ppm ($\Delta\delta$) downfield shift in ³¹P resonance *w.r.t* the signal of free TBAH₂PO₄; whereas upon addition of **12** to 1:1 mixture of TBAOH and TBAH₂PO₄ results a downfield shift of 3.55 ppm ($\Delta\delta$) *w.r.t* 1:1 mixture of TBAOH and TBAH₂PO₄. Finally, the addition of perchloric acid to the
- ¹⁵ above mixture shows regeneration of [H₂PO₄]₂² ⊂12₂ as revealed by ³¹P-NMR signal. We have also shown the first report of hydroxide (OH⁻) encapsulation by tris-urea 12 upon reaction with TBACN. Hydroxide (OH⁻) encapsulation in the dimeric pseudo-assembly of 12 is achieved by six N-H···O interactions in 2:2
- ²⁰ (host/guest) stoichiometry (Fig. 6a). We have reasoned possible deprotonation of the acidic –NH proton by CN⁻ followed by the encapsulation of a H₂O molecule in the tris-urea cavity of **12**. Finally, *in situ* generation and the encapsulation of OH⁻ are explained by protonation of deprotonated **12** with H₂O molecule.
- ²⁵ Kinetic and thermodynamic parameters of anion binding properties of **12** with different anions are demonstrated by ITC study in DMSO, which closely resemble with the ¹H-NMR titration data.

Recently, we have explored tris-urea **12** towards the binding of ³⁰ environmentally relevant and toxic arsenate⁵¹ in aqueous medium. Hydrogenarsenate (HAsO₄²⁻) and hydrogenphosphate (HPO₄²⁻) have remarkable similarity in terms of charge, thermodynamic radii, pKa values, and binding modes.⁵² HAsO₄²⁻ encapsulated complex of the tris-urea **12** is isolated by the ³⁵ reaction of **12**, TBAI and Na₂HAsO₄ in DMSO/5%H₂O solvent

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry [year] mixture. HASO₄²⁻ is found to be encapsulated in the dimeric capsular assembly of 12 via eleven N-H…O and one O-H…O interactions (Fig. 6c).⁵³ Capsular dimension of HAsO₄²⁻⊂12₂ is similar to that of the HPO₄²⁻⊂12₂ capsule but higher than that of ⁴⁰ SO₄²⁻⊂12₂ and CO₃²⁻⊂12₂. HAsO₄²⁻⊂12₂ capsule represents the first example of the structural evidence of arsenate binding by any synthetic neutral anion receptor. Solution state selectivity of 12 towards HAsO₄²⁻ is observed over HPO₄²⁻, SO₄²⁻ and CO₃²⁻ in semi-aqueous solvent mixture [DMSO-d₆/D₂O (9:1, v/v)]. Thus, a ⁴⁵ general trend of dimeric pseudo-capsular vs capsular assembly formation is established for tris-urea 12 via uni-negative vs dinegative anion encapsulation respectively (Fig. 7).

Chart 5 Schematic representation of formation and acid-base controllable ⁵⁰ transformation between $(H_2PQ_4)_2^{-2} \subset 12_2$ and $HPO_4^{-2} \subset 12_2$.

www.rsc.org/xxxxx

ARTICLE TYPE

Fig. 6 View of X-ray crystal structures of a) OH⁻ \subset 12, b) HPO₄²⁻ \subset 12₂ and c) HAsO₄²⁻ \subset 12₂. Non-bonding hydrogens and countercations are omitted for clarity.

 $_{5}$ Fig. 7 Space-fill view showing capsular size of the dimeric capsular assemblies of a) HPO₄²⁻ \subset 12₂, b) HAsO₄²⁻ \subset 12₂, c) (H₂PO₄)₂²⁻ \subset 12₂ and d) (OH)₂²⁻ \subset 12₂.

Presence of non fluorinated electron-withdrawing groups can also provide suitable anion receptors for capsular recognition of anions (Chart 6).^{54,55} Nitro-substituted urea/thiourea receptors on tren scaffold are reported for the encapsulation of various ¹⁰ tetrahedral oxyanions. Thiourea receptor **15** is found to encapsulate PO₄³⁻ inside the π-stacked dimeric capsular assembly of **15** (Fig. 8a) *via* twelve strong hydrogen bonding interactions.⁵⁶ Planar oxyanion CO₃²⁻ also assists the formation of dimeric assembly of **15** (Fig. 8b) assembled by intermolecular C-H···O ¹⁵ and C-H···S interactions. On the other hand, F⁻ and SO₄²⁻ lead to the formation of unimolecular capsules of **15** *via* the participation of external solvent/countercation, which will be discussed later.⁵⁷ Interestingly, selective formation of PO₄³⁻⊂**15**₂ capsule is demonstrated in the presence of excess HSO₄⁻, HCO₃⁻, NO₃⁻,

- ²⁰ CH₃COO⁻, F⁻ and Cl⁻ by ¹H and ³¹P-NMR studies. ¹H-NMR titration study of **15** with H₂PO₄⁻ shows switching of the equilibrium from 1:2 to 2:1 (host/guest) stoichiometry upon gradual addition of H₂PO₄⁻. Chemical shift values of NH protons at 2:1 equilibrium closely resemble the ¹H-NMR spectrum of PO ³/₂ **15**
- ²⁵ PO₄³⁻⊂15₂, which confirms the formation of PO₄³⁻⊂15₂ capsule in solution. Similarly, 2:1 (host/guest) stoichiometry is observed for HSO₄⁻. Both F⁻/Cl⁻ binds in 1:1 stoichiometry, whereas 1:2 binding pattern is observed of CH₃COO⁻. ¹H-NMR titration

studies result the following trend of binding affinity: $H_2PO_4^-$ ₃₀ >CH₃COO⁻>F⁻>HSO₄->Cl⁻.

3-nitro substituted urea receptor **16** also forms dimeric capsular assembly upon CO_3^{2-} , SO_4^{2-} and HPO_4^{2-} encapsulation (Fig. 8c,d).^{58,59} CO_3^{2-} complexation study through the fixation of aerial CO_2 will be discussed later. ¹H-NMR titration studies have ³⁵ shown 1:1 binding of **16** with all the anions in DMSO- d_6 with the selectivity towards SO_4^{2-} . Further, oxyanion encapsulation by **16** is confirmed by 2D NOESY NMR. First example of thiosulfate ($S_2O_3^{2-}$) encapsulation in the dimeric capsular assembly of a trisurea receptor **17** (Fig. 9a) have been reported by Das *et al.*⁶⁰ ⁴⁰ Dimeric capsular assembly is also observed for the SO_4^{2-} complex of **17** (Fig. 9b). Solution state ¹H-NMR study of **17** shows selectivity for SO_4^{2-} over $S_2O_3^{2-}$ in 1:1 (host/guest) stoichiometry.

On the other hand, cyano terminal tris-urea receptor **18** fails to ⁴⁵ encapsulate anions as evident from the solid state structure from Cl⁻, Br⁻ and HSO₄⁻ complexes of $[H18]^{+.61}$ However, tris-urea **18** shows 1:1 binding with all the anions in DMSO- d_6 with high binding affinities for F⁻ (4.51) and SO₄²⁻ (4.70). We have established thiourea analogue, **19** towards efficient encapsulation ⁵⁰ of anions as determined by solid and solution state studies.⁶²

Journal Name

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Fig. 8 X-ray crystal structures of dimeric capsules a) $PO_4^{3-} \subset 15_2$, b) $CO_3^{2-} \subset 15_2$, c) $SO_4^{2-} \subset 16_2$ and d) $HPO_4^{2-} \subset 16_2$. Non-bonding hydrogens and countercations are omitted for clarity.

- Solution state binding of **19** towards anions by ITC measurement ⁵ in acetonitrile shows the selectivity towards F⁻ which is well supported by ¹H-NMR titration study in DMSO- d_6 . Structural characterisation of SO₄²⁻ and CO₃²⁻ complexes reveal anion assisted dimeric assemblies of **19** with capsular and sandwich modes respectively (Fig. 10a). On the other hand, monotopic
- ¹⁰ encapsulation of spherical F⁻ is observed by **19** *via* six N-H···F interactions (Fig. 10b). Structural features of $SO_4^{2^-}$ complex and the liquid-liquid extraction of $SO_4^{2^-}$ by **19** will be discussed in section 5.2.

Fig. 9 View of crystal structures of a) SO_4^{2-} $\subset 17_2$ and b) $S_2O_3^{2-}$ $\subset 17_2$. Nonbonding hydrogens and countercations are omitted for clarity.

Fig. 10 Crystal structures of a) sandwich type assembly of CO₃²⁻⊂**19**₂ and ²⁰ b) F⁻⊂**19**. Non-bonding hydrogens and countercations are omitted for clarity.

Recently, we have structurally demonstrated an interesting example of conformer discrimination of oxalate by two structurally analogous urea receptors **20** and **21**.⁶³ Oxalate $(C_2O_4^{2-25})$ complexes of tris-urea **20** and **21** obtained from DMSO/5% H₂O solvent show $C_2O_4^{2-2}$ assisted dimeric capsular assembly of the receptors in 2:1 (host/guest) stoichiomtery. $C_2O_4^{2-2}$ encapsulation in both $C_2O_4^{2-2}$ **20** and $C_2O_4^{2-2}$ **21** are facilitated by twelve N-H···O interactions (Fig. 11 and 12). The geometry of the

³⁰ encapsulated C₂O₄²⁻ marks their conformational differences in the C₂O₄²⁻ capsules. Simplest dicarboxyalate, C₂O₄²⁻ exists in two different conformer namely planar and staggered conformers with 2-6 kcal/mol rotational energy barriers.⁶⁴ Although, staggered conformer is stable in solution, most of the structural reports ³⁵ reveal isolation of planar conformer. Receptor **20** shows encapsulation of staggered C₂O₄²⁻ conformer with 68.8° torsion angle in C₂O₄²⁻ c**20**₂, whereas in C₂O₄²⁻ c**21**₂, **21** encapsulates planar C₂O₄²⁻ conformer with 0.02° torsion angle (Fig. 11 and 12). Thus, by simply tuning the receptor functionality from –CN ⁴⁰ (**20**) to −F (**21**), discrimination of two C₂O₄²⁻ conformers is possible in the molecular capsular assembly. However, in solution 1:1 association is observed between **20/21** and C₂O₄²⁻ with high binding affinities (~10⁴) in DMSO-*d*₆/D₂O (9:1, v/v) solvent.

Fig. 11 View of staggered $C_2O_4^{2-}$ encapsulation in the dimeric capsule $C_2O_4^{2-}$ \subset 21₂. Non-bonding hydrogens and countercations are omitted for clarity.

⁵⁰ Fig. 12 View of planar $C_2O_4^{2-}$ encapsulation in the dimeric capsule $C_2O_4^{2-}$ \subset **22**₂. Non-bonding hydrogens and countercations are omitted for clarity.

Fig. 13 X-ray crystal structures of a) $SO_4^{2-} \subset 22_2$ capsule having $[Mg(H_2O)_6]^{2+}$ cations, b) $Cl_2^{2-} \subset 23_2$ capsule having $[Na_2(H_2O)_6]^{2+}$ cations, c) $Cl_2^{2-} \subset 23_2$ capsule having $[Mg(H_2O)_6]^{2+}$ cations and d) $Cl \subset 23$ having $[Co(N^{Py})_6]^{2+}$ cations. Non-bonding hydrogens are omitted for clarity.

- Custelcean and Wu et al. have independently explored tren based 3-pyridyl urea, 22 towards SO_4^{2-} recognition and separation studies *via* crystalline capsule formation in aqueous medium.^{65,66} Very recently, Wu et al. have exploited 4-pyridyl urea receptor, 23 for capsular binding of SO_4^{2-} and Cl^{-} in aqueous medium.^{67,68} 10 Crystallization of 23 with MgSO₄ in 1:1 MeOH/H₂O solvent yields the crystals of composition $[MgSO_4 \cdot 23_2 \cdot (H_2O)_6]$. Two molecules of **23** encapsulates $SO_4^{2^2}$ in its dimeric capsular assembly, where the $[Mg(H_2O)_6]^{2+}$ countercation holds the crystalline capsule by second sphere coordination, like in the case 15 of 22. Capsular dimension of $[SO_4^2 - 23_2]$ capsule is slightly higher than that of the $[SO_4^2 - 22_2]$. However, differences are found in the number of hydrogen bonding interactions present for SO_4^2 encapsulation. In case of $SO_4^2 \subset 23_2$ capsule, SO_4^2 is involved in nine strong N-H-O interactions compared to the ²⁰ eleven strong N-H···O interactions in $SO_4^2 \subset 22_2$. Apart from the tetrahedral SO_4^{2-} anion, tris-urea 23 is also found to encapsulate Cl⁻/F⁻/CO₃²⁻ in its dimeric capsular assemblies. Complexation of 23 with metal chlorides such as NaCl and KCl yield 2:2 anion complexes $[Cl = 23]_2^2$ (Fig. 13b), where Cl is trapped in the 25 cavity of **23** via multiple N-H···Cl interactions. $[Cl \subset 23]_2^2$ capsule is surrounded by six $[M_2(H_2O)_6]^{2+}$ $[M = Na^+/K^+]$ units to form a pseudo-octahedral arrangement. Capsular dimension of $[Cl \simeq 23]_2^{2}$ capsule $[M = Na^+]$ is measured as 11.18 Å, which is reasonably higher than the dimension of $[SO_4^{2-} \subset 23_2]$ capsule. 30 Similar Cl⁻ encapsulation in the form of $[Cl = 23]_2^{2^-}$ capsule is observed for 23 during crystallization with MgCl₂, CaCl₂ (Fig. 13c), where the $[M(H_2O)_6]^{2+}$ [M = Mg, Ca] countercations assist capsule formation via second sphere coordination. On the other hand, direct coordination of pyridyl group to metal ion leads to
- ³⁵ the monotopic encapsulation of Cl⁻ (Fig. 13d) during complexation of **23** with chloride salts of Co²⁺ and Mn²⁺ cations. Importantly, rigidity of the capsular assembly predominates over the countercation effect for the chloride capsules as evident from the similarity in capsular dimensions. Sodium/potassium salts of
- ⁴⁰ carbonate also form 2:1 (host/guest) complex with $CO_3^{2^-}$ encapsulation in the dimeric capsule $CO_3^{2^-} \subset 23_2$. Again the Na⁺/K⁺ counteractions are directly coordinated by two pyridyl groups of 23. Thus, profound effects of countercations on anion complexation stoichiometry for 23 are observed. ¹H-NMR
- ⁴⁵ titration data shows 1:1 association between **23** and $\text{Cl}^{-}/\text{SO}_4^{-2}$ in DMSO-*d*₆ solvent with comparable binding affinity (~10³).

2.2 Tripodal anion receptors with rigid platforms

Apart from the flexible tren platform, rigid platforms like 1,3,5 trilalkyl benzene, triazene and cyanuric acid scaffolds are also ⁵⁰ emerging in the rapidly growing field of anion coordination chemistry. Anion assisted capsular assemblies of benzene based tripodal and hexapodal receptors till 2011 are discussed thoroughly in our previous article.²⁰ In the next section, we will discuss the current reports on anion-induced capsular assemblies ⁵⁵ of systems based on such rigid platforms.

2.2.1 Tripodal receptors phenyl bridgehead

Anion assisted capsular assembly and disassembly processes 60 of benzene platform based protonated benzimidazole receptors 24-26 (Chart 7) are reported by our group.⁶⁹ Dimeric capsular assembly of triprotonated 24 is previously observed via encapsulation of nitrate-water cluster.⁷⁰ Variation in anion dimensionality and the receptor functionality result the formation 65 of different supramolecular architectures. Triprotonated receptor 24 forms a discrete staggered dimeric capsular assembly, templated by four CF₃COO⁻ and two water molecules via multiple N-H-O and C-H-O interactions (Fig. 14b). Similarly, trisprotonated form of 24 shows discrete dimeric capsular 70 assembly stitched by six ClO₄⁻ and two encapsulated water molecules (Fig. 14a). Capsular dimension of the dimeric capsular $[(H_624_2) \cdot (CF_3COO)_4 \cdot (H_2O)_2]^{2+}$ assemblies of and $[(H_624_2)\cdot(ClO_4)_6\cdot(H_2O)_2]$ are measured as 11.5 and 11.0 Å respectively. It is worth mentioning that $[H_324]^{3+}$ forms six 75 nitrate-two water zipped discrete dimeric capsular assembly of dimension 11.14 Å. On the other hand, triporotonated receptor 25 shows polymeric assembly with NO_3 , ClO_4 and I, thus establish

Journal Name

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Fig. 14 Scheme showing a) ClO_4^- , b) CF_3COO^- assisted dimeric capsular assemblies of $[H_324]^{3+}$ and c) ClO_4^- , d) BF_4^- assisted heterotetrameric capsular assemblies of $[H_324]^{3+}$ and $[H_226]^{2+}$. Non-bonding hydrogens and lattice solvents are omitted for clarity.

the necessity of alkyl substitution on the benzene platform. ⁵ Interestingly, when a mixture of tripodal receptor **24** and analogous dipodal receptor **26** are protonated with HClO₄, a new assembly **24**·**26**₂·**24** is formed *via* encapsulation of eight ClO₄⁻ and fourteen water molecules. ClO₄⁻ templated dimeric assembly of $[H_324]^{3+}$ is formed where two $[H_226]^{2+}$ units also share their ¹⁰ ClO₄⁻ counteranions and thus forms a heterotetrameric assembly (Fig. 14c). The cooperative self-assembly of two molecules of $[H_324]^{3+}$ and two molecules of $[H_226]^{2+}$ in the presence of ClO₄⁻ anions form a near spherical assembly. Similar heterotetrameric assembly is formed for $[H_324]^{3+}$ and $[H_226]^{2+}$ templated by eight ¹⁵ BF₄⁻ anions and water molecules (Fig. 14d). Capsular dimensions of the heterotetrameric assemblies are similar (~13 Å) which is higher than the homodimeric assembly of **24** (~11 Å).

Benzene platform based neutral amide receptors have shown their potential towards capsular recognition of nitrate, hydrated ²⁰ halides in the capsular cavity.^{71,72} Recently, we have shown NO₃⁻ encapsulation in the half capsule **27** (Chart 7) decorated with cyano substituted aryl terminal.⁷³ Two such half capsules intercalate to form a staggered dimeric capsular assembly, that encapsulates two NO₃⁻ anions (Fig. 15a). Very recently, we have ²⁵ designed tripodal amide receptor **28** with 4-pyridyl terminal to

impart aqueous solubility, and the possibility of anion binding in aqueous medium.⁷⁴ Interestingly, F⁻ and Cl⁻ complexes of **28** are

isolated from acetone/water (1:1) solvent mixture in good yields. The isolated F complex shows the formation of 1D-polymeric ³⁰ chain of dimeric assembly of **28** zipped by fluoride-water cluster $[(F)_2(H_2O)_4]^{2-}$ (Fig. 15b). The dimeric assembly of 28 encapsulates a cyclic [F₂(H₂O)₂]²⁻ unit via multiple N-H…F, O-H…F and N-H…O interactions. The other two water molecules of $[F_2(H_2O)_4]^2$ unit help to propagate the cluster in 1D-polymeric ³⁵ form. Similarly, the formation of $[Cl_2(H_2O)_4]^{2-}$ cluster is observed in case of Cl complex where dimeric assembly of 28 encapsulates $[Cl_2(H_2O)_2]^{2-}$ cluster (Fig. 15c). The capsular dimension is slightly higher for $[Cl_2 \cdot (H_2O)_4 \cdot 28_2]^{2-}$ (9.62 Å) than that of $[F_2 \cdot (H_2O)_4 \cdot 28_2]^{2-}$ (9.41 Å). Furthermore, the complexation 40 of 28 with F⁻ in dioxane/water solvent results the formation of SiF_6^{2-} encapsulated dimeric assembly of **28** (Fig. 15d). However, in solution 1:3 (host/guest) sioichiometry is observed from ¹H-NMR titration study in acetone- $d_6/5\%$ D₂O solvent, as opposed to 1:1 binding in the solid state. ¹H-NMR titration data reveals 45 comparable binding affinity of 28 towards halides, whereas slightly higher binding constants are calculated for HSO₄⁻ and NO_3 . Another benzene platform based tripodal receptor 29, (Chart 7) having amide-triazole recognition element shows encapsulation of SO_4^{2-} in its cavity *via* eleven hydrogen bonding 50 interactions.⁷⁵ In solution 1:1 (host/guest) stoichiometry is observed with high association constant (> 10^5).

www.rsc.org/xxxxx

ARTICLE TYPE

Fig. 15 X-ray crystal structures of a) $(NO_3)_2^2 \simeq 27_2$, b) $[F_2(H_2O)_4]^2 \simeq 28_2$, c) $[Cl_2(H_2O)_4]^2 \simeq 28_2$ and d) $[SiF_6(H_2O)_2]^2 \simeq 28_2$. Non-bonding hydrogens, countercations and lattice solvents are omitted for clarity.

2.2.2 Tripodal receptors with cyanuric acid platform

Cyanuric acid platform is a hybrid system having the rigidity in ¹⁰ platform like benzene and flexibility in side arms like tren. However, it is poorly explored unlike the other platforms.^{76,77} We have shown selective monotopic recognition of F⁻ in the C_{3v}symmetric cleft of a cyanuric acid platform based tris-amide receptor.⁷⁸ On the other hand, urea-functionalization (Chart 8) on ¹⁵ cyanuric acid platform prefers tetrahedral SO₄²⁻ anion which is established for tris-urea **30** *via* SO₄²⁻ encapsulated unimolecular capsule formation.⁷⁹ Recently, we have shown SO₄²⁻ encapsulation in the staggered dimeric capsular assembly of cyano terminal tris-urea **31** (Fig. 16) *via* twelve N-H···O ²⁰ interactions.⁸⁰ Thus, higher coordination number of SO₄²⁻ is furnished by either coordination from countercations in case of **30** or dimeric assembly of the receptor for **31**. This observation encourages us to develop second generation hexaurea receptor **33**

with six chelating urea groups, which eventually shows ²⁵ monotopic SO₄²⁻ encapsulation in its cavity by ten N-H···O interactions.

Fig. 16 View of SO₄²⁻ encapsulation in dimeric capsular assembly of **31**. Non-bonding hydrogens, solvent and countercations are omitted for ³⁰ clarity.

2.3 Receptors with macrocyclic platforms

based Macrocyclic platform receptors such as resorcin[4]arenes are suitable for capsular recognition of anions, cations and also neutral molecules due to the presence of bowl-5 shape cavity and phenolic functions. In 2011, Paek and coworkers have reported synthesis of resorcin[4]arenes modified tetra-amidocavitand 34 (Chart 9) and studied the solution state dimeric capsular assembly with suitable anionic guests.⁸¹ Two monomeric units of 34 forms dimeric capsular assembly upon ¹⁰ encapsulation of CH₃OSO₃ and BF₄, as evident from ¹H-NMR study in $C_2D_2Cl_4$ solvent. Monomeric unit of 34 in $2CH_3OSO_3^{-1}$ $/BF_4 \subset 34_2$ capsules are held together by multiple intermolecular and intramolecular N-H…O interactions, as suggested by molecular modelling study. 1H-NMR and 2D-DOSY NMR

- ¹⁵ studies in C₂D₂Cl₄ with CH₃OSO₃⁻ and BF₄⁻ guests show slow guest exchange and encapsulation of two anionic guests in the dimeric capsular assembly, which is confirmed by diffusion coefficient value of the capsule. Dissociation of the capsule in CD₃OD and non-capsular pattern with carboxylates, halides, PF₆⁻ validate the necessity of proper solvent choice and host/guest
- complementarity towards dimeric capsule formation.

Rebek and co-workers have reported the encapsulation of a pair of ion-pair in a self assembled molecular capsule of fourteen ²⁵ components.⁸² Previously, neutral cylindrical capsule **35**₂ (Chart 9) has reported for the encapsulation of two neutral molecule of picoline.⁸³ Interestingly, upon addition of trifluoroacetic acid (TFA) and glycouril **36** (Chart 9) to the above assembly generates the extended assembly with composition **35**·**36**₈·**35**. ¹H-NMR ³⁰ analysis of the assembly reveals significant downfield shift of the

- acidic proton (18.7 ppm), which actually suggests protonation of picoline nitrogen with TFA and thus, concomitant encapsulation of picoline-TFA ion pair. Further, ¹H/¹⁹F-DOSY NMR studies confirm guest encapsulated capsular assembly.
- ³⁵⁵ Very recently, hybrid squaramide-calix[4]arene regioisomers **37** and **38** (Chart 9) are reported for capsular dimerization assisted by spherical anion encapsulation.⁸⁴ Both the distal isomer **37** and proximal isomer **38** form dimeric capsular assemblies with spherical Br⁻ and Cl⁻ anion as suggested by ¹H-
- ⁴⁰ NMR, ESI-MS and molecular modelling studies. In addition, **38** shows dimeric capsular assemblies with planar oxyanions like nitrate and benzoate unlike **37**. Presence of favourable intramolecular H-bonding interactions and greater complimentarity with planar guests facilitate the formation of the dimeric capsulae with pitnets and hence the interactions. C20
- ⁴⁵ dimeric capsules with nitrate and benzoate in case of **38**.

Electron rich tetrathiofulvalene-functionalised fluxional calix[4]pyrrole macrocycles are known to adopt unidirectional 50 cone structure from thermodynamically stable 1,3-alternate conformation during anion complexation.⁸⁵ Further, anion directed cone conformation can accommodate a cationic guest of suitable size. Based on this concept, Sessler et al. have demonstrated iodide (as TBA salt) assisted dimeric assembly of 55 cone conformer of **39** (Chart 10), which completely encapsulates a bismethylpyridinium-functionalized calix[4]pyrrole (G1) cationic guest (Fig. 17).⁸⁶ The self-assembled system functions as NAND logic gate, where the logic operations are triggered via changing the countercation inputs. Varying the countercation 60 from TBA to TEA, dimeric assembly of **39** rearranges to a TEA encapsulated monomeric unit. Further, changing the anion from iodide to non coordinating tetrakis[bis(3,5trifluoromethyl)phenyl]borate, formation of 1,3 alternate conformation of 39 with encapsulated G1 is observed. Further, 65 the logic operations are nicely corroborated by UV-Vis spectral data.

Fig. 17 View of encapsulation of two G1 molecules in the dimeric capsular assembly of [I·39]⁻. Non-bonding hydrogens and lattice solvents 70 are omitted for clarity.

Sessler *et al.* have reported construction of anion directed formation of supramolecular architectures with tetracationic imidazolium macrocycles.⁸⁷ Complexation of **40** with dicarboxylate **G2** (Chart 10) reveals stepwise formation of 1:1 s (host/guest) complex to 2:3 (host/guest) adducts.⁸⁸ This stepwise host/guest complexation is supported by job's plot analysis of ¹H-NMR titration data in DMSO-*d*₆. Structural analysis shows the formation of a dimeric capsular assembly of the flexible macrocycle **40** with one encapsulated **G2** (Fig. 18), while the

¹⁰ remaining **G2** binds outside. Although, the dimeric assembly is more like a pseudo-capsular assembly rather than a capsule.

Fig. 18 View of crystal structure of G2 382. Non-bonding hydrogens and outside G2 molecules are omitted for clarity.

Wang *et al.* have reported an interesting example of anion directed self-assembly of a oxacalix[2]arene[2]triazine receptor **41** (Chart 11) *via* anion- π interaction.⁸⁹ Two molecules of **41** ²⁰ forms a dimeric assembly that encapsulates one $[Cl_2(H_2O)_2]^{2-1}$ rectangular cluster *via* Cl⁻··· π (triazene), π ···O-H (H₂O) and Cl⁻···H-O (H₂O) interactions (Fig. 19a). Anion binding properties of **41** are monitored by fluorescence quenching emission upon addition of anion in acetonitrile. All the anions show 1:1 binding ²⁵ stoichiometry in solution. ¹H-NMR studies with anions induce no noticeable changes, which further confirm binding mode *via* anion··· π interactions. Recently, synthesis of a triazinonide based shape persistent tetrakisimidazolium macrocycle **42** (Chart 11) is described for anion recognition in water *via* fluorescence ³⁰ output.⁹⁰ Fluorescence titration *via* emission enhancement results the selective binding of SO₄²⁻ in water with very high binding

constant (~10⁹). Structural analysis of the crystals grown from a mixture of **42** and excess Na₂SO₄ shows trapping of SO₄²⁻ in the sandwich type dimeric assembly of **42** (Fig. 19b) *via* charge assisted strong C-H···O interactions. Further, the receptors in the sandwich assembly are held together *via* π - π stacking between the phenyl and the triazinonide rings.

Fig. 19 Crystal structures of a) $[Cl_2(H_2O)]^2 - 41_2$ and b) SO₄²⁻ - 42₂. Non-40 bonding hydrogens and countercations are omitted for clarity.

3. Anion binding in unimolecular capsules

Construction of unimolecular capsule from a single receptor ⁴⁵ can be achieved by i) sealing the receptor cavity with anion, ii) binding of anion followed by intramolecular hydrogen bonding within the receptor, iii) stoppering the anion encapsulated receptor with cation/solvent. Literature examples of above classes of unimolecular capsules reported by Atwood, Steed and our ⁵⁰ group are discussed in our previous article.²⁰ Some recent reports of such single molecule capsules, aiming towards recognition of anion, mainly covers the last category of the above mentioned strategies.

Tren based L-alanine amino acid backboned electron-55 withdrawing group attached hexa-amide receptors 43-47 (Chart 12) are explored by our group towards anion binding.⁹¹ Appreciable binding between receptors and Cl, AcO, BzO, HSO₄ with 1:1 (host/guest) stoichiometry is revealed by detailed ITC studies. Furthermore, this class of receptors show selectivity 60 towards AcO⁻ over other investigated anions. Solid state structural evidence of Cl⁻ complex of the pentafluorophenyl attached receptor 43 shows the formation of Cl encapsulated unimolecular capsule (Fig. 20). Cl⁻ is encapsulated in the C_{3v}symmetric cleft of 43 by three N-H…Cl interactions. One 65 tetrabutylammonium countercation seals the cavity of Cl C43 via C-H…O and C-H…F interactions with the receptor, thus, results the formation of an unimolecular capsule. Further the role of countercation in Cl⁻ binding is verified by solution state ITC experiments, by varying the countercation. In cases of all the 70 hexa-amides higher binding affinity is measured for Cl⁻ with TBA countercations over TEA and TMA countercations, which further validates the cooperative effect of ion-pairing.

Fig. 20 Crystal structure showing ion-pair recognition in TBACIC43. Non-bonding hydrogens are omitted for clarity.

- Halide recognition properties of tris-amide **48** (Chart 12) have s been utilized towards liquid-liquid extraction of potassium fluoride/chloride *via* the formation of halide encapsulated 1Dpolymeric assembly.⁹² Very recently, we have reported fluoride recognition properties of tris-amides **48** and **49** in solution and solid state structural studies.⁹³ Structural analysis of both F⁻ and
- ¹⁰ Cl⁻ complexes of **48** show the formation of F⁻/Cl⁻ encapsulated unimolecular capsules (Fig. 21), where one chloroform molecule seals the capsular cavity. Encapsulated F⁻ in F⁻⊂**48** is hydrogen bonded by three N-H^{...}F interactions from amides and one C-H^{...}F interactions from CHCl₃ (Fig. 21a), whereas the Cl atoms of
- ¹⁵ CHCl₃ 'cap' are in short contact with the -C₆F₅ ring. Thus, a solvent capped F⁻ encapsulated single molecule capsule of **48** is described by single crystal X-ray study. Similarly, ditopic recognition of Cl⁻ and CHCl₃ *via* three N-H···Cl and one C-H···Cl interactions *via* unimolecular capsule formation is observed in ²⁰ case of Cl⁻⊂**48** (Fig. 21b). Selective recognition of F⁻ is
- established for both **48** and **49** in CDCl₃ as determined by ¹H-NMR titration study.

Fig. 21 X-ray crystal structures of unimolecular capsules [F(CHCl₃)]⁻⊂48
25 and [Cl(CHCl₃)]⁻⊂48. Non-bonding hydrogens and countercations are omitted for clarity

Apart from the amide receptors, few urea receptors are also accounted for anion recognition *via* unimolecular capsule formation. Das *et al.* have reported the formation of ³⁰ solvent/cation sealed unimolecular capsule of **15** (Fig. 22) toward the encapsulation of F⁻ and SO₄^{2-.57} PO₄³⁻ and CO₃²⁻ induced dimeric capsular assemblies formation of **15** are already demonstrated in the section 2.1. Monotopic F⁻ encapsulation in F⁻ ⊂**15** is facilitated by six N-H…F interactions with the urea groups ³⁵ of the tris-urea. Furthermore, one DMSO/CH₃CN solvent seals

the cavity *via* C-H···O interactions, leading toward the formation of F⁻ bound unimolecular capsule (Fig. 22a) in both the cases. $SO_4^{2^2}$ encapsulation in **15** is assisted by nine N-H···O interactions

with **15** and one C-H···O interaction from the TBA cation. Thus, ⁴⁰ the TBA cation acts as a stopper of the SO₄²⁻ encapsulated unimolecualr capsule (Fig. 22b).

Fig. 22 Crystal structures of unimolecular capsules a) [F(DMSO)]⁻⊂15 and b) (TBASO₄)⁻⊂15. Non-acidic hydrogens and countercations are ⁴⁵ omitted for clarity.

We have reported the formation of SO_4^{2-} encapsulated unimolecular capsule by a cyanuric acid based tris-urea receptor **32**.⁸⁰ Crystal structure of SO_4^{2-} complex shows a partial encapsulation of SO_4^{2-} via six N-H···O interactions. One TBA ⁵⁰ countercation seals the cavity of the SO_4^{2-} **32** via one C-H···O interaction, thus, generates the unimolecular capsule (Fig. 23). This structure resembles our previously reported two TBA capped SO_4^{2-} encapsulated complex of tris-urea **30**.⁷⁹

⁵⁵ Fig. 23 View of SO₄²⁻ bound TBA capped unimolecular capsule of 32. Non-bonding hydrogens, solvent and countercations are omitted for clarity.

4. Sizes of dimeric capsular assemblies

Comparative capsular sizes of various anion assisted dimeric capsules are summarized in table 1. Dimeric capsular assemblies reported for tren based receptors are generally formed through 2:1 and 1:1 (host/guest) stoichiometry via the encapsulation of one and two anionic guest/(s) respectively. In cases of extended tris-65 amide 4, capsular sizes slightly vary from 20.6 to 20.7 Å with the change of encapsulated guest from $[Cl_2(H_2O)_2]^{2-}$ to $[Br_2(H_2O)_2]^{2-}$ ⁴⁴ Dimeric capsules of tris-urea **12** show significant size variation with anions of different size and shape. Capsular sizes of $HAsO_4^{2} \subset 12_2$ and $HPO_4^{2} \subset 12_2$ capsules are measured as 10.22 ⁷⁰ and 9.92 Å respectively, which are reasonably higher than SO₄²⁻ \subset 12₂ and CO₃²⁻ \subset 12₂ capsules.⁵⁰ Pseudo-capsular assembly of 12 with both OH⁻ and H₂PO₄⁻ show higher capsular sizes as 14.95 Å and 13.79 Å respectively. Thus, the inherent flexibility of the tren scaffold is reflected in the capsular size of anion complexes of 75 tris-urea 12. Interestingly monoanionic $H_2PO_4^-$ also induces pseudo-capsular assembly of thiourea 13 with the similar capsular size of 13.44 Å like that of 12. Similar capsular sizes of ~9.1 Å are measured for carbonate capsules for tris-urea 10, 12 and 16. PO_4^{3-} encapsulated dimeric capsules of thiourea 7 and 11 also

show similar capsular size of ~ 10.1 Å.⁴⁷ Thus, size and shape of the anions also contribute to the size variation of the dimeric capsules. Capsular size and anion selectivity relationship is nicely depicted by Custelcean et al. in the anion complexes of tris-urea ⁵ 22.^{65,94} Dimeric capsules formed by encapsulation of anions of different shapes having same countercation show similar capsular size. This feature marked the remarkable rigidity of the capsule despite the inherent flexibility of 22, which is eventually reflected in the anion selectivity of competitive crystallization. On the

10 other hand, variation in countercations causes size variation of the capsules. Further, minimal variations in capsular sizes are reported for Cl⁻ complexes of tris-urea 23.⁶⁸ Change in cation from Na⁺ to Mg²⁺, the capsular sizes remain similar ~ 11.2 Å, which suggest significant rigidity of the capsules by multiple 15 hydrogen bonding interactions.

The heights of the capsules are measured between the centroids of the two receptors in cases of benzene platform based anion receptors. Similarities are found in the capsular sizes of the dimeric capsules formed by $[H_324]^{3+}$ with different hydrated 20 anions such as NO3- (11.14 Å), ClO4- (11.02 Å) and CF3COO-(11.51Å).^{69,70} The slight differences in the capsular size may be due to the variation of shape of the anion and associated water molecules. In cases of the benzene platform based tris-amide receptors dimeric capsules are generally formed via encapsulation

- 25 of one anionic guest in each half capsule irrespective of the functionality of the receptor. Capsular size of $(NO_3)_2^2 \subset 27_2$ capsule is measured as 9.75 Å which resembles the same to the NO₃ trapped dimeric assembly of *para*-nitro substituted trisamide receptor (10.01 Å).^{72,73} Capsular size of $[F_2(H_2O)_4]^2$ 30 cluster templated diemeric capsules of 28 is measured as 9.41 Å
- which is remarkably similar to the fluoride-water cluster encapsulating ortho-nitro (9.19 Å) and para-nitro (9.45 Å) substituted tris-amide receptors.^{71,72,74} Similar trend is also observed in capsular sizes of $[Cl_2(H_2O)_4]^2 \subset 28_2$ capsule (9.65 Å)
- 35 and hydrate-chloride trapped para-nitro substituted tris-amide receptor (9.57 Å).^{72,74} Thus, inherent rigidity of the benzene based tripodal receptors is revealed by the significant similarities in capsular size of the dimeric capsules despite the differences in substituent and composition of the encapsulated guest.

40 Table 1. Capsular size of dimeric capsules having various anionic guests.

Receptor	Platform	Guest and capsular size (Å)
1	Tren-amine	$SiF_6^{2-}(8.75)$
4	Tren-amide	Cl ⁻ (20.62), Br ⁻ (20.75)
7	Tren-thiourea	SO ₄ ²⁻ (10.06), PO ₄ ³⁻ (10.03)
10	Tren-urea	$CO_3^{2-}(9.16)$
11	Tren-thiourea	$PO_4^{3-}(10.13)$
12	Tren-urea	$H_2PO_4^{-1}(13.79), SO_4^{-2-1}(9.18), CO_3^{-2-1}(9.17)$
		HPO ₄ ²⁻ (9.92), HAsO ₄ ²⁻ (10.22), OH ⁻ (14.95)
13	Tren-thiourea	$H_2PO_4^{-}(13.44)$
15	Tren-thiourea	PO ₄ ³⁻ (9.59), CO ₃ ²⁻ (7.93)
16	Tren-urea	CO_3^{2-} (9.06), SO_4^{2-} (9.60), HPO_4^{2-} (9.86)
17	Tren-thiourea	SO_4^{2-} (9.33), $S_2O_3^{2-}$ (10.12)
20	Tren-urea	$C_2 O_4^{2-} (9.81)$
21	Tren-urea	$C_2 O_4^{2-}(10.82)$
22	Tren-urea	$SO_4^{2-} (9.51)^a$, $SO_4^{2-} (9.20)^b$
23	Tren-urea	SO_4^{2-} (9.99) ^c , Cl ⁻ (11.18) ^d ,
		Cl ⁻ (11.24) ^e , Cl ⁻ (11.17) ^f
24	Benzene-amine	NO ₃ ⁻ (11.14), ClO ₄ ⁻ (11.02), CF ₃ COO ⁻ (11.51)
27	Benzene-amide	NO ₃ (9.75)
28	Benzene-amide	F ⁻ (9.41), Cl ⁻ (9.65), SiF ₆ ²⁻ (9.31)
29	Cyanuric-urea	$SO_4^{2-}(10.39)$
· Na ⁺ b· K	$^+$ c $M\sigma^{2+}$ d Na^+	e: K^+ f: $M\sigma^{2+}$ as countercations

a: Na⁺, b: K⁺, c: Mg²⁺, d: Na⁺, e: K⁺, f: Mg²

5. Potential applications

5.1 Anion recognition in aqueous media

Synthetic polyamine and polypeptide-based receptors are 45 popular for anion recognition in aqueous medium.²² However, neutral receptors have also shown their potentiality in this aspect. In fact, tren based first urea/thiourea receptor developed by Morán et al. is reported to bind anions in DMSO-water solvent.46 50 Recently, tren based urea/thiourea receptors have emerged as effective anion receptor via complete encapsulation of anions in aqueous media in their complementary binding site. Fluorinated urea/thiourea receptors reported by Gale et al. have shown binding of anions in DMSO-d₆/0.5%D₂O solvent.⁴⁷ HAsO₄²⁻ $55 \subset 12_2$, $C_2O_4^2 \subset 20_2$, $C_2O_4^2 \subset 21_2$ capsules reported by our group are crystallized from DMSO/5%H2O solvent and effective binding of anions are estimated even in DMSO- d_6/D_2O (9:1, v/v) solvent.53,63 Findings of Custelcean and Wu groups reveal the formation of anion encapsulated capsules of 22 and 23 from 60 highly competitive aqueous media.^{65,68} On other hand, benzene platform based tris-amide and hexa-amides have shown their interest for recognition of hydrated halides via capsule formation.²⁰ In particular, encapsulation of fluoride-water cluster by tris-amide 28 in highly competitive acetone/water (1:1) 65 solvent confirms functional aspects of molecular capsules.⁷⁴ All these results suggest the scope of further exploration of these receptors towards anion separation, transportation etc.

5.2 Anion separation

Custelcean *et al.* have pioneered separation of SO_4^{2-} study by 70 encapsulation of SO_4^{2-} in crystalline capsule.⁶⁵ They have extensively employed tren scaffold based 3-pyridyl functionalised tris-urea 22 for the selective SO₄²⁻ encapsulation from a mixture of competitive aqueous solution through size, shape and charge 75 discrimination. Related solid and solution states binding properties are discussed in our previous article.²⁰ However, SO₄²⁻ separation from highly alkaline aqueous solution is more appealing as it would be a practical solution to the problem of SO₄²⁻ separation from nuclear waste.³⁵ In this direction, Custelcean *et al.* have reported SO₄²⁻ encapsulation in two new crystalline capsules self-assembled from tris-urea **22** and Na₂SO₄/K₂SO₄.⁹⁵ Crystalline capsules with compositions ⁵ [Na₂SO₄(**22**)₂(H₂O)₄] and [K₂SO₄(**22**)₂(H₂O)₂] are obtained in good yields from aqueous methanol solution. In both cases, SO₄²⁻ encapsulation is found to be assisted *via* twelve complementary hydrogen bonding interactions in the dimeric capsular assemblies of **22** (Fig. 24a,b). However, differences are observed in the ¹⁰ coordination environment of countercations. Presence of [Na₂(H₂O)₄]²⁺ *vs* [K₂(H₂O)₂]²⁺ cluster is observed in Na and K-

[Na₂(H₂O)₄]²⁺ vs [K₂(H₂O)₂]²⁺ cluster is observed in Na and K-based system respectively, both of which eventually lead to the formation of NaCl-type framework like Mg-based structure of 22.³⁵ Capsular dimensions vary from 9.51 Å to 9.20 Å moving ¹⁵ from Na to K-based capsule. Interestingly, the SO₄²⁻ encapsulated Na-based system can be selectively crystallized in 90% yield

from highly alkaline aqueous solutions (pH = 14) in presence of competitive anions. Further, the **22** can be recycled by simple water-treatment of the capsule that leaves sodium sulfate in $_{20}$ solution.

Fig. 24 X-ray crystal structures of SO_4^{2+} capsules with a) $[Na_2(H_2O)_4]^{2+}$ and b) $[K_2(H_2O)_2]^{2+}$ cluster. Coordination mode and water hydrogen bonding interactions are presented.

On the other hand, designing of anion receptor aiming toward liquid-liquid extraction of SO₄²⁻ from water is highly challenging due to its large hydration energy.^{96,97} Moyer *et al.* have ³⁰ designated a successful extractant, which has solubility in a water-immiscible solvent, water insolubility and a provision for maintaining phase charge neutrality.³⁵ Due to the importance of SO₄²⁻ separation from nitrate-rich mixtures in the remediation of nuclear waste, several synthetic receptors and different ³⁵ approaches have been developed in recent times. Sessler and Moyer *et al.* have widely utilized dual-host and ion-exchange strategies for SO₄²⁻ extraction.^{35,98} Wu *et al.* have demonstrated

efficient extraction of $SO_4^{2^-}$ from water by a neutral hexa-urea receptor **50** (Chart 13) using tetrabutylammonium chloride as a ⁴⁰ phase-transfer agent.⁹⁹ $SO_4^{2^-}$ selectivity pattern of **50** in aqueous medium (DMSO- $d_6/10\%$ D₂O) is explored towards liquid-liquid extraction of $SO_4^{2^-}$. Addition of TBACI causes CHCl₃ solubility of **50** and possible exchange between Cl⁷ $SO_4^{2^-}$ in L-L extraction process. Structural analysis of the $SO_4^{2^-}$ complex reveals ⁴⁵ monotopic encapsulation of $SO_4^{2^-}$ in the cavity of **50** (Fig. 25) *via* twelve N-H…O interactions.

Fig. 25 View of monotopic $SO_4^{2^\circ}$ encapsulation in the cavity of hexa-urea 50. Non-bonding hydrogens and countercations are omitted for clarity.

We have employed a similar strategy for liquid-liquid extraction of anions by 19 using tetrabutylammonium iodide as phase transfer agent.⁶² Solution state F⁻ selectivity pattern of **19** is established by ¹H-NMR and ITC studies. Further, we have shown liquid-liquid extraction of F⁻ and SO₄²⁻ by **19** via anion exchange 55 technique using tetrabutylammonium iodide as phase transfer agent. The CHCl₃/CH₂Cl₂ solubility of **19** is achieved by adding TBAI, followed by usual liquid-liquid extraction, which result ~70% and 40% extraction of F⁻ and SO_4^{2-} respectively. Crystallization of extracted mass shows SO42- encapsulation in 60 the dimeric capsular assembly of 19 (Fig. 26) via fifteen N-H…O interactions. Capsular dimension of SO42-C192 is measured as 9.51 Å, which is similar to the tren based urea/thiourea capsules. In this context, Moyer et al. have demonstrated the role of cations in the liquid-liquid extraction SO_4^{2-} by a calix[4]pyrrole receptor 65 51 with lipophilic anion exchanger.¹⁰⁰ Superior extraction of SO_4^{2-} is reported with the methyl substituted cations, which is supported by the formation of thermodynamically stable ion-pair complex of SO_4^{2-} .

70 Fig. 26 Single crystal X-ray structure of SO₄²-⊂19₂ dimeric capsule. Nonbonding hydrogens and countercations are omitted for clarity.

Recently, we have demonstrated a rather unique approach for L-L extraction of SO_4^{2-} using the CO_3^{2-} complex of tris-urea **12**. Quantitative formation of carbonate capsules $[\mathbf{12}_2 \cdot CO_3]^{2-}$ via aerial CO₂ fixation and its solubility in water-immiscible solvent like CHCl₃/CH₂Cl₂, encourage us to investigate L-L extraction of

 SO_4^{2-} by $[12_2 \cdot CO_3]^{2^-.50}$ In fact, quantitative (~99%) extraction of $SO_4^{2^-}$ as $[12_2 \cdot SO_4]^{2^-}$ capsule is observed by $[12_2 \cdot CO_3]^{2^-}$ *via* $CO_3^{2^-}$ / $SO_4^{2^-}$ exchange process. Further, this anion exchange process in the capsule is clearly visible through the pink colouration of the ⁵ aqueous phase in presence of phenolphthalein after L-L extraction. Although, use of Cl⁻ as anion exchanger causes impure extraction of $SO_4^{2^-}$ for 12 unlike that of 19 and 51 (Chart 14). Carbonate capsule $[12_2 \cdot CO_3]^{2^-}$ is an exact (2:1) complex of 12 and $CO_3^{2^-}$ which rules out possibility of any excess of $CO_3^{2^-}$ 10 (phase transfer agent) in the organic layer in case of 12.

Chart 14 Schematic presentation of CO_2 fixation and $SO_4^{2^2}$ extraction cycles of **12** *via* molecular capsule formation.

15 5.3 Other relevant applications

Synthetic receptors reported for aerial CO₂ fixation by Gunnlaugsson, Gale and our group are generally obtained from basic DMSO solvent.^{27,30} Encapsulation of such aerially ²⁰ sequestered CO₂ as CO₃²⁻ in a dimeric capsular assembly is well studied in case of tris-urea **12**.³⁰ Tren scaffold based 3nitrophenyl functionalised tris-urea **16** has recently been established as potential system for the fixation of aerial CO₂ as CO_3^{2-} by Das *et al.*⁵⁸ Crystallization of **16** with TBAF/TABOH in ²⁵ DMSO yields CO₃²⁻ encapsulated complex of **16** in 90% yield.

- ²⁵ DMSO yields $CO_3^{2^-}$ encapsulated complex of **16** in 90% yield. Structural analysis shows $CO_3^{2^-}$ templated formation of dimeric capsular assembly of **16** (Fig. 27). Each oxygen atom of $CO_3^{2^-}$ are involved in four N-H···O interactions, thus results a twelve coordinated of $CO_3^{2^-}$ complex. ¹H-NMR titration study of **16** with
- ³⁰ HCO₃⁻ shows 1:1 (host/guest) association in solution as evident from job's plot analysis. Association constant value of HCO₃⁻ with **16** is estimated to be 4.15, which resembles the same of trisurea **12** (4.04) in DMSO- d_6 .³⁰

35 Fig. 27 X-ray crystal structure showing CO₃²⁻⊂16₂. Non-bonding hydrogens and countercations are omitted for clarity.

Structural evidence of $\text{CO}_3^{2^-}$ complexes reveals the necessity of higher coordination for $\text{CO}_3^{2^-}$. Very recently, Hossain *et al.*

Chart 15

have reported CO₂ fixation as CO₃²⁻ by a tren based tripodal hexa-urea **52** (Chart 15) having chelating urea groups.¹⁰¹ Attempt to grow crystals from mixture of **52** and TBAF in DMSO ⁴⁵ generates the CO₃²⁻ complex of **52** in quantitative yield like that of **12**. CO₃²⁻ complex of **52** shows monotopic encapsulation of CO₃²⁻ inside the highly organised cavity of hexa-urea **52** (Fig. 28) *via* twelve N-H···O interactions. However, ¹H-NMR titration study shows lower binding affinity for HCO₃⁻ with hexa-urea **52** ⁵⁰ (log K = 2.35) with 1:1 binding stoichiometry compared to the CO₃²⁻ encapsulating tris-urea receptors.

Fig. 28 View of monotopic encapsulation of CO₃²⁻ in the cavity of hexaurea 52. Non-bonding hydrogens and countercations are omitted for ⁵⁵ clarity.

Development of anion receptors for the binding and transportation of anions across lipid membranes has attracted much attention in recent years. Effective transport of bicarbonate by antiport mechanism is demonstrated for tren based phenyl ⁶⁰ terminal thiourea receptor by Gale *et al.*¹⁰² Encapsulation of CO₃²⁻ is observed in the dimeric capsular assembly of the thiourea in solid state. Fluorinated urea/thiourea receptors (Chart 4) have been reported for better transmembrane transport activity for chloride/nitrate, chloride/sulfate and chloride/bicarbonate ⁶⁵ antiport over their non-fluorinated analogues due to the high lipophilicity of fluorinated receptors.⁴⁷ Capsular recognition of various anions in solid state are observed in cases of this urea/thiourea receptors which are described in section 2.1.

6. Conclusions

70 This article first covers the recent developments on anion-induced capsular assembly thus establishes necessary foundation for critical insight. Then the discussion is directed towards some

70

75

80

85

practical application of molecular capsules through anion recognition. Utility of anion binding in molecular capsules can be explored in new directions which are initiated in recent years. Suitable functionality on new platforms have revealed many s interesting properties such as capsular size modulation, different

- halide-water cluster encapsulation, CO_2 fixation, $SO_4^{2^2}$ extraction, anion transportation etc. In particular, simple anion receptors have shown efficiency towards aerial CO_2 sequestration as $CO_3^{2^2}$ in the molecular capsules. Competitive crystallization and liquid-
- ¹⁰ liquid extraction have emerged as efficient technique to achieve the challenging task of $SO_4^{2^-}$ extraction from water in recent years. A vital task for moving towards the practical application is the construction of molecular capsule for the recognition of anions in aqueous media. Encapsulation of toxic HAsO₄²⁻ in the
- ¹⁵ dimeric capsular assembly of a simple tripodal urea receptor in aqueous medium is also demonstrated in recent times. However, selective binding and removal of such toxic anions like $HAsO_4^{2^-}$, $CrO_4^{2^-}$ from water either by selective crystallization or solvent extraction are yet to be reported. Thus, drinking water
- ²⁰ purification by removing toxic and hazardous anions using simple anion receptor chemistry is one of the exciting prospects of future work.

Acknowledgements

PG acknowledges Department of Science and Technology (DST), ²⁵ for financial support through a Swarnajayanti Fellowship.

Notes and references

35

55

60

^aDepartment of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India. E-mail: <u>icpg@iacs.res.in</u>

- ³⁰ Color codes in crystal figures: orange and purple, carbon; blue, nitrogens; red, oxygen; green, hydrogen; yellow, sulfur; yellow-green, fluorine; lime-green, chlorine; arsenic, pink; phosphorous, deep orange.
 - 1 L. Adriaenssens and P. Ballester, *Chem. Soc. Rev.*, 2013, **42**, 3261-3277.
 - 2 F. Hof, S. L. Craig, C. Nuckolls, J. Rebek, Jr., Angew. Chem., Int. Ed., 2002, 41, 1488-1508.
 - 3 H. Amouri, C. Desmarets and J. Moussa, *Chem. Rev.*, 2012, 112, 2015–2041.
- 4 Z. Laughrey and B. C. Gibb, *Chem. Soc. Rev.*, 2011, **40**, 363-¹¹⁰ 386.
 - 5 M. Yoshizawa, J. K. Klosterman and M. Fujita, *Angew. Chem.*, *Int. Ed.*, 2009, **48**, 3418–3438.
 - 6 A. Lützen, Angew. Chem., Int. Ed., 2005, 44, 1000-1002.
- 45 7 K. S. Iyer, M. Norret, S. J. Dalgarno, J. L. Atwood and C. L. Raston, *Angew. Chem. Int. Ed.*, 2008, **47**, 6362-6366.
 - 8 S. J. Dalgarno, P. K. Thallapally, L. J. Barbour and J. L. Atwood, *Chem. Soc. Rev.*, 2007, 36, 236–245.
 - 9 J. Rebek Jr., Acc. Chem. Res., 2009, 42, 1660–1668.
 - 10 D. Ajami and J. Rebek Jr., Acc. Chem. Res., 2013, 46, 990-999.
 - 11 Anion Coorrdination Chemistry, ed. K. Bowman-James, A. Bianchi and E. García-España, Wiley-VCH, Weinheim, 2011.
 - J. L. Sessler, P. A. Gale and W.-S. Cho, Anion Receptor Chemistry: Monographs in Supramolecular Chemistry, RSC ¹²⁵ Publishing, Cambridge, U.K., 2006.
 - 13 N. Gimeno and R. Vilar, *Coord. Chem. Rev.*, 2006, **250**, 3161–3189.
 - S. S. Zhu, H. Staats, K. Brandhorst, J. Grunenberg, F. Gruppi, E. Dalcanale, A. Lützen, K. Rissanen and C. A. Schalley, *Angew. Chem. Int. Ed.*, 2008, 47, 788-792.

- 15 G. T. Spence and P. D. Beer, Acc. Chem. Res., 2013, 46, 571-586.
- 16 R. Custelcean, Chem. Soc. Rev., 2014, 43, 1813-1824.
- 17 P. Ballester, Chem. Soc. Rev., 2010, **39**, 3810–3830.
- 18 M. Wenzel, J. R. Hiscock and P. A. Gale, *Chem. Soc. Rev.*, 2012, **41**, 480–520.
- 19 P. A. Gale, N. Busschaert, C. J. E. Haynes, L. E. Karagiannidis and I. L. Kirby, *Chem. Soc. Rev.*, 2014, 43, 205-241.
- 20 M. Arunachalam and P. Ghosh, *Chem Commun.*, 2011, 47, 8477-8492.
- 21 J. W. Pflugrath and F. A. Quiocho, J. Mol. Biol., 1988, 200, 163-180.
- 22 S. Kubik, Chem. Soc. Rev., 2010, **39**, 3648-3663.
- 23 Climate Change 2007: Synthesis Report, International Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2007.
- 24 R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe and O. M. Yaghi, *Science*, 2008, **319**, 939-943.
- 25 T. Mitra, X. Wu, R. Clowes, J. T. A. Jones, K. E. Jelfs, D. J. Adams, A. Trewin, J. Bacsa, A. Steiner and A. I. Cooper, *Chem. -Eur. J.*, 2011, **17**, 10235-10240.
- 26 J. M. Simmons, H. Wu, W. Zhou and T. Yildirim, *Energy Environ. Sci.*, 2011, 4, 2177-2185.
- 27 S. J. Brooks, P. A. Gale and M. E. Light, *Chem. Commun.*, 2006, 4344-4346.
- 28 S. J. Brooks, S. E. García-Garrido, M. E. Light, P. A. Cole and P. A. Gale, *Chem.–Eur. J.*, 2007, **13**, 3320-3229.
- 29 T. Gunnlaugsson, P. E. Kruger, P. Jensen, F. M. Pfeffer and G. M. Husse, *Tetrahedron Lett.*, 2003, 44, 8909-8913.
- 30 I. Ravikumar and P. Ghosh, Chem. Commun., 2010, 46, 1082– 1084.
- 31 M. Cametti and K. Rissanen, Chem. Commun., 2009, 2809-2829.
- 32 M. Cametti and K. Rissanen, *Chem. Soc. Rev.*, 2013, 42, 2016-2038.
- 33 *Guidelines for drinking-water quality*, 3rd edition incorporating 1st and 2nd addenda. Vol. 1. Recommendations. Geneva, World Health Organization, **2008**, 306–308.
- 34 World Health Organization, Guidelines for Drinking Water Quality vol. 1: Recommendation, World Health Organization (WHO), Geneva, 1993.
- 35 B. A. Moyer, R. Custelcean, B. P. Hay, J. L. Sessler, K. Bowman-James, V. W. Day and S. –O. Kang, *Inorg. Chem.*, 2013, 52, 3473–3490 and references therein.
- 36 I. Ravikumar and P. Ghosh, Chem. Soc. Rev., 2012, 41, 3077– 3098.
- 37 R. Custelcean, Chem. Commun., 2013, 49, 2173-2182.
- 38 A. Danby, L. Seib, N. W. Alcock and K. Bowman-James, *Chem. Commun.*, 2000, 973-974.
- 39 M. A. Hossain, J. A. Liljegren, D. Powell and K. Bowman-James, *Inorg. Chem.*, 2004, 43, 3751-3755.
- 40 P. S. Lakshminarayanan, E. Suresh and P. Ghosh, *Inorg. Chem.*, 2006, **45**, 4372-4380.
- 41 P. S. Lakshminarayanan, I. Ravikumar, E. Suresh and P. Ghsoh, *Inorg. Chem.*, 2007, **46**, 4769-4771.
- 42 P. Bose, I. Ravikumar and P. Ghosh, *Inorg. Chem.*, 2011, **50**, 10693-10702.
- 43 A. S. Singh and S. –S. Sun, Chem. Commun., 2011, 47, 8563-8565.
- 44 A. Basu and G. Das, *Chem. Commun.*, 2013, **49**, 3997-3999.
- 45 C. Jin, M. Zhang, L. Wu, Y. Guan, Y. Pan, J. Jiang, C. Lin and L. Wang, *Chem. Commun.*, 2013, **49**, 2025-2027.
- 46 C. Raposo, M. Almaraz, M. Martı'n, V. Weinrich, M. L. Mussóns, V. Alcázar, M. C. Caballero and J. R. Morán, *Chem. Lett.*, 1995, 759-760.
- 47 N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernández, R. Pérez-Tomás and P. A. Gale, J. Am. Chem. Soc., 2011, 133, 14136-14148.
- 48 P. S. Lakshminarayanan, I. Ravikumar, E. Suresh and P. Ghosh, *Chem. Commun.*, 2007, 5214–5216.

90

95

105

115

120

15

20

25

30

40

45

50

55

60

65

ChemComm

75

80

85

90

105

- 49 I. Ravikumar, P. S. Lakshminarayanan, M. Arunachalam, E. Suresh and P. Ghosh, *Dalton Trans.*, 2009, 4160–4168.
- 50 B. Akhuli, I. Ravikumar and P. Ghosh, *Chem. Sci.*, 2012, **3**, 1522-1530.
- 51 B. K. Mandal and K. T. Suzuki, *Talanta*, 2002, **58**, 201-235.
- 52 M. Elias, A. Wellner, K. Goldin-Azulay, E. Chabriere, J. A. Vorholt, T. J. Erb and D. S. Tawfik, *Nature*, 2012, **491**, 134–137.
- 53 R. Dutta, P. Bose and P. Ghosh, *Dalton Trans.*, 2013, **42**, 11371-11374.
 - 54 R. Custelcean, B. A. Moyer and B. P. Hay, *Chem. Commun.*, 2005, 5971-5973.
 - 55 D. A. Jose, D. K. Kumar, B. Ganguly and A. Das, *Inorg. Chem.*, 2007, 46, 5817-5819.
- 56 S. K. Dey and G. Das, *Dalton Trans.*, 2011, 40, 12048-12051.
 - 57 S. K. Dey and G. Das, *Dalton Trans.*, 2012, **41**, 8960-8972.
- 58 S. K. Dey, R. Chutia and G. Das, *Inorg. Chem.*, 2012, **51**, 1727-1738
- 59 R. Chutia, S. K. Dey and G. Das, *Cryst. Growth Des.*, 2013, **13**, 883-892.
 - 60 A. Basu and G. Das, *Dalton Trans.*, 2012, **41**, 10792-10802.
 - 61 A. Pramanik, D. R. Powell, B. M. Wong and M. A. Hossain, *Inorg. Chem.*, 2012, **51**, 4274–4284.
- 62 P. Bose, R. Dutta, S. Santra, B. Chowdhury and P. Ghosh, *Eur. J. Inorg. Chem.*, 2012, 5791-5801.
- 63 P. Bose, R. Dutta and P. Ghosh, Org. Biomol. Chem., 2013, 95 11, 4581-4584.
 - 64 P. A. Bean, J. Chem. Educ., 2012, 89, 417-418.
- 65 R. Custelcean, P. Remy, P. V. Bonnesen, D. Jiang and B. A. Moyer, *Angew Chem., Int. Ed.*, 2008, **47**, 1866-1870.
- 66 B. Wu, J. Liang, J. Yang, C. Jia, X.-J. Yang, H. Zhang, N. 100 Tang and C. Janiak, *Chem. Commun.*, 2008, 1762-1764.
- 67 R. Zhang, Y. Zhang, J. Wang, L. Ji, X. Huang and B. Wu, *Chin. J. Chem.*, 2013, **31**, 679-683.
- 35 68 R. Zhang, Y. Zhao, J. Wang, L. Ji, X. –J. Yang and B. Wu, *Cryst. Growth Des.*, 2014, **14**, 544-551.
 - 69 M. Arunachalam, S. Chakraborty, S. Marivel and P. Ghosh, *Cryst. Growth Des.*, 2012, **12**, 2097–2108.
 - 70 M. Arunachalam and P. Ghosh, Chem. Commun., 2009, 3184-3186.
 - 71 M. Arunachalam and P. Ghosh, *Chem. Commun.*, 2009, 5389- 110 5391.
 - 72 M. Arunachalam and P. Ghosh, *Inorg. Chem.*, 2010, **49**, 943-951.
 - 73 M. Arunachalam and P. Ghosh, Ind. J. Chem., Sec A., 2011, 1343-1349.
 - 74 S. Chakraborty, R. Dutta, M. Arunachalam and P. Ghosh, ¹¹⁵ Dalton Trans., 2014, 43, 2061-2068.
 - 75 Y. -J. Li, L. Xu, W. -L. Yang, H. -B. Liu, S. -W. Lai, C. -M. Che and Y. -L. Li, *Chem. Eur. J.*, 2012, **18**, 4782-4790.
 - 76 F. Hettche and R. W. Hoffmann, New J. Chem., 2003, 27, 172–177.
 - 77 M. Mascal, I. Yakovlev, E. B. Nikitin and J. C. Fettinger, ¹²⁰ Angew. Chem. Int. Ed., 2007, 46, 8782-8784.
 - 78 R. Dutta and P. Ghosh, Eur. J. Inorg. Chem., 2012, 3456–3462.
 - 79 I. Ravikumar and P. Ghosh, Chem. Commun., 2010, 46, 6741– 6743.
 - 80 R. Dutta and P. Ghosh, Eur. J. Inorg. Chem., 2013, 2673- 125 2681.
 - 81 Y. S. Park, S. Seo, E. –H. Kim and K. Paek, Org. Lett., 2011, 13, 5904-5907.
 - 82 T. Taira, D. Ajami and J. Rebek, Jr., J. Am. Chem. Soc., 2012, 134, 11971–11973.
 - 83 F. C. Tucci, D. M. Rudkevich, J. Rebek, Jr., J. Am. Chem. ¹³⁰ Soc., 1999, **121**, 4928-4929.
 - 84 C. Gaeta, C. Talotta, P. D. Sala, L. Margarucci, A. Casapullo and P. Neri, J. Org. Chem., 2014, dx.doi.org/10.1021/jo500422u.

- 85 K. A. Nielsen, W. –S. Cho, J. Lyskawa, E. Levillain, V. M. Lynch, J. L. Sessler and J. O. Jeppesen, *J. Am. Chem. Soc.*, 2006, **128**, 2444-2451.
- 86 D. S. Kim, V. M. Lynch, J. S. Park and J. L. Sessler, J. Am. Chem. Soc., 2013, 135, 14889–14894.
- 87 B. M. Rambo, H. -Y. Gong, M. Oh and J. L. Sessler, Acc. Chem. Res., 2012, 45, 1390–1401.
- 88 H. –Y. Gong, B. M. Rambo, V. M. Lynch, K. M. Keller and J. L. Seesler, *J. Am. Chem. Soc.*, 2013, **135**, 6330–6337.
- 89 D. -X. Wang, S. -X. Fa, Y. Liu, B. -Y. Houa and M. -X. Wang, Chem. Commun., 2012, 48, 11458–11460.
- 90 H. Zhou, Y. Zhao, G. Gao, S. Li, J. Lan and J. You, J. Am. Chem. Soc., 2013, 135, 14908–14911.
- 91 P. Bose, I. Ravikumar, B. Akhuli and P. Ghosh, *Chem. Asian J.*, 2012, 7, 2373–2380.
- 92 I. Ravikumar, S. Saha and P. Ghosh, *Chem. Commun.*, 2011, 47, 4721-4723.
- 93 S. Saha, B. Akhuli, I. Ravikumar, P. Lakshminarayanan and P. Ghosh, *Cryst. Eng. Comm.*, 2014, 10.1039/C3CE42440E.
- 94 A. Rajbanshi and R. Custelcean, *Supramol. Chem.*, 2012, **24**, 65-71.
- 95 A. Rajbanshi, B. A. Moyer and R. Custelcean, *Cryst. Growth Des.*, 2011, **11**, 2702–2706.
- 96 F. Hofmeister, Arch. Exp. Pathol. Pharmakol., 1888, 24, 247-260.
- 97 Y. Marcus, J. Chem. Soc. Faraday Trans., 1991, 87, 2995-2999.
- 98 L. R. Eller, M. Stępień, C. J. Fowler, J. T. Lee, J. L. Sessler and B. A. Moyer, J. Am. Chem. Soc., 2007, 129, 11020– 11021.
- 99 C. Jia, B. Wu, S. Li, X. Huang, Q. Zhao, Q. –S. Li and X. –J. Yang, Angew. Chem. Int. Ed., 2011, 50, 486–490.
- 100 C. J. Borman, R. Custelcean, B. P. Hay, N. L. Bill, J. L. Sessler and B. A. Moyer, *Chem. Commun.*, 2011, **47**, 7611– 7613.
- 101 A. Pramanik, M. E. Khansari, D. R. Powell, F. R. Fronczek and M. A. Hossain, Org. Lett., 2014, 16, 366-369.
- 102 N. Busschaert, P. A. Gale, C. J. E. Haynes, M. E. Light, S. J. Moore, C. C. Tong, J. T. Davis and W. A. Harrell, Jr., *Chem. Commun.*, 2010, **46**, 6252–6254.

85

90

95

100

105

110

115

20

25

30

35

40

45

50

55

Dutta obtained Ranjan his Master's degree in chemistry from Indian Institute of Technology, Kanpur in 2008. He 5 has joined for PhD under the supervision of Professor Pradyut Ghosh in the Department of Inorganic Chemistry, Indian Association for the Cultivation of 10 Science (IACS) in 2008. Recently

he has submitted his thesis entitled "Development of Cyanuric Acid Platform Based Anion Receptors: Separation and Extraction Studies Using Relevant Neutral Receptors" to the University of Calcutta. His research interest covers recognition of anions and 15 removal of toxic anions from water.

⁶⁰ Pradyut Ghosh is currently a Professor in the Department of Inorganic Chemistry, Indian Association for the Cultivation of Science (IACS), India. He ⁶⁵ received his PhD in Chemistry from Indian Institute of Technology, Kanpur, under the direction of Parimal K. Bharadwaj in 1998. He spent ⁷⁰ two years as a post-doctoral fellow at Texas A&M

University with Richard M. Crooks and he was an Alexander von Humboldt Fellow at University of Bonn, Germany, in Fritz Vögtle's group. Upon his return to India, he joined CSMCRI, ⁷⁵ India, and in 2007 he moved to IACS. His present research interests are recognition, extraction and chemical sensing of ions of environmental and biological relevance, supramolecular aggregation and interlocked molecules.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Graphical Abstract

Recent developments in anion induced capsular self-assemblies

Ranjan Dutta and Pradyut Ghosh*

