This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Two mitochondria-targeted real-time probes were presented, which could selectively respond to hypochlorite over other ROS. Meanwhile, the “off-on” probes could successfully apply in the in vivo imaging of hypochlorite in living mice. Hypochlorous acid (HClO)/hypochlorite (ClO-) is one of the ROS and is widely encountered in our daily life. For instance, sodium hypochlorite is frequently used as a bleaching agent. On the other hand, in living organism, hypochlorite is produced mainly in leukocytes from hydrogen peroxide and chloride ions in a myeloperoxidase (MPO)-catalyzed reaction, which is linked to innate host defense and is of great importance in killing a wide range of pathogens. Hence, the maintenance of normal level of ClO- is fairly essential for numerous cellular functions. Whereas, abnormal hypochlorite level is considered to be associated with some diseases, like atherosclerosis, osteoarthritis, rheumatoid arthritis and lung injury. Therefore, a rapid and sensitive detection of ClO- in vitro and in vivo is of significant interest. To date, a number of fluorescent probes for ClO- have been reported. However, most of them are faced with some following drawbacks: (a) interference from other ROS, (b) poor water solubility, and (c) autoxidation and photo bleaching. Moreover, since mitochondria are the main source of intracellular ROS, monitoring ClO- in mitochondria is particularly meaningful and valuable. Nevertheless, quite few fluorescent probes for mitochondrial ClO- have been developed, of which the water solubility and selectivity still need to be improved.

In 2008, Ma group developed a highly selective fluorescent probe for ClO- by oxidizing dibenzyldiimide into dibenzyldiimide, which can further undergo decomposition in some nucleophilic solvents. However, 30% THF was needed as co-solvent for this probe. Here, we reported two colorimetric and fluorescent probes Rh-TPP and Rh-Py for ClO- with excellent water solubility, high selectivity and fast response, which utilize the oxidation-hydrolysis of benzoyl acetohydrazide (Scheme 1). Rh-TPP contains a triphenylphosphonium (TPP) moiety, which has been extensively utilized as a mitochondria-targeted functional group. By contrast, a quaternarized pyridine moiety is appended to Rh-Py. Very recently, the pyridinium unit has been applied to target mitochondria specifically. In these cases, the pyridinium moiety was conjugated to the fluorophore and became part of the whole luminophore, thus affecting the fluorescence properties of the probes. As for Rh-Py, the pyridinium moiety is attached to rhodamine via a flexible chain, which can avoid the negative effect mentioned above. Not surprisingly, both of Rh-TPP and Rh-Py can detect ClO- in mitochondria and can be used for imaging ClO- in vivo. Here, TPP moiety and pyridinium unit not only act as mitochondria-targeted carriers but also improve the water solubility of these two probes. These two compounds were prepared via simple process and characterized by 1H, 13C NMR and HRMS (see ESI).

In order to find the effect of metal ions on the probes, we added different metal ions (Na+, K+, Mg2+, Fe3+, Cd2+, Ni2+, Co2+, Cr3+, Pb2+, Hg2+, Al3+, Mn2+, Ag+, Cu2+, Zn2+) to the solution of 5 μM Rh-TPP or Rh-Py in PBS (pH 7.4, 10 mM, containing 0.1% DMSO), suggesting the excellent selectivity of Rh-TPP and Rh-Py toward ROS. Simultaneously, the addition of NaClO to the solution of 5 μM Rh-TPP in PBS (pH 7.4, 10 mM, containing 0.1% DMSO) was added 50 μM NaClO and a typical absorption peak of rhodamine B at 560 nm appeared obviously, accompanied by a colour change from colourless to light purple (Figure S1). While other ROS (i.e. 500 μM for ·OH, 100 μM for O2·-, 100 μM for H2O2, 50 μM for ONOO-, 100 μM for BuO·OH) were added to the solution of Rh-TPP, no change in the absorption spectra of Rh-TPP was observed. A similar phenomenon was discovered upon addition of ROS to the solution of 5 μM Rh-Py in PBS (pH 7.4, 10 mM, containing 0.1% DMSO), suggesting the excellent selectivity of Rh-TPP and Rh-Py toward ROS. Simultaneously, the addition of NaClO to the solution of Rh-TPP or Rh-Py also induced a dramatic fluorescence enhancement of these two compounds, ~200 fold for Rh-TPP and ~380 fold for Rh-Py, respectively, as shown in Figure 1. However, the addition of other ROS caused negligible variation of the fluorescence of Rh-TPP and Rh-Py. Considering that cations might interact with benzoyl acetohydrazide unit and then lead to the spiroring-opening of rhodamine, the fluorescence responses of Rh-TPP and Rh-Py toward metal ions were explored (Figure S2). When 50 μM metal ions (Na+, K+, Mg2+, Fe3+, Cd2+, Ni2+, Co2+, Cr3+, Pb2+, Hg2+, Al3+, Mn2+, Ag+, Cu2+, Zn2+) were added to the solution of 5 μM Rh-TPP or Rh-Py in...
PBS, no obvious emission change was found. Accordingly, Rh-TPP and Rh-Py can act as highly selective and sensitive probes for ClO- in water with dual modes.

Fluorescence titration experiments demonstrated that the fluorescence of these two rhodamine derivatives could be enhanced apparently upon addition of NaClO (0-100 μM), as depicted in Fig.2, and a linearly proportional increment of emission intensity to the concentration of NaClO in the range of 0-10 μM was disclosed for either probe (Figure S3). The quantum yields of both Rh-TPP and Rh-Py were as low as 0.01 and reached to 0.29 and 0.51 in the presence of NaClO, respectively. According to the titration profiles, the detection limits (S/N = 3) toward NaClO were calculated to be 1.1×10⁻⁷ M for Rh-TPP and 2.4×10⁻⁸ M for Rh-Py. The effect of pH on the fluorescence emission enhancement of Rh-TPP or Rh-Py to NaClO was investigated (Figure S4). The results indicated that both Rh-TPP and Rh-Py can effectively detect NaClO under neutral and basic conditions. As the pKa of HClO is 7.6, we reasoned that Rh-TPP and Rh-Py sense ClO- instead of HClO. In view of the slightly basic condition in mitochondria, we assumed that Rh-TPP and Rh-Py should be suitable for the detection of mitochondrial ClO-.

Subsequently, the time dependent fluorescence changes of Rh-TPP and Rh-Py with NaClO were investigated (Figure S5). Rh-TPP or Rh-Py was non-emissive before the addition of NaClO. However, the emission intensities of these two probes increased profoundly and reached a plateau immediately once 10 equiv NaClO was added, indicating that the reaction between Rh-TPP or Rh-Py and NaClO can be accomplished within a few seconds, which is very important for the real-time imaging. The photostability of Rh-TPP and Rh-Py in the absence or presence of NaClO was also measured and the results showed that the fluorescence intensities of Rh-TPP and Rh-Py in the absence or presence of NaClO kept almost steady in 30 min (Figure S6), indicating elegant antioxidant abilities of both probes.

To confirm that the reaction mechanism was as same as reported, we undertook ESI-MS analysis (Figure S7-S8). The peak at m/z ~443.2 corresponding to rhodamine B was found in both MS spectra, which demonstrated the mechanism of the oxidation-reduction of benzoyl acetohydrazide. The detailed reaction process was illustrated in Scheme S2.

The desirable fluorescence properties of Rh-TPP and Rh-Py for ClO- prompted us to its utility for the detection of intracellular ClO-. A standard MTT assay showed that cell viability was rarely changed even though 10 μM Rh-TPP or Rh-Py was added for 24 h (Figure S9). However, the addition of 20 μM Rh-TPP led to the death of more than 85% of HeLa cells, while more than 95% of cells still kept alive after 20 μM Rh-Py was added, indicating that a pyridinium unit might show lower toxicity than a tripheylphosphonium moiety did. Then, confocal microscopy experiments were carried out on HeLa cells. HeLa cells were incubated with 5 μM Rh-TPP or Rh-Py for 30 min at 37 °C in PBS. Upon excitation at 543 nm, there was no intracellular orange fluorescence between 555-600 nm (Figure S10 b and f).

When 100 μM NaClO was added then incubated for another 10 min, intense fluorescence emerged in Rh-TPP or Rh-Py-loaded HeLa cells.
cells (Figure S10 c and g), showing that Rh-TPP and Rh-Py are well cell-permeated and can react with intracellular ClO⁻ rapidly. To further examine the subcellular localization of Rh-TPP and Rh-Py, commercially available mitochondrial dye, Mito Tracker Green, was employed for a co-localization study. As displayed in Fig. 3, the changes in the intensity profile of linear regions of interest (ROIs) (synthetic probes and MitoTracker Green) tended toward synchronization, rhodamine signals in the fluorescence of Mito Tracker Green, demonstrating that Rh-TPP and Rh-Py were site-specifically internalized in mitochondria in living cells.

Fig. 3 HeLa cells were stained with Rh-TPP or Rh-Py for 30 min, and then incubated with NaClO (100 μM) for 10 min; finally, Mito Tracker Green (1 μM) was added to the cells and the cells were incubated for another 20 min. (a) and (c): the fluorescence images of Rh-TPP and Rh-Py in presence of NaClO; (b) and (f): the fluorescence images of Mito Tracker Green; (c) and (g): merged images; (d) and (h): intensity profile of ROIs across HeLa cells. Red lines represent the intensity of synthetic probes and green lines represent the intensity of Mito Tracker Green. Bars: 25 μm.

We finally evaluated the suitability of the probes for visualizing ClO⁻ in living animals. Nude mice were selected as our model. The mice were given a skin-pop injection of Rh-TPP or Rh-Py (50 μL, 100 μM in PBS (pH 7.4, 10 mM, containing 0.1% DMSO)) on the right side, and 15 minutes later, they were given an injection of 10 equiv of NaClO in the same region. The mice were then imaged at different time. As shown in Fig. 4, both Rh-TPP and Rh-Py could respond to the NaClO injected into the mice, and the fluorescence intensity hardly changed after 20 min, proving that Rh-TPP and Rh-Py can detect NaClO in vivo without the interference of background signals.

Fig. 4 Representative fluorescence images (pseudocolor) of nude mice given a skin-pop injection of (a) Rh-TPP and (b) Rh-Py (50 μL, 100 μM in PBS (pH 7.4, 10 mM, containing 0.1% DMSO), region A and C, respectively) and a subsequent skin-pop injection of NaClO (50 μL, 1 mM in PBS (pH 7.4, 10 mM)). Representative fluorescence images (pseudocolor) of nude mice given a skin-pop injection of (a) Rh-TPP and (b) Rh-Py (50 μL, 100 μM in PBS (pH 7.4, 10 mM, containing 0.1% DMSO), region B and D, respectively). Images were taken after incubation for 20, and 40 min, respectively. Images were taken using an excitation laser of 534 nm and an emission filter of 586 ± 20 nm.

Conclusions

In summary, two colorimetric and fluorescent probes Rh-TPP and Rh-Py for ClO⁻ were prepared based on the oxidation-hydrolysis of benzoyl acetohydrazide. Both of the probes exhibited high sensitivity and excellent selectivity toward ClO⁻ among ROS and cations with a rapid response time. The imaging of intracellular ClO⁻ by utilizing these two probes was also examined and it was demonstrated that Rh-TPP and Rh-Py could detect ClO⁻ in mitochondria with the help of a triphenylphosphonium (TPP) and pyridinium unit, respectively. Ultimately, Rh-TPP and Rh-Py were applied in the in vivo imaging of ClO⁻ in living mice. We anticipate that these two compounds can be utilized in a variety of chemical and biological applications.

Acknowledgment

This work was financially supported by the National Program on Key Basic Research Project of China (973 Program, 2012CB720603 and 2013CB8328900), the National Science Foundation of China (Nos. 21222205, 21321061, J1310008 and J1103315), and the Specialized Research Fund for the Doctoral Program of Higher Education in China (20120181130006).

Notes and references

