This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Highly Selective Directed Arylation Reactions via Back-to-Back Dehydrogenative C–H Borylation / Arylation Reactions

Eric C. Keske, Brandon D. Moore, Olena V. Zenkina, Ruiyao Wang, Gabriele Schatte and Cathleen M. Crudden

Dimeric rhodium N-heterocyclic carbene complexes are demonstrated to be effective catalyst precursors for directed C–H borylation reactions at room temperature. The reactions are highly selective for mono-borylation and can be combined with a one-pot Suzuki–Miyaura coupling to give C–H arylation products with exclusive selectivity for mono-arylation without the requirement for steric blocking groups.

Introduction

Transition metal catalyzed direct C–H arylation reactions have proven to be important alternatives to the more traditional cross coupling procedures which require the preactivation of substrates. Directing groups are commonly incorporated in order to control the regioselectivity of these reactions, however in the absence of steric blocking groups, the presence of multiple ortho C–H bonds within an aromatic substrate can result in poor selectivity (Eq. 1). An alternative to the use of blocking groups involves the initial selective synthesis of mono borylated substrates by C–H borylation, which are then subjected to traditional methods of cross-coupling procedures such as the Suzuki–Miyaura reaction (Eq. 2). Although this method requires two steps, it can be completed in one pot, and represents a valuable alternative strategy to direct C–H arylation in substrates that otherwise give mixtures of products.

![Diagram of C–H Borylation Reaction]

Reliable and robust synthetic routes to boronic acids are extremely important, with C–H borylation routes among the most important. These transformations have predominantly utilized iridium and rhodium catalysts, and the observed regiochemistry is controlled by steric considerations, although directed ortho C–H borylations of arenes have also been described. Sawamura and co-workers have recently reported such a reaction using heterogeneous Rh3 phosphine complexes as catalysts, which display remarkable activity in the directed C–H borylation of sp2 and sp3 C–H bonds under mild conditions, using a wide variety of directing groups. The one limitation of this important advance is the requirement for the specialized SMAP ligands.

N-Heterocyclic carbenes (NHCs) have emerged as an exciting class of ligands, capable of producing highly reactive metal centres through the combination of strong sigma donation, and large steric demand. We and others have recently reported the preparation and use of dimeric Rh3 NHC olefin complexes which are remarkable in their high level of unsaturation. Oro and Castarlenas have employed these catalysts in the hydrothiolation of alkynes, and in the annulations of alkynes with vinyl pyridines. Herein, we report that these simple, highly reactive catalysts are capable of affecting highly selective, directed C–H borylations. Reactions proceed under mild conditions and with high selectivity. Borylated products can be directly subjected to Suzuki–Miyaura cross coupling reactions the overall process amounts to C–H arylation with complete selectivity for mono arylation.

Results/Discussion

We recently described the reactivity of [Rh(IPr)(C3H4)Cl] (1) towards phosphines and nitrogen derived ligands. For instance, the reaction of 2,2'-bipyridine (Bipy) with 1 resulted in the clean formation of [Rh(IPr)(Bipy)Cl] (2) in near quantitative yield (Scheme 1a). Related complexes were proposed by Chang as likely intermediates in the roll-over C–H alkylation of bipyridine substrates. In accordance with this, when 1 was treated with 2 eq. of 2-phenyl pyridine (2-Ph-pyr) at room temperature, the 1H NMR displayed a new characteristic hydride resonance at –24.5 ppm (δ_Rh-H = 48.9 Hz) indicative of the formation of a Rh10-H complex such as 3a through C–H activation of 2-Ph-pyr (Scheme 1b). Although attempts to grow X-ray quality crystals of complex 3a were unsuccessful, single crystals suitable for X-ray diffraction of model complex 3b were obtained. The X-ray crystal structure clearly demonstrates the successful formation of C–H activated complex 3b, even at room temperature.
In addition to several reports of Rh catalysts in C–H activation processes, we were intrigued by the seminal report of Marder, describing the dehydrogenative C–H borylation of simple aromatics with pinacol borane (HBPin) using [Rh(PiPr3)2ClN2]. It is postulated that the active species in this process is a RhH complex formed in-situ by reductive elimination of ClBPin from the Rh centre, after oxidative addition of HBPin at 140 °C. Since both catalysts should be highly electron rich and coordinately unsaturated, we were inspired to assess the reactivity of complex 1 in C–H borylation reactions utilizing common directing groups.

The reaction of 2-Ph-pyr with HBPin and 1 mol% of 1 at 25 °C resulted in no observable product. In order to accelerate reductive elimination of ClBPin from the Rh centre, after oxidative addition of HBPin at 140 °C. Since both catalysts should be highly electron rich and coordinately unsaturated, we were inspired to assess the reactivity of complex 1 in C–H borylation reactions utilizing common directing groups.

Several substituted 2-phenyl pyridines were subjected to optimized reaction conditions (Table 1). Alkyl substituents in the meta and para positions of the phenyl ring were well tolerated producing 5b and 5c in high yields. However, a single substituent in the ortho position, or two in each meta position were not tolerated (5d and 5e). This is likely related to the decreased ability of the substrates to cyclometalate with the Rh catalyst. A 3,4-disubstitution pattern had no effect on the reaction, as both products 5f and 5i were formed selectively and in high yield. Importantly, despite the excess of HBPin present and two ortho protons in the substrates, diborylated products were only observed in trace amounts in select examples.

Table 1 Substrate Scope

We propose that this high selectivity is due to hemilabile coordination of the pyridyl nitrogen to boron, which prevents bonding of the pyridyl nitrogen to Rh and subsequent C–H activation at the second ortho position. The X-ray crystal structure of 5b clearly demonstrates that this coordination occurs in the solid state (Fig. 1), and solution 11B NMR studies show significantly upfield shifted 11B NMR resonances compared to typical sp2 C–B species, consistent with the presence of this interaction in solution.

Figure 1 X-ray crystal structure of 5b, ellipsoids at 50%, see SI for details

A potential mechanism for the observed transformation is presented in Fig. 2. Generation of active catalyst A occurs first by salt metathesis with NaOR, followed by oxidative addition of

Scheme 1 Stoichiometric reactions of complex 1 with a) Bipy and b) phenyl pyridine, and 2,2’-biquinoline and c) X-ray crystal structure of 3b with ellipsoids at 50%, see SI for details. Dipp= 2,6-diisopropylphenyl.
HBPin and facile reductive elimination of ROBPin. B–H oxidative addition can then occur resulting in intermediate B, which, after loss of H2, produces Rh boryl species C. Reaction of C with phenyl pyridine results in D, which can then release the product and regenerate the active catalyst A completing the cycle.

Figure 2 Plausible mechanism for C–H borylation

We then sought to explore the possibility of a sequential borylation-arylation, ideally with little to no workup between the two reactions. With this in mind, a catalyst system consisting of Pd(dbaddba)3 and [HBPin][BF4] with K2CO3 was applied to isolated product 5a in benzene at 60 °C. Under these conditions, arylated product 6a was obtained in 82% isolated yield (Scheme 2).

More importantly, a sequential one-pot borylation-arylation requiring no workup was affected merely by the addition of all reagents to the original reaction mixture (Table 2). This sequential process resulted in exclusively monoarylated products in reasonable yields over two steps. Thus several phenyl pyridines were borylated and subsequently monoarylated in one-pot under relatively mild conditions.

Scheme 2 Suzuki–Miyaura coupling reaction on isolated 5a.

Table 2 One pot borylation-arylation of phenyl pyridines

Conclusions

In conclusion, we have developed a very mild procedure for the directed C–H borylation catalyzed by a highly unsaturated Rh–NHC complex derived from pre-catalyst 1, giving the desired products in good yields in short time frames. This procedure was combined with a sequential one-pot Suzuki–Miyaura cross-coupling reaction to give the overall C–H arylation product in highly selective manner. The key significance of this report is the relatively simple nature of the Rh complex, which is easily prepared from commercially available [Rh(C5H5)2Cl] and IPr. We are currently investigating the scope of other C–H activated processes, and optimizing catalyst performance for the activation of more difficult substrates.

Johnson-Matthey is thanked for a generous donation of metals. CMC thanks the Natural Sciences and Engineering Research Council (NSERC) for Discovery and Accelerator awards and the Canada Foundation for Innovation. ECK thanks NSERC for a PGSD award and both ECK and BDM thank Queen’s University for QGS awards. Dr. Pubill-Ulldemolins and Dr. Eisenberger are thanked for insightful conversations. JKH and GNR are thanked for their contribution during the writing of this manuscript.

Notes and references

In these cases, the HBPin is fully consumed and converted to B

\[\text{BHPin} \rightarrow \text{B} \]

14. With [Rh(µCO)(µ-PrCl)]

17. See SI for details.

18. In these cases, the HBPin is fully consumed and converted to B-pin.
Mono-Selective Rh/Pd catalyzed C-H Arylation