This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A synthetic model for the oxygen-evolving complex in Sr$^{2+}$-containing photosystem II

Changhui Chena, Chunxi Zhangb, Hongxing Donga, Jingquan Zhaob

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX
DOI: 10.1039/b000000x

A novel heterometallic MnSr complex containing Mn$_2$SrO$_4$ cuboidal moiety and all types of μ-O2 moieties observed in the oxygen-evolving complex (OEC) in Sr$^{2+}$-containing photosystem II (PSII) has been synthesized and characterized, which provides a new synthetic model for the OEC.

The oxygen-evolving complex (OEC) within photosystem II (PSII) of plants, algae and cyanobacteria serves as a nature’s blueprint for water splitting catalyst$^{1-5}$. The structure of OEC has been recently revealed by X-ray crystal structure of PSII (Fig. 1)$^{11-13}$. There are two unique characteristics in the structural motif of OEC. One is the incorporation of Ca$^{2+}$ within the Mn$_2$Ca$_4$ cubane through three μ-oxido moieties. The other is the simultaneous presence of μ_2-O^2 (e. g. O4), μ_2-O^2 (e. g. O1, O2, O3) and μ_2-O^2 (e. g. O5). The entire OEC is embedded in a large protein matrix through H-bond interactions and direct ligations to six carboxylate and one imidazole groups of the amino acid residues on the D$_1$ and CP$_{43}$ polypeptides in PSII. Ca$^{2+}$ is known as an essential component for the function of OEC$^{6, 7}$, which can be functionally replaced only by Sr$^{2+}$ without significant disturbing the structure of OEC$^{8, 9}$.

![Fig. 1 Scheme for the OEC in PSII](image)

The water-splitting reaction involves five different S-states (S_n, n = 0 ~ 4) of the OEC. Spectroscopic studies have shown that the oxidation states and the geometry of the OEC undergo changes during these state transitions$^{8, 9}$. However, the detailed catalytic mechanism of the OEC, including the role of Ca$^{2+}$/Sr$^{2+}$ in PSII remains under extensive debate$^{10-14}$. Due to the structural complexity of the OEC, it is of a great challenge for chemists to synthesize accurate structural and functional models for the OEC in laboratory.

![Fig. 2 The structure of complex 1. Mn, Sr, O, N, C and H are shown in yellow, violet, red, blue, cyan and green, respectively. For clarity, all hydrogen atoms except two active protons of pivalic acids are omitted. H-bonds are shown with dashed line, and values display the H-bond lengths.](image)
The lengths of the two μ_2-O$^2-$Mn in the complex 1 are in the range of 1.84 Å to 1.87 Å with an average of 1.86 Å, which is a common distance for μ_2-O$^2-$Mn in most multinuclear Mn complexes and heteronuclear MnSr or MnCa complexes24,25,35,39. However, the length of 1.86 Å is remarkable shorter (by 0.64 Å) than the average value of 2.5 Å in the OEC of Ca$^{2+}$ or Sr$^{2+}$ containing PSII5. It is important to point out that the μ_2-O$^2-$ atom in the OEC has attracted extensive attentions in the studies of water oxidation in PSII recently16,17,40. Theoretical studies16,17 have suggested that the μ_2-O$^2-$ atom may act as one source of oxygen atom for the formation of O-O bond in the higher S-state (e.g. S$_3$, S$_4$) of the OEC, in which the valences for all Mn ions are most likely to be +43,9, similar to that in complex 1. It is noticed that the assignment of this μ_2-O$^2-$ atom was suffered by its weak electron density compared to all other bridging oxido moieties in the OEC in the X-ray diffraction data4,5,39. The structural characteristics of the μ_2-O$^2-$ in complex 1 and various MnSr/MnCa complexes24,25,35 could be considered as structural evidences to argue that the binding and the function of the μ_2-O$^2-$ atom in the OEC is worth being addressed in future.

EPR measurements of complex 1 display a similar EPR signals as observed in Mn$_2$Ca$_2$O$_4$ complex reported by Christou’s group35. It was found that both solid and solution samples of complex 1 give rise to similar EPR signals (Fig. S5), which suggests that the entire structure of complex 1 is maintained not only in crystal but also in solution.

Cyclic voltammograms (CV) measurements (Fig. 4) of complex 1 display two irreversible redox processes at -0.5 V and $+0.9$ V vs. NHE, assigned to the couples of [MnII]MnIVSrO$_4$/[MnIV]$_2$SrO$_4$] and [MnIV]$_3$SrO$_4$]_[MnIII]MnIVSrO$_4$]], respectively, according to previous report34,44. The irreversibility of these two couples may reflect some structural changes during the redox processes. It is noticed that the $+0.9$ V redox process appears only after undertaking the -0.5 V irreversible redox process (Fig. S6 and Fig. S7), suggesting that the occurrence of the former requires the structural change taking place during the redox process of the latter. Interestingly, the $+0.9$ V redox potential was not observed in previous MnIVCaO$_4$ or MnIVSrO$_4$ complexes34,36, while it is close to the $+0.8$ V vs. NHE redox potential37,38 of the OEC in PSII.

In summary, a new complex is synthesized with remarkable
structural similarities to the OEC in Sr^{2+}-containing PSII, in respects of the peripheral ligands, the $\text{Mn}_5\text{Sr}_4\text{O}_7$ cuboidal moiety, and the three different types of bridging oxido moieties at the same time. The redox characteristics of this new complex are close to that of the OEC, as well. Therefore, the complex 1 may serve as a highly accurate synthetic model of the OEC in PSII, which may provide new insights into the understanding of the structure and properties of the OEC in nature.

This work was supported by the National Natural Science Foundation of China (No. 20973186 and 31070216).

Notes and references

Polymer Materials Research Center, Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China. E-mail: dhongxing@hrbeu.edu.cn; Tel: 86-451-82568191;
Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: chunchizhang@iccas.ac.cn; Fax: 86-10-82671751; Tel: 86-10-82671703;
† Electronic Supplementary Information (ESI) available: Experimental section, X-ray structure information, BVS calculations, UV-vis absorption spectrum, EPR spectrum, Cyclic voltammogram (CV), Differential pulse voltammogram (DPV). See DOI: 10.1039/b000000x/c;
‡ Elemental analysis (%) calcld. for complex 1 (C$_{30}$H$_{36}$N$_2$O$_{28}$Mn$_4$Sr): C, 41.57; H, 5.98; N, 1.38; found: C, 41.57; H, 5.79; N, 1.63; Crystal structure data for complex 1: C$_{30}$H$_{36}$N$_2$O$_{28}$Mn$_4$Sr; $M = 2022.56$, black rod crystal, orthorhombic, $P2_12_12_1$, $a = 15.290(3)$, $b = 18.205(4)$, $c = 36.041(7)$ Å, $a = 90.00$, $\beta = 90.00$, $\gamma = 90.00^\circ$, $V = 10032(3)$ Å3, 32066 reflections collected; 1083 parameters were refined in the final cycle of refinement using 17540 reflections (I $> 2\sigma$(I)); $R1 = 0.0947$, $wR2 = 0.2202$ (based on F^2 and all data). Also see CCDC 994140 for complex 1.