ChemComm

Accepted Manuscript

ChemComm

Chemical Commurications

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

B $_{18}{ }^{\text {2-- }}$: A Quasi-Planar Bowl Member of the Wankel Motor Family

Diego Moreno, ${ }^{\text {a }}$ Sudip Pan, ${ }^{\text {b }}$ Gerardo Martínez-Guajardo, ${ }^{\text {a }}$ Lei Liu Zeonjuk, ${ }^{\text {a,c }}$ Rafael Islas, ${ }^{\text {a }}$ Edison Osorio, ${ }^{\text {d }}$ Pratim K Chattaraj, ${ }^{\text {b }}$ Thomas Heine, ${ }^{\mathrm{c},{ }^{*}}$ Gabriel Merino. ${ }^{\text {a,* }}$

Received (in $X X X, X X X$) Xth $X X X X X X X X X$ 20XX, Accepted Xth $X X X X X X X X X$ 20XX DOI: 10.1039/b000000x

A quasi-planar member of the so-called 'Wankel motor' family, $B_{18}{ }^{2-}$, is found. This boron cluster is an electronically stable dianion and a concentric doubly σ - and π-aromatic system. The inner B_{6} unit in $B_{18}{ }^{2-}$ undergoes quasi-free rotation inside the perimeter of B_{12} ring. The absence of any localized σ-bond between the inner ring and the peripheral boron atoms makes the system fluxional.

Recently, the groups of Boldyrev and Wang reported the detection of a beautiful boron wheel formed by nineteen boron atoms $\left(\mathrm{B}_{19}{ }^{-}\right) .{ }^{1}$ This cluster contains a pentagonal six-boron fragment enclosed by the other thirteen boron atoms. More recently, we found that the pentagonal-hub and the outer boron ring can rotate almost freely in opposite directions, similar to a Wankel motor. ${ }^{2}$ This type of dynamical behavior is similar to that found in some aromatic boron wheels $\left(\mathrm{C}_{2} \mathrm{~B}_{8}, \mathrm{C}_{3} \mathrm{~B}_{9}{ }^{3+}\right.$, and $\left.\mathrm{C}_{5} \mathrm{~B}_{11}{ }^{+}\right)$ with more than one carbon at the center. ${ }^{3}$ Unfortunately, in all those borocarbon wheels, isomers having carbon atoms at the outside ring are lower in energy. In 2011, we found that $\mathrm{B}_{13}{ }^{+}$also exhibits a similar dynamical behavior like that of $\mathrm{B}_{19}{ }^{-}$with an almost free rotation of the inner B_{3} moiety surrounded by the B_{10} ring. ${ }^{4}$ The group of Alexandrova further suggested a very interesting idea to control the direction of rotation of the B_{3} triangle in $\mathrm{B}_{5}{ }^{+}$by applying an external circularly-polarized infrared laser. ${ }^{5}$ Tai et al. also showed that $\mathrm{B}_{20}{ }^{-/ 2-}$ with a hexagonal subunit surrounded by the B_{13} ring exhibits the same kind of fluxionality. ${ }^{6}$

In this communication, the fifth member of this family is presented. Our computations show that the most stable structure of $\mathrm{B}_{18}{ }^{2-}$ comprises a pentagonal six-boron fragment, surrounded by the B_{12} ring, but in contrast to the $\mathrm{B}_{19}{ }^{-}$system, it has a bowlshape and thus deviates from the planarity of the other family members. Nevertheless, molecular dynamics simulations indicate that the system behaves as a 'Wankel motor'. The chemical bonding analysis and the aromaticity study are performed in detail to provide further insight into the fluxionality and the stability of the system. The interaction of the $\mathrm{B}_{18}{ }^{2-}$ with a lithium cation is also examined.

The potential energy surfaces (considering both singlet and triplet states) of $\mathrm{B}_{18}{ }^{2-}$ and $\mathrm{B}_{18} \mathrm{Li}^{-}$are systematically explored using the gradient embedded genetic algorithm (GEGA) as is implemented in the Kaxan program. ${ }^{7}$ The PBE0 functional in conjunction with the D95 basis set is used for the energy, gradient, and force computations using the Gamess suite of programs. ${ }^{8}$ The geometries obtained from the GEGA computations ${ }^{9}$ are further reoptimized at the TPSS/def2-TZVP level. ${ }^{10}$ Harmonic vibrational frequencies are also analyzed at the same level to characterize the nature of all stationary points and to compute the zero point energy (ZPE) corrections. The Adaptive Natural Density Partitioning (AdNDP) method ${ }^{11}$ is performed at the TPSS/def2-TZVP level. Born-Oppenheimer MolecularDynamics (BO-MD) simulations are carried out at the

TPSS/DZVP level in deMon2K, ${ }^{12}$ starting from the global minimum geometry of the $\mathrm{B}_{18}{ }^{2-}$ system.

We have found that the global minimum structure of $\mathrm{B}_{18}{ }^{2-}$ is not planar, it is rather a bowl-like structure having C_{s} symmetry and is composed of an outer B_{12} ring connected to a slightly out-of-plane inner B_{5} ring, which is further capped by one B atom (see Fig. 1). The centers of the B_{12} ring and B_{5} ring are separated by ~ $0.6 \AA$ whereas the central B atom resides $\sim 0.5 \AA$ above the B_{5} ring. Therefore, the depth of the bowl is around $1.1 \AA$. The global minimum is only $1.9 \mathrm{kcal} / \mathrm{mol}$ more stable than the second lowlying planar $D_{3 h}$ isomer (see Fig. 1-SI). Therefore, in an experimental situation, at a given temperature both the isomers may exist in different proportions in the final products. Note that similar central capped pentagonal boron moiety is found in recently reported $\mathrm{B}_{24}{ }^{-}$cluster. ${ }^{13}$ The groups of Wang and Boldyrev ${ }^{14}$ detected the $\mathrm{B}_{18}{ }^{-}$cluster in the gas phase via photoelectron spectroscopy (PES) and also found its global minimum in silico. They found that the lowest energy isomer of $\mathrm{B}_{18}{ }^{-}$corresponds to $C_{3 v}$ symmetry, in which the central B_{3} unit resides around $0.5 \AA$ away from the molecular plane making it a quasi-planar molecule. Note that the $C_{3 v}$ geometry of the $\mathrm{B}_{18}{ }^{-}$ cluster is similar to the second lowest energy form of $\mathrm{B}_{18}{ }^{2-}$. The out-of-plane central B_{3} unit in the $C_{3 v}$ isomer of $\mathrm{B}_{18}{ }^{-}$comes to the plane in the $D_{3 h}$ isomer of the $\mathrm{B}_{18}{ }^{2-}$ cluster. The extra negative charge in the system may help in expanding the peripheral boron ring a little bit, which indeed makes sufficient space in fitting the B_{3} unit within the molecular plane. Furthermore, the second lowest energy isomer of $\mathrm{B}_{18}{ }^{-}$is similar to the global minimum of $\mathrm{B}_{18}{ }^{2-}$. The C_{s} isomer in $\mathrm{B}_{18}{ }^{-}$is only $1.6 \mathrm{kcal} / \mathrm{mol}$ higher in energy than its $C_{3 v}$ form. In fact, they identify both isomers in the photoelectron spectrum. In our case, the energy difference between the first two lowest-lying isomers is $2.5 \mathrm{kcal} / \mathrm{mol}$ computed at the $\operatorname{CCSD}(\mathrm{T}) /$ def2-TZVP//TPSS/def2-TZVP level of theory (Fig 1-SI).

$\underset{C_{5}, \mathrm{~A}_{1}}{\mathbf{1 - T S}}$

$2-\mathrm{TS}$
$\mathrm{C}_{2 v}, \mathrm{~A}_{1}$
6.7

Fig. 1 Global minimum of $\mathrm{B}_{18}{ }^{2-}$ (1) and the transition states related to the rotation (1-TS) and inversion (2-TS). The relative energies are in $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$ units.

The interesting characteristic of the C_{s} isomer of $\mathrm{B}_{18}{ }^{2-}$ cluster is that the mode of its smallest vibrational frequency $\left(102.2 \mathrm{~cm}^{-1}\right)$ corresponds to a rotation of inner B_{6} unit, which is an important indicator to act as a 'Wankel motor'. Following the frequency of this mode, a structure corresponding to a transition state (TS) with an imaginary frequency of $111.1 i \mathrm{~cm}^{-1}$ is found. The mode of this
imaginary frequency is also related to the rotation of the inner B_{6} unit. The energy difference between $\mathbf{1}$ and 1-TS is almost negligible ($0.1 \mathrm{kcal} / \mathrm{mol}$) (see Fig. 1). Therefore, such a negligible rotation barrier hints at an almost free rotation of the B_{6} unit within the B_{12} ring. This is exactly what we have found in the BOMD simulation. The inner B_{6} unit rotates almost freely inside the perimeter of the B_{12} ring during the simulation. The movie showing this fluxionality during the BO-MD simulation carried out at 900 K is provided in electronic supporting information (ESI). The rotation of B_{6} unit is found to be accompanied by the simultaneous bond breaking and bond making between the B_{6} unit and peripheral B_{12} ring. Note that it is the first quasi-planar system, which shows such fluxionality. We have also located the transition state for the bowl-to-bowl inversion of the C_{s} isomer (structure 2-TS in Fig. 1). The inversion barrier is found to be 6.7 $\mathrm{kcal} / \mathrm{mol}$. This barrier is lower than that found in sumanane (19.6 $\mathrm{kcal} / \mathrm{mol}$) or coranulene ($10.2 \mathrm{kcal} / \mathrm{mol}$), the classical bowl-like carbon structures. ${ }^{15}$

B atoms ($6 \mathrm{c}-2 \mathrm{e}$). The electron density of each of the five $4 \mathrm{c}-2 \mathrm{e} \pi$ bonds remains engaged over the three peripheral B atoms and one B atom of the inner B_{5} ring. Therefore, from the AdNDP analysis, we can see that there is no localized bond between the outer B_{12} ring and inner B_{6} unit; they are only linked via delocalized multicenter-2e σ - and π-bonds. Such delocalized bonds easily migrate from one position to the other during rotation of the B_{6} unit; hence such arrangements allow the molecule to show the fluxional behavior.

The total number of delocalized σ - and π-electrons in $\mathrm{B}_{18}{ }^{2-}$ is 20 and 12 , respectively. Using the Hückel rule of aromaticity as such, the overall system should be both σ - and π-antiaromatic. But separating two distinct regions (the inner and outer ring), the conclusion is different. Three 3 c -2e σ-bonds and one $6 \mathrm{c}-2 \mathrm{e} \pi$ bond are involved within the B_{6} unit satisfying the Hückel rule (for σ-bonds, $4 \mathrm{n}+2=6 ; \mathrm{n}=1$ and for π-bond, $4 \mathrm{n}+2=2 ; \mathrm{n}=0$). The inner B_{6} moiety is, therefore, both σ - and π-aromatic. Now, the region in between the B_{6} unit and the peripheral B_{12} ring contains 14 delocalized σ-electrons $(4 n+2=14 ; n=3)$ and 10 delocalized π-electrons ($4 n+2=10 ; n=2$) once again satisfying the $(4 n+2)$ rule (see Fig. 2). It should be noted that the electron density of the $12 \mathrm{c}-2 \mathrm{e} \sigma$-bond remains within both regions, but since the maximum electron density is located over the area in between the B_{6} unit and the peripheral ring, we have counted it for this region only. Therefore, the $\mathrm{B}_{18}{ }^{2-}$ system may be considered to be both concentric doubly σ - and π-aromatic system satisfying individually the Hückel rule. Here it will be worthy to acknowledge the contributions from Schleyer and co-workers in introducing the concept of double aromaticity. ${ }^{16}$ Further, the $C_{3 v}$ isomer of the $\mathrm{B}_{18}{ }^{-}$system was categorized as an all-boron analogue of coronene, however, the C_{s} isomer is one e^{-}less to be the all-boron analogue of coronene. ${ }^{14}$ Now, here the C_{s} isomer of the $\mathrm{B}_{18}{ }^{2-}$ system has a closed-shell configuration having doubly occupied π-type HOMO (see Fig. 2-SI). Therefore, it may also be considered to be an all-boron analogue of coronene.

Fig. $3 B^{\text {ind }}{ }_{z}$ profiles of $\mathrm{B}_{18}{ }^{2-}$ computed at the PW91/def2-TZVP level. The profile starts at the geometrical center of each three and four membered ring.

Quite recently, Nguyen and co-workers ${ }^{6,17}$ suggested the model of particle in a circular box to understand the orbital distribution in the boron wheels. A system will show the disk-aromaticity if its π-electrons fully occupy the lowest eigenstates of the model in the ascending order of $1 \sigma, 1 \pi, 1 \delta, 2 \sigma, 1 \Phi, 2 \pi$ and so on. Therefore, the systems with $2,6,10,12,16,20 \ldots \pi$-electrons lead to a completely occupied configuration, hence show the diskaromaticity. In our case, the $\mathrm{B}_{18}{ }^{2-}$ system has 12π-electrons with $(1 \sigma)^{2}(1 \pi)^{4}(1 \delta)^{4}(2 \sigma)^{2}$ configuration, therefore, it is a disk-aromatic
system. The shapes of the π-MOs of the $\mathrm{B}_{18}{ }^{2-}$ system and the lowest wave functions for particle in a circular box are shown in Fig. 3-SI.
Further, to prove the doubly σ - and π-aromaticity in $\mathrm{B}_{18}{ }^{2-}$, analysis of the z-component of induced magnetic field $\left(B^{\text {ind }}{ }_{z}\right)^{18}$ is done. Positive and negative values of $B^{\text {ind }}{ }_{z}$ indicate the paratropic (antiaromaticity) and diatropic (aromaticity) behavior of the system, respectively. The $B^{i n d}{ }_{z}$ profiles computed at the centers of the three and four membered rings located either within the inner B_{6} unit or in between the B_{6} and outer B_{12} ring are displayed in Figure 3. Clearly, the magnetic response is highly diatropic in nature within the plane of the small rings and although gradually diminishes with the distance from the center of the ring, it still maintains a high value (in absolute sense). Even at $4 \AA$ above or below the plane, the $B^{i n d}{ }_{z}$ value is found to be equal or larger (in absolute sense) than -10 ppm . The inner rings (1,2 and 3) show more diatropic character (both in plane and out of plane) than the outer rings showing their larger aromaticity (both σ and π) than the same. The four membered ring (8) shows the smallest diatropic response. Therefore, negative values of $B^{\text {ind }}{ }_{z}$ at the plane and perpendicular to the plane of the rings in the both regions confirm the concentric doubly σ - as well as doubly π-aromatic nature of the $\mathrm{B}_{18}{ }^{2-}$ system.

Finally, we computed both vertical and adiabatic electron dissociation energy (VEDE and AEDE) at different density functional based methods, outer-valence Green's function (OVGF) method and wave function based method (see Table 1SI). ${ }^{19,20}$ Except the VEDE values calculated by using so-called crude direct approach, Koopmans' theorem (KT) at the TPSS level, the other results with more reliable approach than KT show the bound nature of HOMO electron in $\mathrm{B}_{18}{ }^{2-}$. Therefore, it is a stable dianion with respect to spontaneous electron detachment. Nevertheless, we have also examined the possible to stabilize the dianion adding $\mathrm{Li}+$ as counterion. In the global minimum of $\mathrm{B}_{18} \mathrm{Li}^{-}$, the structure of the boron skeleton is identical to that of $\mathrm{B}_{18}{ }^{2-}$ and the Li^{+}cation is found to bind with one B center of the concave surface of the inner B_{5} ring having a B-Li distance of $2.217 \AA$ (see Fig. 4-SI).

In conclusion, $\mathrm{B}_{18}{ }^{2-}$ is the fifth member of the 'Wankel motor' family. The inner B_{6} unit rotates within the peripheral B_{12} ring with an almost negligible rotation barrier. The chemical bonding analyses show that the inner B_{6} moiety and the outer ring are connected through only multicenter-2e bonding. The absence of any localized bond therein facilitates such fluxionality. The $\mathrm{B}_{18}{ }^{2-}$ cluster may be viewed as a concentric doubly σ - as well as doubly π-aromatic system. The analysis of induced magnetic field further confirms this doubly aromaticity. The aromaticity in the $\mathrm{B}_{18}{ }^{2-}$ cluster can also be justified by using the concept of diskaromaticity. The computations of VEDE and AEDE at several levels reveal that it is a stable dianion system with bound HOMO electron. Further, the $\mathrm{B}_{18}{ }^{2-}$ cluster in presence of a counter-ion $\left(\mathrm{Li}^{+}\right)$, that is the $\mathrm{LiB}_{18}{ }^{-}$system, is also viable with high VEDE.

Conacyt (Grant INFRA-2013-01-204586) and Moshinsky Foundation supported the work in Mérida. The CGSTIC (Xiuhcoalt) at Cinvestav is gratefully acknowledged for generous allocation of computational resources. PKC thanks DST, New Delhi for the J. C. Bose National Fellowship. SP thanks CSIR for his fellowship. LLZ, GM and TH acknowledge financial support of the FP7 IRSES action TEMM1P (GA 295172).

Notes and references

${ }^{a}$ Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados Unidad Mérida. km 6 Antigua carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México; E-mail: gmerino@mda.cinvestav.mx
${ }^{b}$ Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, 721302, India;
${ }^{\text {c }}$ Center of Functional Nanomaterials (NanoFun), School of Engineering and Science, Jacobs University Bremen, Bremen, 28759, Germany.
${ }^{d}$ Departamento de Ciencias Básicas. Fundación Universitaria Luis Amigó, SISCO, Transversal 51A \# 67B 90, Medellin, Colombia.
\dagger Electronic Supplementary Information (ESI) available: [Figs. S1-S4, Table S1 and Cartesian coordinates of the global minimum geometries of $\mathrm{B}_{18}{ }^{2-}, \mathrm{LiB}_{18}{ }^{-}$and the transition states of $\mathrm{B}_{18}{ }^{2-}$ for rotation and inversion at TPSS/def2-TZVP level]. See DOI: 10.1039/b000000x/

1. W. Huang, A. P. Sergeeva, H.-J. Zhai, B. B. Averkiev, L. S. Wang and A. I. Boldyrev, Nature Chem., 2010, 2, 202.
2. J. O. C. Jimenez-Halla, R. Islas, T. Heine and G. Merino, Angew. Chem., Int. Ed., 2010, 49, 5668.
3. S. Erhardt, G. Frenking, Z. F. Chen, P. von R. Schleyer, Angew. Chem. Int. Ed., 2005, 44, 1078.
4. G. Martínez-Guajardo, A. P. Sergeeva, A. I. Boldyrev, T. Heine, J. M. Ugalde and G. Merino, Chem. Commun., 2011, 47, 6242.
5. (a) J. Zhang, A. P. Sergeeva, M. Sparta and A. N. Alexandrova, Angew. Chem. Int. Ed., 2012, 51, 8512. (b) G. Merino, T. Heine, Angew. Chem. Int. Ed. 2012, 51,10226 .
6. T. B. Tai, A. Ceulemans and M. T. Nguyen, Chem. Eur. J., 2012, 18, 4510.
7. Kaxan 0.1. D. Moreno, A. Ramirez-Manzanares, G. Merino, Cinvestav, Unidad Mérida. Mérida. Yucatán. México. 2012.
8. (a) J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865: (b) J. P. Perdew. K. Burke. and M. Ernzerhof. Phvs. Rev. Lett.,1997, 78, 1396; (c) C. Adamo and V. Barone, J. Chem. Phys., 1999. 110. 6158. (d) T. H. Dunning Jr. and P. J. Hav, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, 1976, 3, 1. Plenum, New York. (e) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunga, K. A. Nguyen, S. J. Su, M. Dupuis and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.
9. A. N. Alexandrova. A. I. Boldvrev. Y. J. Fu, X. Yang, X. B. Wang and L. S. Wang, J. Chem. Phys., 2004, 121, 5709.
10. J. M. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401. For def2-TZVP basis set, see: F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
11. (a) D. Yu. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys., 2008, 10, 5207; (b) D. Yu. Zubarev, A. P. Sergeeva and A. I. Boldyrev, in Chemical Reactivity Theory: A Density Functional View, ed. P. K. Chattaraj, CRC Press, Taylor \& Francis Group, New York, 2009, pp. 439-452.
12. The deMon program package (A. M. Köster, et. al. deMon 2 k , The deMon Developers Community, Mexico, 2008) was used for such computations; B. Hammer, L. B. Hansen and J. K. Norskov, Phys. Rev. B: Condens. Matter, 1999, 59, 7413; P. Calaminici, F. Janetzko, A. M. Koster, R. Mejia-Olvera and B. Zuniga-Gutierrez, J. Chem. Phys., 2007, 126, 044108 . The simulation is carried out with the equilibrium geometry of structure 1, with random velocities assigned to the atoms and the structure is equilibrated to 900 K , employing a Nose'-Hoover thermal bath, for 25 ps with 1.0 fs step size.
13. I. A. Popov, Z. A. Piazza, W.-L. Li, L.-S. Wang and A. I. Boldyrev, J. Chem. Phys., 2013, 139, 144307.
14. A. P. Sergeeva, B. B. Averkiev, H.-J. Zhai, A. I. Boldyrev and L.-S. Wang, J. Chem. Phys., 2011, 134, 224304.
15. (a) T. Amaya, H. Sakane, T. Muneishi and T. Hirao. Chem. Commun. 2008, 6, 762 (b) L. T. Scott, M. M. Hashemi and M. S. Bratcher. J. Am. Chem. Soc. 1992, 114, 1920.
16. (a) J. Chandrasekhar, E. D. Jemmis and P. v. R. Schleyer, Tetrahedron Lett. 1979, 20, 3707; (b) A. B. McEwen and P. v. R. Schleyer, J. Org. Chem. 1986, 51, 4357; (C) P. v. R.Schleyer, H. Jiao, M. N. Glukhovtsev, J. Chandrasekhar and E. Kraka, J. Am. Chem. Soc. 1994, 116, 10129.
17. (a) T. Ba Tai, R. W. A. Havenith, J. L. Teunissen, A.t R. Dok, S. D. Hallaert, M. Tho Nguyen, and A. Ceulemans, Inorg. Chem. 2013, 52, 10595; (b) T. B. Tai, L. V. Duong, H. T. Pham, D. T. T. Maia and M. T. Nguyen, Chem. Commun., 2014, 50, 1558.
18. (a) G.Merino, T. Heine and G. Seifert, Chem. Eur. J., 2004, 10, 4367; (b) T. Heine, R. Islas and G. Merino, J. Comput. Chem., 2007, 28, 302 ; (c) R. Islas. T. Heine. and G. Merino. Acc. Chem. Res. 2012, 45, 215.
19. J. V. Ortiz, J. Chem. Phys., 1988, 89, 6348
20. M. J. Frisch, et al., Gaussian 09, Rev. B.01, Gaussian, Inc., Wallingford, CT, 2010.

CREATED USING THE RSC ARTICLE TEMPLATE (VER. 3.0) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

Table of Contents

A quasi-planar member of the so-called 'Wankel motor' family, $\mathbf{B}_{18}{ }^{2-}$, is found.

