ChemComm

Accepted Manuscript

ChemComm

Chemical Commurications

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Graphical Abstract

Interactions of the type $\mathrm{C}-\mathrm{H} \ldots \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ interactions, i.e. $\mathrm{C}-\mathrm{H} . . . \pi($ quasi-chelate ring) where a six-membered quasi-chelate ring is closed by a $\mathrm{N}-\mathrm{H} . . . \mathrm{Cl}$ hydrogen bond, are presented.

Investigations of putative arene-C-H... π (quasi-chelate ring) interactions in copper(I) crystal structures \dagger

Chien Ing Yeo, ${ }^{\text {a }}$ Siti Nadiah Abdul Halim, ${ }^{\text {a }}$ Seik Weng Ng, ${ }^{\text {a }}$ Seng Lim Tan, ${ }^{\text {a }}$ Julio Zukerman-Schpector, ${ }^{\text {b }}$ Marco A. B. Ferreira ${ }^{b^{* *}}$ and Edward R. T. Tiekink ${ }^{a^{*}}$

${ }_{5}$ Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x

Evidence for $\mathbf{C}-\mathrm{H} . . . \pi(\mathrm{CuCl} . . \mathrm{HNCS})$ interactions, i.e. $\mathrm{C}-$ H... π (quasi-chelate ring) where a six-membered quasi-chelate ring is closed by a $\mathrm{N}-\mathrm{H} . . . \mathrm{Cl}$ hydrogen bond, is presented 10 based on crystal structure analyses of $\left(\mathrm{Ph}_{3} \mathbf{P}\right)_{2} \mathbf{C u}[\mathrm{ROC}(=\mathbf{S}) \mathbf{N}(\mathbf{H}) \mathbf{P h}] \mathrm{Cl}$. Similar intramolecular interactions are identified in related literature structures. Calculations suggest that the energy of attraction provided by such interactions approximates $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$.

15 Complementing supramolecular synthons based on conventional hydrogen bonding and coordinate bonds, which remain crucial in crystal engineering studies, is a myriad of other intermolecular interactions coming to the fore with the notable example being halogen bonding. ${ }^{1}$ Supramolecular association 20 based on π-systems is also well established in all-organic crystal structures and increasingly, chelate rings are being recognised as being capable of forming analogous interactions, ${ }^{2}$ reflecting their metalloaromatic nature. ${ }^{3}$ Thus, just as arene rings can associate via $\pi \ldots \pi$ interactions, mixed π (arene)... π (chelate) interactions can ${ }_{25}$ occur, ${ }^{4 \mathrm{a}}$ as well as π (chelate)... π (chelate) interactions which are found in up to 40% of certain square planar transition metal complexes and exhibit the same attributes as $\pi \ldots \pi$ interactions involving arene rings, such as cooperativity, separation and orientation, i.e. parallel and anti-parallel. ${ }^{4 b}$ As demonstrated by
${ }_{30}$ Zarić et al. in their systematic evaluations of transition metal acetylacetonate crystal structures, chelate rings may also function as donors and acceptors of $\mathrm{C}-\mathrm{H} . . . \pi$ interactions and impart approximately the same energy of stabilisation as for $\mathrm{C}-\mathrm{H} \ldots \pi$ interactions occurring between organic residues. ${ }^{5}$ While work
${ }_{35}$ continues into this phenomenon, ${ }^{6}$ the role of conjugated or resonance-assisted hydrogen bonded systems, where one of the links within the organic ring is a hydrogen bond rather than a formal covalent bond, giving rise to quasi-aromatic rings, is less well understood. ${ }^{7}$ Analogous quasi-aromatic rings where one of
${ }_{40}$ the constituent atoms is a metal have received considerably less attention and their putative formation forms the focus of the present communication. Herein, the observation and theoretical investigation of intramolecular arene-C-H... π (quasi-chelate rings) interactions in some $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}[\mathrm{ROC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}] \mathrm{Cl}$ complexes
${ }_{45}$ is described, as is the prevalence of analogous interactions in the crystallographic literature.

The new copper(I) complexes were prepared in response to the recently demonstrated anti-cancer potential of platinum ${ }^{8 a}$ and
gold ${ }^{8 \mathrm{~b}}$ complexes of thiocarbamides, $\mathrm{ROC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ar}$, and the ${ }_{50}$ remarkable and selective anti-microbial activity against four Gram-positive bacteria exhibited by phosphanegold(I) derivatives. ${ }^{8 c}$ The potential of copper(I) complexes as therapeutic agents has been reviewed recently, ${ }^{9}$ and so attention was naturally directed to investigating related phosphanecopper(I) derivatives ${ }_{5 s}$ during which the title complexes, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}[\mathrm{ROC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}] \mathrm{Cl}, \mathrm{R}=\mathrm{Me}(\mathbf{1}), \mathrm{Et}(\mathbf{2})$ and $\mathrm{iPr}(\mathbf{3})$, were synthesised and characterised, including by single crystal Xray crystallography; see ESI for details. Spectroscopy showed the expected characteristics with the only feature worth ${ }_{60}$ highlighting is the downfield shift of the ${ }^{1} \mathrm{H}$ resonance due to the acidic proton as the concentration of the solution was increased, consistent with retention of the $\mathrm{N}-\mathrm{H} . . \mathrm{Cl}$ hydrogen bond in solution (see below), see ESI Fig. S1.

The molecular structure of $\mathbf{2}$ is shown in Fig. 1 and features a ${ }_{65}$ tetrahedrally coordinated $\mathrm{Cu}(\mathrm{I})$ centre with the environment defined by one chlorido, a thione-S and two phosphane-P atoms; the maximum deviation from regular tetrahedral is found in the $\mathrm{P} 1-\mathrm{Cu}-\mathrm{P} 2$ angle of $125.099(19)^{\circ}$. An intramolecular $\mathrm{N}-\mathrm{H} . . . \mathrm{Cl}$ hydrogen bond is formed closing a $(\mathrm{CuCl} \ldots \mathrm{HNCS})$ quasi-chelate 70 ring, see ESI Table S2 for geometric details. The interesting feature of the structure is the relative orientation of one of the phenyl-H atoms which appears to be directed toward the centre of the aforementioned ring. The separations between phenyl-H atom and each of the constituent atoms of the ring are given in ${ }_{5}$ the caption of Fig. 1, and from these data it is evident that the phenyl-H atom is not orientated toward any one atom of the ring but rather to the centre of the quasi-chelate ring. The distance between phenyl-H and the centroid of the quasi-ring is $2.31 \AA$ and the angle at is 147°. By analogy with a C-H... π (arene)
${ }_{80}$ interaction, this contact can be represented as C $\mathrm{H}_{\mathrm{H}} . . \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$.

A similar interaction is found in the $\mathrm{R}=\mathrm{iPr}$ derivative, $\mathbf{3}$ [phenyl-H...quasi-ring centroid $=2.56 \AA$ and angle at $\mathrm{H}=124^{\circ}$; see ESI Fig. S2 for details], but not in the $\mathrm{R}=\mathrm{Me}$ analogue, 1, ${ }_{85}$ where the shortest H ... quasi-ring centroid distance is $3.41 \AA$. An overlay diagram, ESI Fig. S2c, shows that while the overall molecular structures are similar, the phenyl ring forming the C $\mathrm{H} . . . \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ interaction in $\mathbf{2}$ and $\mathbf{3}$ is somewhat splayed in $\mathbf{1}$; the dihedral angles between the relevant phenyl ring and the ${ }_{90}$ least-squares plane through the non-hydrogen atoms of the quasi-
chelate ring are $36.5(5), 64.02(5)$ and $55.25(5)^{\circ}$ for $\mathbf{1 , 2}$ and $\mathbf{3}$, respectively. It is noted that the quasi-ring in $\mathbf{1}$ (r.m.s. deviation of the five non-hydrogen atoms $=0.1902 \AA$) is less planar than the equivalent rings in 2 and 3 (r.m.s. $=0.0997$ and $0.0898 \AA$, 5 respectively). In fact the ring in $\mathbf{1}$ has a distinct envelope conformation with the Cu atom lying $0.6751(11) \AA$ above the least-squares plane defined by the remaining four non-hydrogen atoms; see ESI Table S3. The other difference between the structures is found in the pattern of Cu -ligand bond lengths (see ${ }_{10}$ ESI Table S4) so that in $\mathbf{1}$, the $\mathrm{Cu}-\mathrm{Cl} 1$ bond length is significantly longer, by $0.03 \AA$, than those in $\mathbf{2}$ and $\mathbf{3}$, and the remaining bond lengths in $\mathbf{1}$ are concomitantly shorter $c f$. to the equivalent bonds in $\mathbf{2}$ and $\mathbf{3}$. This is not related to the nature of the supramolecular aggregation as $\mathrm{C}-\mathrm{H} . . . \mathrm{Cl}$ interactions are ${ }_{15}$ formed in each of the crystal structures; ESI Figs S3-S5. In 1 and $2 \mathrm{C}-\mathrm{H} . . . \mathrm{Cl}$ along with $\mathrm{C}-\mathrm{H} . . . \pi($ arene) contacts lead to a supramolecular layer and double chain, respectively. In 3, C$\mathrm{H} \ldots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \ldots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \ldots \pi($ arene $)$ interactions lead to a supramolecular chain. The crystal packing in 1-3 was also 20 evaluated for phenyl embraces (PE), known to be important in stabilising the crystal structures of phenyl-rich molecules. ${ }^{10}$ As summarised in the figure captions to ESI Figs S3-S5, the P1phosphane, i.e. not involved in forming the putative $\mathrm{C}-$ $\mathrm{H} \ldots \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ interactions, participates in sextuple PE 25 whereas the P2-phosphane ligand forms parallel quadruple PE interactions in 1, double PE in $\mathbf{2}$ but no recognisable pattern is observed in 3.

30

Fig. 1 Molecular structure of $\mathbf{2}$ showing atom labelling and 70\% displacement ellipsoids. The $\mathrm{C}-\mathrm{H}^{*} \ldots \mathrm{Cu}, \mathrm{Cl} 1, \mathrm{~S} 1, \mathrm{~N} 1, \mathrm{C} 1$ and $\mathrm{H} 1 n$ separations are $3.12,3.41,2.99,2.63,2.88$ and $2.48 \AA$, respectively.

The unusual nature of the $\mathrm{C}-\mathrm{H} \ldots \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ contact ${ }_{40}$ prompted a search of the Cambridge Structural Database (CSD version 5.33) ${ }^{11 \mathrm{a}}$ for analogous interactions using CONQUEST. ${ }^{11 \mathrm{~b}}$ The initial search comprised seeking a specific arrangement of the $\mathrm{Cu}, \mathrm{Cl}, \mathrm{H}, \mathrm{N}, \mathrm{C}$ and S atoms as well as the presence of a $\mathrm{N}-$ $\mathrm{H} \ldots \mathrm{Cl}$ hydrogen bond to close the ring: this gave rise to a total of ${ }_{45} 91$ hits. This sub-set was further probed to seek intramolecular $\mathrm{C}-\mathrm{H} \ldots \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ contacts by adding the following restrictions, Fig. 2. The distance, d, from the ring centroid (Cg) to the H atom is $\leq 3.6 \AA^{6 \mathrm{a}}$ and the $\mathrm{C}-\mathrm{H} . . \mathrm{Cg}$ angle is in the range $110 \leq \alpha \leq 180^{\circ}$. Although the quasi-ring was not restricted to be ${ }_{50}$ planar, the angle between the normal of the least-squares plane through the six atoms and the $\mathrm{C}-\mathrm{H}$ vector was restricted to be \leq 15° to ensure the C -bound H atom was approximately plumb to the ring. There were 14 structures, ${ }^{11}$ out of a possible 91 , that satisfied these criteria; details are summarised in ESI Table S5.
${ }_{55}$ Twelve of the hits contain phosphane ligands, with seven having very similar mononuclear structures with $\mathrm{ClP}_{2} \mathrm{~S}$ donor sets as found for $\mathbf{2}$ and $\mathbf{3}$; ${ }^{12 b-e, \text {,h,j-l,o }}$ a simple variation is found in one binuclear example having bridging bidentate phosphanes. ${ }^{12 f}$ Four
binuclear structures with monodentate phosphane ligands have ${ }_{60} \mathrm{~S}^{12 g, n}$ or $\mathrm{Cl}^{12 i}$ bridges. The remaining two structures are thione adducts of $\mathrm{CuCl} .^{12, \mathrm{~m}}$ In each case the donor H atom was connected to an aromatic ring. Values of d were in the range 2.28 to $2.92 \AA$ and the α angles varied from 114 to 163°. The planarity of the quasi-chelate ring is not factor in the formation of ${ }_{65} \mathrm{C}-\mathrm{H} \ldots \pi$ (quasi-chelate ring) interactions as rms deviations of the five non-hydrogen atoms from their least-squares plane vary from a low 0.0297 to $0.3374 \AA$ (ESI Table S5). Nor there is a correlation between the planarity of the quasi-chelate ring and the values of d or α. This is hardly surprising as correlations 70 involving weak interactions are notoriously unreliable. ${ }^{13}$

Fig. 2 Search protocols for C-H.... $\pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ interactions: d is the distance between the ring centroid (Cg) of the quasi-chelate ring and the
${ }_{80} \mathrm{H}$ atom; V_{1} is the vector normal to the plane through the ring; α is the C H...Cg angle; β is the angle between the V_{1} and V_{2} vectors.

In order to investigate the nature of the $\mathrm{C}-\mathrm{H} \ldots \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ interaction, DFT-D calculations were performed based on the coordinates of one of the literature crystal structures that features 85 an intramolecular contact, i.e. $4,{ }^{110}$ Fig. 3a. As detailed in the ESI, Gaussian09 was used employing the BP86 functional, ${ }^{14 \mathrm{a}, \mathrm{b}}$ including the D3 version of Grimme's dispersion correction, ${ }^{14 c}$ the second-order perturbation theory ${ }^{14 \mathrm{~d}}$ with the def2-TZVP basis set. ${ }^{14 e, f}$ Initially, the non-covalent interactions were calculated in ${ }_{90}$ real space based on the electron density and its reduced gradient using the NCI approach of Yang et al. ${ }^{15}$ Referring to Figs 3 b and c , the surfaces are coloured blue, green and red, correlating with strong attractive, weak attractive and strong non-bonded overlap, respectively. The NCI analysis ${ }^{15}$ gives a conical surface pointing ${ }_{95}$ to the mass-centre of the ring, representing unambiguously the π type interaction. An example of T-shaped benzene-dimer can be seen in the Fig. 3b. A similar situation was observed for 4, in which the green region indicates a weak attractive interaction as commonly presented in π-stacking interactions.

100
(a)

(b)

(c)

Fig. 3 (a) Chemical structure of 4, (b) gradient isosurface for a T-shaped 110 benzene-dimer (adapted with permission from Yang et al., J. Chem. Theor. Comp. 2011, 7, 625. Copyright 2014 American Chemical Society), and (c) gradient isosurface for 4.

Additional calculations were conducted to elucidate the metalloaromaticity of the quasi-chelate ring by calculation of 115 isotropic nucleus-independent chemical shifts (NICS(-1) ISO,
$\operatorname{NICS}(0)_{\text {ISO }}$ and $\left.\operatorname{NICS}(1)_{\text {ISO }}\right)$ at the centroid of 4 , using the BP86, B3LYP and B3PW91 functionals. ${ }^{16 a, b}$ The magnetic criterion of aromaticity was not satisfied, with values in the range of -1.32 to $0.32 \AA$. The model complex 4', i.e. without any phenyl rings, and fully optimized at BP86-D/def2-TZVP, lead to a similar conclusion (ESI Fig. S6). Despite the non-aromatic character, these new synthons can form non-covalent interactions in a similar fashion to truly aromatic rings. Support for this is found in the analysis of the molecular orbitals (MO) of both 4 and 4^{\prime}. ${ }_{10}$ As seen in ESI Fig. S7, three MO's present an alignment between the p orbitals of $\mathrm{N}, \mathrm{C}, \mathrm{Cl}$ and S , and the d orbital of Cu , forming a quasi- π-system. Further, an estimate of the interaction energy for $\mathrm{C}-\mathrm{H} \ldots \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ was made using the optimal geometries (BP86-D/def2-TZVP) for a model system, $\mathrm{C}_{2} \mathrm{H}_{2} \ldots 4$ ', removing 15 the basis set superposition error (BSSE) by counterpoise (CP) correction. ${ }^{16 c}$ Referring to ESI Fig. S8, single point calculations were performed at $r(\mathrm{H} \ldots \Omega)$ distances between 2.2 and $3.0 \AA$, for three positions in the ring, presenting an average energy at the optimal separation of $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ at MP2 and M062X-D, and 4 20 to $5 \mathrm{kcal} \mathrm{mol}^{-1}$ at B3LYP-D and B3PW91-D. For all calculated positions, the interactions are attractive.
In summary, experimental and theoretical evidence has been presented for attractive (ca $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$) intramolecular C$\mathrm{H} . . . \pi(\mathrm{CuCl} \ldots \mathrm{HNCS})$ interactions which occur in approximately ${ }_{25} 15 \%$ of the copper(I) structures where they may potentially form.

The Brazilian authors thank FAPESP (2013/02311-3 to M.A.B.F.), CNPq (305626/2013-21 to J.Z.-S. and 477944/2013-2 to M.A.B.F.) and CAPES (808/2009-3 to J.Z.-S.) for financial support. Calculations were performed at CENAPAD-SP. This ${ }_{30}$ research is also supported by High Impact Research MoE Grant UM.C/625/1/HIR/MoE/SC/12 from the Ministry of Higher Education Malaysia.

Notes and references

a Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, 35 Malaysia; Fax: 6037967 4193; Tel: 6037967 6775; E-mail: Edward.Tiekink@gmail.com
b Laboratório de Cristalografia, Estereodinâmica e Modelagem
Molecular, Departamento de Química, Universidade Federal de São Carlos, C.P. 676, São Carlos, SP, 13565-905, Brazil. Fax: 55163351
40 8350; Tel: 55163351 8208; E-mail: marcoantbf@gmail.com
\dagger Electronic Supplementary Information (ESI) available: [Details of synthesis and the spectroscopic, crystallographic and theoretical characterisation of new and literature compounds with C $\mathrm{H} . . \pi(\ldots \mathrm{ClCuSCNH}) \quad$ interactions (30 pages)]. See 45 DOI: 10.1039/b000000x/

1 A. Priimagi, G. Cavallo, P. Metrangolo and G. Resnati, Acc. Chem. Res., 2013, 46, 2686.
2 The Importance of Pi-Interactions in Crystal Engineering: Frontiers
50 in Crystal Engineering, ed. E. R. T. Tiekink and J. ZukermanSchpector, John Wiley and Sons, Singapore, 2012.
3 H. Masui, Coord. Chem. Rev., 2001, 219-221, 957; F. Feixas, E. Matito, J. Poater and M. Solà, WIREs Comput. Mol. Sci., 2013, 3, 105.

554 (a) Z. D. Tomić, D. N. Sredojević and S. D. Zarić, Cryst. Growth Des., 2006, 6, 29; (b) D. N. Sredojević, Z. D. Tomić and S. D. Zarić, Cryst. Growth Des., 2010, 10, 3901.
5 M. K. Milčić, V. B. Medaković, D. N. Sredojević , N. O. Juranić and S. D. Zarić, Inorg. Chem., 2006, 45, 4755.

606 (a) E. R. T. Tiekink and J. Zukerman-Schpector, Chem. Commun., 2011, 47, 6623; (b) V. B. Medaković, G. A. Bogdanović, M. K. Milčić, G. V. Janjić and S. D. Zarić, J. Inorg. Biochem., 2012, 117, 157; (c) S. K. Singh, M. G. B. Drew and N. Singh, CrystEngComm, 2013, 15, 10255.

8 (a) D. Dolfen, K. Schottler, S.-M. Valiahdi, M.A. Jakupec, B. K. Keppler, E. R. T. Tiekink and F. Mohr, J. Inorg. Biochem., 2008, 102

9 C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato and C. Marzano, Chem. Rev., 2014, 114815.
10 I. Dance and M. Scudder, Chem. Eur. J., 1996, 2, 481; M. Scudder and I. Dance, J. Chem. Soc., Dalton Trans., 1998, 329.
(a) F. H. Allen, Acta Crystallogr., Sect. B. Siruct. Sci., 2002, 58, 380, (b) I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 389.
12 (a) J. T. Lenthall, K. M. Anderson, S. J. Smith and J.W. Steed, Cryst. Growth Des., 2007, 7, 1858; (b) T. S. Lobana, R. Sharma, A. Castiñieras and R. J. Butcher, Z. Anorg. Allg. Chem., 2010, 636, 2698; (c) D. Li, W-J. Shi, T. Wu and S. W. Ng, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2004, 60, m776; (d) T. S. Lobana, P. Kaur, A. Castiñeiras, P. Turner and T. W. Failes, Struct. Chem., 2008, 19, 727; (e) N. J. M. Sanghamitra, M. K. Adwankar, A. S. Juvekar, V. Khurajjam, C. Wycliff and A. G. Samuelson, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2011, 50, 465; (f) P. Aslanidis, P. J. Cox, S. Divanidis and P. Karagiannidis, Inorg. Chim. Acta, 2004, 357, 4231; (g) S. K. Hadjikakou, P. Aslanidis, P. Karagiannidis, D. Mentzafos and A. Terzis, Polyhedron, 1991, 10, 935; (h) T. S. Lobana, P. K. Bhatia and E. R. T. Tiekink, J. Chem. Soc., Dalton Trans., 1989, 749; (i) T. S. Lobana, R. Sharma, A. Castiñeiras, G. Hundal and R. J. Butcher, Inorg. Chim. Acta, 2009, 362, 3547; (j) T. S. Lobana, S. Khanna, G. Hundal, R. J. Butcher and A. Castiñeiras, Polyhedron, 2009, 28, 3899; (k) N. Gunasekaran, P. Ramesh, M. N. G. Ponnuswamy and R. Karvembu, Dalton Trans., 2011, 40, 12519; (1) T. S. Lobana, R. Sultana and G. Hundal, Polyhedron, 2008, 27, 1008; (m) M. K. Rauf, Imtiaz-ud-Din, A. Badshah, M. Gielen, M. Ebihara, D. de Vos and S. Ahmed, J. Inorg. Biochem., 2009, 103, 1135; (n) P. Karagiannidis, S. K. Hadjikakou, P. Aslanidis and A. Hountas, Inorg. Chim. Acta, 1990, 178, 27; (o) R. Singh and S. K. Dikshit, Polyhedron, 1995, 14, 1799.
13. (a) J. D. Dunitz and R. Taylor, Chem.-Eur. J., 1997, 3, 89; (b) J. Zukerman-Schpector and E. R. T. Tiekink, CrystEngComm, 2009, 11, 2701.
14 (a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098; (b) J. P. Perdew, Phys. Rev. B, 1986, 33, 8822; (c) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104; (d) M. Head-Gordon, J. A. Pople and M. J. Frisch, Chem. Phys. Lett., 1988, 153, 503; (e) D. Feller, J. Comp. Chem., 1996, 17, 1571; (f) K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 2007, 47, 1045.

15 (a) E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garcia, A. J. Cohen and W. Yang, J. Am. Chem. Soc. 2010, 132, 6498; (b) J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, J. Chem Theory. Comput. 2011, 7, 625.
16 (a) P. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317; (b) M. K. Milčić, B. D. Ostojić and S. D. Zarić, Inorg. Chem., 2007, 46, 7109; (c) S. F. Boys and F. Bernardi Mol. Phys., 1971, 19, 553.

