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A tandem combination of ortho-quinone methide (o-QM) 
formation/Michael addition/asymmetric dearomatization, 
which is catalysed by iron-salan complex in air with high 
enantioselectivity, provides an efficient method for spirocyclic 
(2H)-dihydro-benzofuran synthesis from 2-naphthols and 
phenols. The key to the success of the tandem synthesis is 
the development of aerobic oxidative o-QM formation. 

Spirocyclic frameworks are found in many biologically active 
products and are used for developing a novel class of chiral 
auxiliaries.1 Various enantioselective methods for the intra- and 
intermolecular synthesis of spirocyclic compounds have been 
reported.2,3 However, the substrates of intermolecular reactions are 
mostly limited to structurally similar cyclic α-keto, α-alkylidene, 
and α-hydroxy lactones or lactams.3 Thus, new strategies for 
asymmetric intermolecular spirocyclization using different classes of 
starting materials have been required. 
 

Scheme 1. Asymmetric oxidative dearomatization strategies for cons
tructing chiral spirocyclic frameworks. 

Oxidative dearomatization of o-substituted arenols is an efficient 
approach for the synthesis of spiroenone derivatives. For example, 
Kita et al. and Ishihara et al. have been reported chiral hypervalent 
iodine catalysed intramolecular spirolactonization using m-CPBA as 
the terminal oxidant (Scheme 1, a).4,5 On the other hand, Feringa et 
al. developed one pot, two step spirocyclization involving 
enantioselective Michael addition and subsequent oxidative 
dearomatization of 2-naphthols using stoichiometric copper(II) as 
the oxidant (b).6 In this paper, we describe enantioselective 
intermolecular spirocyclic (2H)-dihydrobenzofuran synthesis 
utilizing iron catalyst and dioxygen in air as the oxidant, from two 
different arenols, 1-methyl-2-naphthols and phenols (c). 

We recently reported that (di-µ-hydroxo)iron-salan dimer 1 
catalyses asymmetric aerobic oxidative dearomatization of 1-
substituted 2-naphthols in the presence of nitroalkanes (Scheme 2).7.8  
 

Scheme 2. Iron-catalysed asymmetric aerobic oxidative dearomatiza
tion. 
	  
This dearomatization reaction has been thought to proceed through a 
radical cation species D that is attacked by the anion species in situ 
generated from nitroalkane under the reaction conditions to give the 
dearomatized product E (Scheme 3). On the other hand, chiral 
spirocyclic (2H)-dihydrobenzofuran would be prepared by 
asymmetric intramolecular oxidative dearomatization of 
methylenebis(arenol) G, which could in turn be prepared by Michael 
addition of arenolate anion to o-QM F, which is a strong Michael 
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acceptor.9,10 Thus, if radical cationic species D can be transformed in 
the presence of a nucleophile that cannot attack the cationic aromatic 
ring but serves as a Michael donor, to F under the reaction 
conditions and conversion of  D to E (undesired dearomatization 
process) can be suppressed, a simple tandem approach to spirocyclic 
(2H)-dihydrobenzofurans could be realized.  

 
Scheme 3. Retro-synthetic analysis for oxidative spirocyclic dihydro
benzofuran synthesis from two different arenols (A and B). 
 

Oxidative transformation of o-substituted phenol to the o-QM 
has been achieved using silver oxide as an oxidant11,12 but aerobic 
oxidative transformation has not been reported. However, while 
studying aerobic oxidative dearomatization,7 we happened to find an 
interesting result that might be a clue for achieving the tandem 
synthesis (Scheme 4). The treatment of 2,4,6-timethylphenol with 
nitromethane in the presence of complex 1 in air gave 2,6-dimethyl-
4-(2-nitroethyl)phenol. This result suggests that arenol can be 
dehydrogenated to QM via a radical cationic species and the QM can 
serve as a Michael acceptor under the reaction conditions. 

 

Scheme 4. A clue toward tandem synthesis of oxidative spirocyclic 
(2H)-dihydrobenzofuran: aerobic oxidative o-QM formation. 

 
Thus, aerobic oxidation of 1-methyl-2-naphthols and phenols 

was expected to give the desired spirocyclic (2H)-
dihydrobenzofurans in a tandem manner for the following reasons; i) 
phenolate anion serves as a Michal donor;13 ii) the pKa (18 in 
DMSO) of phenol is similar to that of nitroalkane (17 in DMSO) and 
phenol is expected to generate the phenolate anion under the reaction 
conditions; and iii) naphthol is more easily oxidized than phenol,14 
and 2-naphthol (or its unit) should be selectively oxidized in the two 
steps (A to D and G to the product). 

Based on this expectation, we examined the oxidation of a 
mixture of 1,3-dimethyl-2-naphthol 3a and phenol 4a in air at 90 °C 
in the presence of 1 (Table 1). As anticipated, spirocyclic (2H)-
dihydrobenzofuran 5a was exclusively obtained with high 
enantioselectivity,15 albeit with moderate yield, and the formation of 
6 was not observed (entry 1). The reaction did not proceed at 25 ºC 

(entry 2), and the reaction in O2 reduced the yield, likely because 
compound 3a suffers autoxidation under this condition16 (entry 3). 
The use of excess amount of substrate (3a or 4a) did not increase the 
yield, and the formation of some unidentified products was observed 
(entries 4 and 5). Use of 10 mol% of the catalyst improved the yield 
to 54% (entry 6). To further increase enantioselectivity, we surveyed 
iron-salan catalysts (See E.S.I. for additional catalyst optimization) 
and found that complex 2 bearing 3,5-dimethylphenyl substituents at 
its ethylendiamine and binaphthyl moieties showed higher 
enantioselectivity of 92% ee (entry 7). The yield was improved to 
86% by adding 0.5 equiv. of 3a at 24 h and extending the reaction 
time to 48 h (entry 8).  

 

Table 1. Development of iron-catalysed asymmetric tandem synthesis of spir
ocyclic (2H)-dihydrobenzofuran 5aa. 

Entry Catalyst ºC 3a : 4a  Oxidant Yield 
5a (%)b 

Ee  
5a (%)c 

1 1 90 1 : 1 air 36 86 
2 1 25 1 : 1 air nr nd 
3 1 90 1 : 1 O2 12 82 
4 1 90 1 : 2 air 38 83 
5 1 90 2 : 1 air 30 84 
6d 1 90 1 : 1 air 54 84 
7d 2 90 1 : 1 air 57 92 
8d,e 2 90 1.5 : 1 air 86f 91 

aReactions were run on a 0.1 mmol scale in toluene for 24 h using 5 mol% of 
iron-salan catalyst (1 or 2) under air, unless otherwise noted. bDetermined by 
1H NMR analysis using phenanthrene as an internal standard. cDetermined by 
HPLC analysis on a chiral stationary phase column. d10 mol% of catalyst was 
used. eRun on a 0.4 mmol scale for 48 h. 0.5 equiv. of 3a was added at 24 h. 
fIsolated yield. 
 

With complex 2 as the catalyst, we further examined the 
reactions between 1,3-dimethyl-2-naphthol and substituted phenols 
(Table 2). High enantioselectivity (84-93% ee) has been achieved 
irrespective of location of the substituents, except that the reaction of 
3,5-dimethylphenol afforded 5j with a somewhat diminished 
enantioselectivity (78% ee). Fortunately, enantiopure 5j was 
obtained by a single recrystallization from dichloromethane/n-
hexane. Moreover, a broad functional group compatibility was 
observed; halo, ester, nitro, and cyano groups withstood the reaction 
conditions, and only the formyl group, which decomposed under the 
reaction condition, did not. However, the corresponding acetal group 
was tolerant of the conditions and compound 5f was obtained with 
high enantioselectivity and yield.   Recrystallization of 5b from 
dichloromethane/n-hexane gave a single crystal that is suitable for 
crystallographic analysis, and its absolute configuration was 
determined to be R.17 

The reactions of 1-methyl-3-(n-propyl)-2-naphthol and 3-allyl-1-
methyl-2-naphthol with phenol also proceeded with high 
enantioselectivity of 82 and 90% ees, respectively, to give 5k and 5l, 
respectively. It is noteworthy that the reaction of 3-allyl-1-methyl-2-
naphthol gave only the spirocyclic product 5l formed via a 1,2-
naphthoquinone methide intermediate. No product was detected via 
a 2,3-naphthoquinone methide intermediate. On the other hand, the 
reaction of 1-ethyl-3-methyl-2-naphthol with phenol did not proceed. 
Although the reason for this is unclear, the formation of Michael 
addition product (G in Scheme 3) was not detected and either γ-
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hydrogen abstraction or Michael addition step is not likely to 
proceed. 

Table 2. Asymmetric tandem synthesis of spirocyclic (2H)-
dihydrobenzofuransa 

aReactions were run at 90 °C in toluene with a molar ratio (3 : 4 = 1 : 1) for 
24 h using iron-salan catalyst 2 in air on 0.4 mmol scale and further run for 
24 h after 0.5 eq. of 3 was added. Enantiomeric excesses were determined by 
HPLC analysis on a chiral stationary phase column. All yields are isolated 
ones. bDetermined by X-ray crystallographic analysis. 
 
Spiro(benzofuranazaalkane)s show unique biological activity.18 To 
explore the utility of the present reaction, we examined the 
conversion of 5a to spiro[benzofuranisoquinoline] 9, a class of 
spiro(benzofuranazaalkane)s  (Scheme 5). Its derivatives show 
biological activity such as diuretic, antihypertensive, and 
anticonvulsant activities. Thus, 5a was submitted to ozonolysis with 
oxidative workup to give lactone 7 as an equilibrium mixture of two 
diastereomers, which was further converted without isolation to 8; i) 
Pb(OAc)4 oxidation and ii) imidation with aqueous ammonia in the 
presence of O-(benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium 
tetrafluoroborate (TBTU). Fortunately, when the obtained 8 was 
ultrasonicated in ethyl acetate/MeOH (1/2), most of 8 was dissolved 
and the concentration of the solution gave a highly enantioenriched 8 
(97% ee). The ee of a small amount of undissolved 8 was 11%. The 
enantioenriched 8 was reduced by LAH to afford 9. 5a was 
converted in four steps into 9 in a total yield of 25%.	  	  

 
Scheme 5. Transformation of 5a to 9.  

In conclusion, we have developed an iron-catalysed 
oxidative o-QM formation/Michael addition/asymmetric 
oxidative dearomatization tandem strategy for the synthesis of 
spirocyclic compounds, which was inspired by the discovery of 
in situ aerobic oxidative o-QM formation. This strategy enables 
a facile synthesis of useful spirocyclic (2H)-
dihydrobenzofurans with air as the hydrogen acceptor from 1-
methyl-2-naphthol and phenol derivatives. By utilizing the 
tandem synthesis as a key step, a core structure 9 of 
biologically active spiro[benzofuranisoquinoline]s was 
constructed in only five steps from easily available 1,3-
dimethyl-2-naphthol and phenol in a highly enantioselective 
manner.  
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