ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ChemComm

Chem Comm

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Manganese-Catalyzed Intermolecular C–H/C–H Coupling of Carbonyls and Heteroarenes

Keika Hattori,^a Asraa Ziadi,^a Kenichiro Itami,^{a,b} and Junichiro Yamaguchi^a*

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Manganese-catalyzed intermolecular C–H/C–H coupling of carbonyls and heteroarenes has been developed. The presence of NaIO₄ as an oxidant is crucial for the catalytic reaction. These new, inexpensive reaction conditions allow the gramscale synthesis of α -heteroaryl carboxylic acids.

 α -Heteroaryl carbonyl structure has stimulated interested in organic synthesis because it is a highly prevalent motif in pharmaceuticals and natural products.¹ To date, metal-catalyzed α -arylation of carbonyls with aryl halides has been extensively studied with mainly Pd-based catalysts.2 Although the introduction of six-membered aromatic rings in this manner is possible, the use of five-membered heteroaryl halides as arylating agents presents issues in terms of substrate stability, difficulty of preparing (pseudo)halo heteroarene starting materials, and sluggish reactivity when compared to six-membered systems. In an alternative synthesis pathway, the coupling between functionalized carbonyls and heteroarenes (including its halide and organometallic derivatives) have been reported by several research groups, but the carbonyl starting materials in such reactions must be synthesized using several steps.³ Thus, a catalytic C-H/C-H coupling of carbonyls and heteroarenes without pre-functionalization has attracted attention as a more concise and greener process for the synthesis of α -heteroaryl carbonyl compounds.

Recently, Pd-catalyzed intramolecular C–H/C–H coupling between carbonyls and heteroarenes (specifically pyridines) has been reported.⁴ Furthermore, an intermolecular coupling of carbonyls and indoles/pyrroles using stoichiometric copper salts and excess amounts of strong bases was successfully demonstrated by Baran and co-workers.⁵ However, the satisfaction of both criteria, i.e., catalytic *and* intermolecular, has not been achieved for the coupling of carbonyls and heteroarenes without functional group handles. To approach this challenge, we hypothesized that the key lies in manganese-catalyzed coupling reactions.⁶ It is known that Mn(III) species can mediate intramolecular oxidative cyclization reactions^{7,8} and biaryl couplings⁹ using stoichiometric amounts or catalytic amounts of Cu(OAc)₂ as a co-oxidant. Two decades ago, Mn-mediated intermolecular C–H/C–H coupling of carbonyls and (hetero)arenes was reported by Muchowski,¹⁰

¹² of he n, an ng of a: us ee ve ve Q) na si in ng ld

which required 2.5 equivalents of $Mn(OAc)_3^{11}$ (US\$9.0 per gram).¹² Based on these pioneering studies, we envisioned that the amount of Mn can be reduced to catalytic amounts, thereby rendering the synthesis of α -heteroaryl carbonyl compounds more practical. Herein, we describe the development of a practical method for an intermolecular C–H/C–H coupling of carbonyls and heteroarenes using a manganese catalyst (Scheme 1).

Scheme 1 Mn-catalyzed C–H/C–H coupling of carbonyls and heteroarenes

Our investigation commenced with the coupling reaction of tri(ethoxycarbonyl)methane (1A: 1.0 equiv) and 2-acetylpyrrole (2a: 2.0 equiv) in the presence of a catalytic Mn complex (5 mol%), various oxidants (1.2 equiv) and NaOAc (2.0 equiv) as shown in Table 1 (see also electronic supplementary information (ESI)). Primarily, we investigated the effect of oxidants. Disappointingly, representative oxidants such as Ag₂CO₃, Cu(OAc)₂, K₂S₂O₈, and benzoquinone (BQ) interfered with the coupling reaction and completely shut it down (entries 1-4). When t-butyl hydroperoxide (TBHP) or CeSO4•4H2O was used, the corresponding coupling product 3Aa was obtained, albeit in very low yields (entries 5 and 6). To our great delight, the coupling reaction proceeded smoothly to afford the desired product in 32% yield when sodium periodate (NaIO₄) was used as an oxidant. When Mn complexes were systematically changed, the reactions gave 3Aa in vields ranging from 24% to 64% (entries 7-10). Although MnI₂ (US\$78.90 per gram)¹² gave the best yield (64%, entry 9), Mn(OAc)₂•4H₂O is a significantly less expensive catalyst (US\$0.06 per gram)¹¹ and was therefore selected as the catalyst of choice despite the slightly lower yield (57%, entry 10). The addition of sodium acetate is crucial to give 3Aa in good yield (entry 11). Consequently, various additives were tested (entries 12-18) and, from these studies, it appeared that trisubstituted phosphines such as PPh₃ (72%, entry 14) and X-Phos (77%, entry 15) were effective in increasing the yield of 3Aa, whereas sulfoxide (e.g., DMSO, entry 12), pyridine (entry 13), and trialkylphosphine (e.g., Cy_3P , entry 16) were not. Surprisingly, bidentate phosphine (e.g., dppe, entry 17) completely shut down the reactivity. We then assumed that trisubstituted phosphines are being oxidized to phosphine oxides under the reaction conditions, and thus added triphenylphosphine oxide. However, the yield was the same as the reaction without additive (compare entry 18 to entry 10), showing that unoxidized trisubstituted phosphines are necessary to improve the yield of **3Aa**.¹³ PPh₃ is the least expensive, and therefore, we selected it as the additive of choice for this reaction.

Table 1. Screening of the Mn-catalyzed C–H/C–H coupling of 1A and 2a ^a				
$EtO_{2}C$ 1A (R = C	$H + H N H N H O_2Et$	5 mol% Mn salt 10 mol% additive oxidant (1.2 equiv) NaOAc (2.0 equiv) AcOH 70 °C, 18–24 h	EtO ₂ C	AAa
Entry	Mn salt	Oxidant	Additive	Yield of 3Aa /% ^b
1	Mn(OAc) ₃ •2H ₂ O	Ag ₂ CO ₃	-	0
2	Mn(OAc) ₃ •2H ₂ O	Cu(OAc) ₂ •H ₂ O	-	0
3	Mn(OAc) ₃ •2H ₂ O	BQ	-	0
4	Mn(OAc) ₃ •2H ₂ O	$K_2S_2O_8$	-	1
5	Mn(OAc) ₃ •2H ₂ O	TBHP	-	9
6	Mn(OAc) ₃ •2H ₂ O	CeSO ₄ •4H ₂ O	-	10
7	Mn(OAc) ₃ •2H ₂ O	$NaIO_4$	-	32
8	MnCl ₂	NaIO ₄	-	24
9	MnI_2	NaIO ₄	-	64
10	$Mn(OAc)_2 \bullet 4H_2O$	NaIO ₄	-	57
11 ^c	Mn(OAc) ₂ •4H ₂ O	NaIO ₄	-	9
12	Mn(OAc) ₂ •4H ₂ O	$NaIO_4$	DMSO	33
13	Mn(OAc) ₂ •4H ₂ O	NaIO ₄	pyridine	36
14	Mn(OAc) ₂ •4H ₂ O	NaIO ₄	PPh_3	$72(77)^d$
15	Mn(OAc) ₂ •4H ₂ O	NaIO ₄	X-Phos	77
16	Mn(OAc) ₂ •4H ₂ O	NaIO ₄	Cy ₃ P	37
17	Mn(OAc) ₂ •4H ₂ O	NaIO ₄	dppe	2
18	$Mn(OAc)_2 \cdot 4H_2O$	NaIO ₄	O=PPh ₃	55

 $^{^{}a}$ Conditions: **1A** (1.0 mmol), **2a** (2.0 mmol), Mn salt (0.05 mmol), oxidant (1.2 mmol), NaOAc (2.0 mmol), additive (0.1 mmol), AcOH (2.0 mL), 70 °C, 18 h. b GC yield. c The reaction was performed without NaOAc. d Isolated yield.

With the optimal conditions in hand, we investigated the scope of C-H/C-H coupling of tri(ethoxycarbonyl)methane (1A) with various five-membered heteroarenes (Scheme 2). When the C2-substituent of the pyrrole was changed from acetyl (2a) to methoxycarbonyl (2b) and cyano (2c), the coupling proceeded well to give the corresponding products in good yields. Unsubstituted thiophene (2d) performed well (68% yield), and C2-alkylated thiophenes such as methyl (2e) and ethyl (2f) thiophenes also gave the products in excellent yields. In the case of C2-halogenated thiophenes such as chloro (2g), bromo (2h), and iodo (2i) thiophenes, these reactions worked very well without loss of the halogen atom. To our delight, the coupling reaction of 1A with 2i was conducted in the presence of only 1 mol% Mn(OAc)₂•4H₂O, giving the corresponding product in 77% yield. Benzothiophene (2j), benzofuran (2k), and furan (2l) were applicable for this coupling reaction to afford the products in good yields. It is of note that PPh3 was not needed for heteroarenes 2d, 2g, 2h, and 2i, and actually decreased the yields slightly when 2c and 2k were used. Unfortunately, using indole as a heteroarene gave the corresponding product in 20% yield. Additionally,

electron-rich aromatics such as dimethoxybenzene did not react under the present conditions.

Scheme 2. Substrate scope of heteroarene coupling partners. The yields of coupling products without PPh₃ are shown in parentheses. ^{*a*} 1 mol% of $Mn(OAc)_2 \cdot 4H_2O$ was used. ^{*b*} 10 equiv of furan was employed.

Next, the scope of carbonyl coupling partner was investigated with 2-iodothiophene (2i) under the optimal conditions (Scheme 3). It was found that the carbonyl partner always required the diester moiety, and otherwise the reactions did not proceed at all. Substrates wherein the ethyl ester of 1A was changed to *t*-butylketone (1B), phenylketone (1C), or morpholine amide (1D) were tolerated albeit in moderate yields. Using diethyl 2-methylmalonate (1E) as the carbonyl partner, the coupling reaction proceeded to give the product in 46% yield. This was extended to other malonate derivatives, including a cyanocontaining (1F: 73%) and chloro-containing alkyl chain (1G: 54%).

As the presence of a radical scavenger suppressed the Mn-catalyzed C–H/C–H coupling of **1A** and **2a** (Scheme 4), we assume that the reaction proceeds via a radical mechanism.¹⁴ For example, when this

Journal Name

reaction was performed under oxygen, the yield of **3Aa** was only 8% yield; similar effects were observed when adding TEMPO (12% yield) and galvinoxyl (19% yield). The reaction mechanism remains unclear, but these experiments support a radical pathway for this coupling reaction.

Finally, a gram-scale synthesis of α -heteroaryl carbonyls was performed (Scheme 5). 20 mmol of **1A** was coupled with **2a** under our optimized conditions, followed by hydrolysis and decarboxylation of **3Aa**. Thereafter, acid-base extraction of the crude product afforded 2.3 g of pure α -heteroaryl carboxylic acid **4Aa** without column chromatography (67% yield overall).

Scheme 4. Addition of radical scavengers

Scheme 5. Gram-scale synthesis of $\alpha\text{-hetero carboxylic acid 4Aa}$

In summary, we have developed a practical intermolecular C–H/C– H coupling of carbonyls and heteroarenes catalyzed by manganese.¹⁵ The oxidant, sodium periodate, is a readily available, inexpensive oxidant. This method tolerates a wide range of heteroarenes to furnish the α -heteroaryl carbonyl products (18 examples, including various carbonyl partners). A gram-scale C–H/C–H coupling demonstrated that the reaction could be applied to the practical synthesis of -heteroaryl carboxylic acids. Further modifications of the Mn catalyst to achieve a broad scope for the carbonyl partner are ongoing in our laboratory.

This work was supported by the Funding Program for Next Generation World-Leading Researchers from JSPS (220GR049 to K.I.), a Grant-in-Aid for Scientific Research on Innovative Areas "Molecular Activation Directed toward Straightforward Synthesis" (25105720 to J.Y.) from MEXT. ITbM is supported by the World Premier International Research Center (WPI) Initiative, Japan.

Electronic Supplementary Information (ESI) available: Experimental procedures, characterization data, and $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for products. See DOI: 10.1039/c000000x/

Notes and references

^a Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. E-mail: junichiro@chem.nagoya-u.ac.jp

^b JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan

- For selected examples, see: (a) J. M. Muchowski, Adv. Med. Chem., 1992, 1, 109; (b) A. Sato, T. Morishita, T. Shiraki, S. Yoshioka, H. Horikoshi, H. Kuwano, H. Hanzawa, and T. Hata, J. Org. Chem., 1993, 58, 7632; (c) A. R. Carroll, E. Hyde, J. Smith, R. J. Quinn, G. Guymer, and P. I. Forster, J. Org. Chem., 2005, 70, 1096; (d) L. Bhattacharyya, S. K. Chatterjee, S. Roy, and D. P. Chakraborty, J. Indian Chem. Soc., 1989, 66, 140.
- For selected examples and reviews, see: (a) T. Satoh, Y. Kawamura, M. Miura, and M. Nomura, *Angew. Chem. Int. Ed.*, 1997, 36, 1740;
 (b) M. Palucki, and S. L. Buchwald, *J. Am. Chem. Soc.*, 1997, 119, 11108; (c) B. C. Hamann, and J. F. Hartwig, *J. Am. Chem. Soc.* 1997, *119*, 12382; (d) D. A. Culkin, and J. F. Hartwig, *Acc. Chem. Res* 2003, 36, 234; (e) C. C. C. Johansson, and T. J. Colacot, *Angew. Chem. Int. Ed.*, 2010, 49, 676.
- 3 For selected examples, see: (a) M. Prats, C. Galvez, Y. Gasanz, and A. Rodriguez, J. Org. Chem., 1992, 57, 2184; (b) J. L. Wood, B. M. Stoltz, H.-J. Dietrich, D. A. Pflum, and D. T. Petsch, J. Am. Chem. Soc. 1997, 119, 9641; (c) A. Boularot, C. Giglione, S. Petit, Y. Duroc, R. Alves de Sousa, V. Larue, T. Cresteil, F. Dardel, I. Artaud, and T. Meinnel, J. Med. Chem., 2007, 50, 10; (d) Y. Cai, S.-F. Zhu, G.-P. Wang, and Q.-L. Zhou, Adv. Synth. Cat. 2011, 353, 2939. (e) Q. Tang, X. Chen, B. Tiwari, and Y. R. Chi, Org. Lett., 2012, 14, 1922.
- 4 C. Dey, and E. P. Kündig, Chem. Commun., 2012, 48, 3064.
- 5 (a) P. S. Baran, J. M. Richter, and D. W. Lin, *Angew. Chem., Int. Ed.*, 2005, 44, 609; (b) J. M. Richter, B. W. Whitefield, T. J. Maimone, D. W. Lin, M. P. Castroviejo, and P. S. Baran, *J. Am. Chem. Soc.*, 2007, 129, 12857.
- For selected examples of Mn-catalyzed direct C-C or C-heteroatom bond formation, see: (a) Y. Kuninobu, Y. Nishina, T. Takeuchi, and K. Takai, Angew. Chem., Int. Ed., 2007, 46, 6518; (b) Y.-C. Teo, F.-F. Yong, C.-Y. Poh, Y.-K. Yan, and G.-L. Chua, Chem. Commun., 2009, 6258; (c) N. Yoshikai, S. Zhang, K. Yamagata, H. Tsuji, and E. Nakamura, J. Am. Chem. Soc., 2009, 131, 4099; (c) J. Y. Kim, S. H. Cho, J. Joseph, and S. Chang, Angew. Chem. Int. Ed., 2010, 49, 9899; (c) B. Zhou, H. Chen, and C. Wang, J. Am. Chem. Soc. 2013, 135, 1264.
- For selected examples of Mn-mediated intramolecular oxidative cyclization, see: (a) B. B. Snider, *Chem. Rev.* 1996, 96, 339; (b) D. R. Artis, I.-S. Cho and J. M. Muchowski, *Can. J. Chem.*, 1992, 70, 1838; (b) J. Magolan and M. A. Kerr, *Org. Lett.*, 2006, 8, 4561; (c) J. Magolan, C. A. Carson and M. A. Kerr, *Org. Lett.*, 2008, 10, 1437. (d) V. Bhat, L. A. MacKay and V. H. Rawal, *Org. Lett.*, 2011, 13, 3214.
- 8 Very recently, Oisaki and Kanai reported a Mn-catalyzed intramolecular oxidative cyclization of diesters and indoles with oxygen as terminal oxidants. K. Oisaki, J. Abe, and M. Kanai, *Org. Biomol. Chem.* 2013, 11, 4569.
- 9 For selected examples of Mn-mediated biaryl coupling, see: (a) A. S. Demir, Ö. Reis, and M. Emrullahoglu, *Tetrahedron*, 2002, 58, 8055;

(b) A. S. Demir, Ö. Reis, and M. Emrullahoglu, *J. Org. Chem.*, 2003, **68**, 578.

- (a) I.-S. Cho, and J. M. Muchowski, *Synthesis* 1991, 567. For a similar type of reaction, see: (b) C.-P. Chuang and S.-F. Wang, *Tetrahedron Lett.*, 1994, 35, 1283.
- 11 Muchowski and co-workers actually use 2.5 equivalents of Mn(OAc)₂•4H₂O and employed an *in situ* oxidation procedure with KMnO₄ in order to address the problem of cost of Mn(OAc)₃.
- 12 Based on current prices from Sigma-Aldrich, Inc.
- 13 Almost immediately after starting the reaction (5 min), it was determined that Ph_3P was completely oxidized to $Ph_3P=O$. Therefore, we assume that the role of Ph_3P might be to quench some peroxides such as peracetic acid that is slightly produced from AcOH and NaIO₄.
- 14 (a) A. Citterio, R. Santi, T. Fiorani, and S. Strologo, J. Org. Chem.
 1989, 54, 2703; (b) (b) Z.-Q. Cong, and H. Nishino, Synthesis 2008, 2686.
- 15 One example of intermolecular C-H/C-H coupling of indole with dimethyl 2-methylmalonate is shown in ref. 8. However, we could not reproduce the reported reaction. Additionally, although we applied their conditions to the coupling between **1A** and **2a**, the product was obtained only in trace amounts.