ChemComm

ChemComm

Enantioselective synthesis of the C24-C⁴⁰ fragment of (-) pulvomycin

SCHOLARONE™ Manuscripts

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Enantioselective synthesis of the C24-C40 fragment of (−**)-pulvomycin**

Sandra Börding^a and Thorsten Bach*^a

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX **DOI: 10.1039/b000000x**

- **The C24-C⁴⁰** ⁵**fragment of (**−**)-pulvomycin was prepared in enantiomerically pure form by a concise synthesis (15 linear steps from D-fucose, 6.8% overall yield) featuring a diastereoselective addition to an aldehyde, a** β**-selective glycosylation and a Stille cross-coupling as key steps.**
- ¹⁰The antibiotic pulvomycin was first isolated in 1957 from *Streptomyces* species but due to the limited analytical data no structure was assigned to the compound.¹ In 1963, Umezawa et al. isolated a natural product from *Streptomyces albosporeus* var. *labilomyceticus*, 2 which they called labilo-¹⁵mycin and which was later shown to be identical to pulvomycin.³ Extensive analytical work by Williams et al. revealed the constitution of the natural product (figure 1) as well as the absolute and relative configuration at most stereogenic centers except for C_{32} and C_{33} .⁴ The assignment ²⁰was confirmed and the complete configuration was eventually proven by a crystal structure (1.4 Å resolution) of pulvomycin with the bacterial elongation factor Tu $(EF-Tu)$.⁵ It is well established that pulvomycin is a potent inhibitor of EF-Tu and it therefore represents a promising lead compound for the
- 25 development of new antibiotics.⁶

Figure 1 Structure and compound numbering of (−)-pulvomycin

While synthetic reports on pulvomycin are scarce, the biosynthesis of the pulvomycin aglycon has been elucidated by labeling experiments.⁷ Our own interest in pulvomycin was triggered by our previous studies on the synthesis 8 and 30 antibiotic acitivity⁹ of thiazole peptides, such as the GE factors and the amythiamicins. It has been shown that the EF-Tu binding site of pulvomycin is in close proximity to the binding site of thiazole peptides. 10 The synthesis of pulvomycin and pulvomycin analogues might consequently 35 help to further investigate the many facets of EF-Tu activity.¹¹ Apart from its biological activity, pulvomycin presents itself as a formidable synthetic challenge due to its complex and labile structure. In this communication we disclose the

- Retrosynthetically, it was envisioned that ketone **1** (TBDPS = *tert*-butyldiphenylsilyl) could be derived from commercially available D-fucose (**2**), which shows the correct configuration at the stereogenic centers $(C_{36}-C_{39})$ of the pyranose ring. In
- ⁴⁵order to establish the desired β-configuration at the glycosidic center an appropriate neighbouring group, e.g. an acetate, was required (at carbon atom C_{36})¹² and the methyl ether linkage was to be introduced after glycosylation. There was precedence for the differentiation of the two equatorial hydroxy 50 groups at C_{36} and C_{37} of D-fucose.¹³

Scheme 1 Retrosynthetic disconnection of the title compound **1** leading to D-fucose (**2**) as an appropriate carbohydrate substrate

- Regarding the $C_{24}-C_{34}$ fragment, it seemed best to assemble 55 the triene¹⁴ after the glycosylation step by an appropriate cross-coupling reaction, e.g. between C_{29} and C_{30} . The stereogenic center at C_{33} appeared to be accessible from the chiral pool, e.g. from lactic acid, while the adjacent stereogenic center was to be introduced by a diastereoselective reaction.
- ⁶⁰The acetylation of D-fucose (**2**) (scheme 2) proceeded quantitatively delivering the tetraacetate as an α/β-mixture $(\alpha/\beta = 95/5)$ of anomers.¹³ Conversion to the required thioacetal **3** proceeded in our hands best with ethanethiol and $BF_3 \cdot OEt_2$ in CH_2Cl_2 ,¹⁵ which delivered depending on the ⁶⁵reaction conditions and on the reaction scale variable amounts of separable α/β-isomers (see the ESI for further details).

Scheme 2 Synthesis of the protected glycosyl donor **5** from D-fucose (**2**). DMAP = 4-(*N,N*-dimethylamino)pyridine, py = pyridine, im = imidazole

enantioselective synthesis of a suitably protected C_{24} - C_{40} ⁴⁰fragment **1** (scheme 1) of pulvomycin.

This journal is © The Royal Society of Chemistry [year] [journal], [year], **[vol]**, 00–00 | **1**

60

Since the relative configuration at the anomeric center was irrelevant for the desired glycosylation reaction, the α/β mixture of **3** was taken into the four-step procedure previously described for the selective preparation of alcohol β-**4** ¹³ and it

- ⁵furnished the desired product **4** as an α/β-mixture (α/β ≅ 50/50) in a total yield of 60% over six steps from D-fucose (**2**). Conversion of the equatorial alcohol **4** to silyl ether **5** required elevated temperature (60 °C) and a prolonged reaction time (3 d).
- ¹⁰As mentioned above, it was planned to introduce the stereogenic center at C_{32} by a diastereoselective reaction induced by the adjacent stereogenic center at carbon atom C_{33} . Surprisingly, the reduction of a (*S*)-lactate-derived, *para*methoxybenzyl(PMB) protected alkynyl ketone¹⁶ produced
- ¹⁵the desired alcohol **7** either in low yields or with insufficient diastereoselectivity (see the ESI for further details). As an alternative approach, (*S*)-lactate-derived aldehyde **6** ¹⁷ was alkynylated with TMS-acetylene under chelation control¹⁸ yielding alcohol **7** and its epimer *epi*-**7** in 81% yield and in a
- 20 diastereomeric ratio (d.r.) of 87/13 (scheme 3). Diastereomerically pure product **7** was isolated in 65% yield.

Scheme 3 Assembly of the C_{28} - C_{40} fragment via glycosylation of enantiomerially pure (≥98% *ee*) alcohol **8** with glycosyl donor **5**

²⁵Protection of the secondary alcohol proceeded smoothly at ambient temperature and the PMB group was cleaved oxidatively with 2,3-dicloro-5,6-dicyanobenzoquinone (DDQ)¹⁹ to deliver alcohol **8**. The enantiomeric excess (*ee*) of alcohol **8** was established by chiral HPLC analysis and ³⁰comparison with a racemic sample (see the ESI for further details). Gratifyingly, the glycosylation reaction, when performed with *N*-iodosuccinimide (NIS) and trifluoromethanesulfonic acid (HOTf) as activating agents, 20 delivered a single diastereomerically pure product 9, which was shown 35 to have the desired β -configuration.²¹ Reductive removal of the acetyl groups with diisobutylaluminium hydride (DIBAL-H)²² produced 1,3-diol **10**, which was converted into the respective dimethylether **11** upon treatment with an excess (10

- equiv.) of Meerwein salt and proton sponge [1,8- 40 bis(dimethylamino)naphthalene].²³ Less electrophilic methylating reagents (MeOTf, MeI) in combination with appropriate bases failed to react or led to substrate decomposition. Selective desilylation of the alkyne was achieved with $1,8$ -diazabicyclo $[5.4.0]$ undec-7-ene (DBU).²⁴
- 45 With alkyne **12** in hand, various approaches to potential crosscoupling substrates were pursued. It was found, that the Pdcatalyzed hydrostannylation with Bu_3SnH^{25} can be performed with alkyne **12** delivering stannane **13** in 44% yield. Iodide **14** was obtained from stannane **13** upon treatment with iodine in so dichloromethane $(85\% \text{ yield})$.²⁶ The alkyne hept-3-en-1-yne- 5 -ol²⁷ seemed to be the most suitable precursor for iodide 15 and stannane **16**. The compound was available from bis-1,4- (trimethysilyl)buta-1,3-diyne in four steps and an overall yield of 53% (see the ESI for further details). Stannylation of hept- 55 3-en-1-yne-5-ol with Bu₃SnH was readily achieved employing the Cu-based protocol of Betzer et al.²⁸ to deliver stannane 16 in 79% yield. As for **14**, iodide **15** was generated by iodo-destannylation employing iodine in dichloromethane (79% yield).

Scheme 4 Stille cross-coupling of building blocks **13** and **15** as key step for the assembly of the title compound

While attempted Stille cross-coupling reactions²⁹ of stannane **13** and iodide **15** failed, the desired C-C bond formation ⁶⁵proceeded smoothly, if performed with the carbohydrate building block as electrophile. Iodide **14** and stannane **16** underwent a clean cross-coupling employing $Pd(MeCN)_2Cl_2$ (10 mol%) as the catalyst.³⁰ Alcohol 17 was obtained in 87% yield and was immediately further oxidized to the desired π ketone by treatment with an excess (30 equiv.) of MnO₂. Despite a pronounced long wavelength absorption ($\lambda_{\text{max}} = 308$) nm, $\varepsilon = 28035$ M⁻¹ cm⁻¹ in MeCN), trienone **1** appears to be more stable than alcohol **17** ($\lambda_{\text{max}} = 271$ nm, $\epsilon = 39350$ M⁻¹ cm⁻¹ in MeCN; shoulder at $\lambda_{\text{max}} = 282$ nm, $\varepsilon = 31180$ M⁻¹ σ ₇₅ cm⁻¹) and could be stored for one week at −25 °C in the dark.

In summary, the enantiomerically pure Western fragment **1** of (−)-pulvomycin was synthesized in 15 linear steps. The fragment comprises the carbohydrate part (labilose, C_{35} - C_{40}) of the natural product and one of its three triene components $_{80}$ (C₂₄-C₃₄). Should an aldol-type reaction of fragment 1 with a suitable Eastern fragment not be successful, stannane **13** and iodide **14** offer suitable options to connect the protected glycoside fragment to the rest of the molecule.

2 | *Journal Name*, [year], **[vol]**, 00–00 **This journal is © The Royal Society of Chemistry [year]** This journal is © The Royal Society of Chemistry [year]

 This project was supported by the *Deutsche Forschungsgemeinschaft* (Ba 1372-18/1), by the *TUM Graduate School*, and by the *Fonds der Chemischen Industrie*. Olaf Ackermann and Florian Mayr are acknowledged for help with the HPLC ⁵analyses.

Notes and references

a Address: Lehrstuhl für Organische Chemie I, Technische Universität München, 85747 Garching, Germany. Fax: +49 89 28913315; Tel: +49 89 28913330; E-mail: thorsten.bach@ch.tum.de

- ¹⁰† Electronic Supplementary Information (ESI) available: See DOI: 10.1039/b0000000x/
- 1 M. Zief, R. Woodside and H. Schmitz, *Antibiot. Chemother.*, 1957, **7**, 384-386.
- 2 (a) E. Akita, K. Maeda and H. Umezawa, *J. Antibiot., Ser. A*, 1963, ¹⁵**16**, 147-151; (b) E. Akita, K. Maeda and H. Umezawa, *J. Antibiot., Ser. A*, 1964, **17**, 200-217.
- 3 J. L. Schwartz, M. Tishler, B. H. Arison, H. M. Shafer and S. Omura, *J. Antibiot.*, 1976, **29**, 236-241.
- 4 R. J. Smith, D. H. Williams, J. C. J. Barna, I. R. McDermott, K.
- ²⁰Haegele, F. Piriou, J. Wagner and W. Higgins, *J. Am. Chem. Soc.*, 1985, **107**, 2849-2857.
- 5 A. Parmeggiani, I. M. Krab, S. Okamura, R. C. Nielsen, J. Nyborg and P. Nissen, *Biochemistry*, 2006, **45**, 6846-6857.
- 6 For a recent review, see: K. M. G. O'Connell, J. T. Hodgkinson, H. F. ²⁵Sore, M. Welch, G. P. C. Salmond and D. R. Spring, *Angew. Chem. Int. Ed*., 2013, **52**, 10706-10733.
- 7 N. D. Priestley and S. Gröger, *J. Org. Chem.*, 1995, **60**, 4951-4953.
- 8 (a) O. Delgado, H. M. Müller and T. Bach, *Chem. Eur. J.*, 2008, **14**, 2322-2339; (b) C. Ammer and T. Bach, *Chem. Eur. J.*, 2010, **16**, $14083-14093.$
9 S Gross F
- 9 S. Gross, F. Nguyen, M. Bierschenk, D. Sohmen, T. Menzel, I. Antes, D. N. Wilson and T. Bach, *ChemMedChem*, 2013, **8**, 1954- 1962.
- 10 A. Parmeggiani, I. M. Krab, S. Okamura, R. C. Nielsen, J. Nyborg ³⁵and P. Nissen, *Biochemistry*, 2006, **45**, 6846-6857.
- 11 Reviews: (a) R. Berisio, A. Ruggiero and L. Vitagliano, *Isr. J. Chem.*, 2010, **50**, 71-79; (b) A. Parmeggiani and P. Nissen, *FEBS Letters*, 2006, **580**, 4576-4581.
- 12 (a) R. U. Lemieux and J.-I. Hayami, *Can. J. Chem.*, 1965, **43**, 2162-
- ⁴⁰2173; (b) G.-J. Boons, *Contemp. Org. Synth.*, 1996, **3**, 173-200; (c) T. K. Lindhorst, *Essentials of Carbohydrate Chemistry and Biochemistry*, 3rd. ed., Wiley-VCH, Weinheim, 2007, pp. 157-208.
- 13 D. Comegna, E. Bedini and M. Parrilli, *Tetrahedron*, 2008, **64**, 3381- 3391.
- ⁴⁵14 For selected recent total syntheses of naturally occurring conjugated (*E,E,E*)-trienes, see: (a) D. J. Del Valle and M. J. Krische, *J. Am. Chem. Soc.*, 2013, **135**, 10986-10989; (b) C. Jahns, T. Hoffmann, S. Müller, K. Gerth, P. Washausen, G. Höfle, H. Reichenbach, M. Kalesse and R. Müller, *Angew. Chem. Int. Ed.*, 2012, **51**, 5239-5243;
- ⁵⁰(c) M. Yoshino, K. Eto, K. Takahashi, J. Ishihara and S. Hatakeyama, *Org. Biomol. Chem.*, 2012, **10**, 8164-8174; (d) P. G. E. Craven and R. J. K. Taylor, *Tetrahedron Lett.*, 2012, **53**, 5422-5425; (e) H. J. Jessen, A. Schumacher, F. Schmid, A. Pfaltz and K. Gademann, *Org. Lett.*, 2011, **13**, 4368-4370; (f) D. Amans, V. Bellosta and J. Cossy,
- ⁵⁵*Chem. Eur. J.*, 2009, **15**, 3457-3473; (g) M. T. Crimmins, H. S. Christie, A. Long and K. Chaudhary, *Org. Lett.*, 2009, **11**, 831-834; (h) I. S. Mitchell, G. Pattenden and J. Stonehouse, *Org. Biomol. Chem.*, 2005, **3**, 4412-4431.
- 15 P. Sjölin, S. K. George, K.-E. Bergquist, S. Roy, A. Svensson and J. ⁶⁰Kihlberg, *J. Chem. Soc., Perkin Trans. 1*, 1999, 1731-1742.
- 16 The ketone was prepared from literature known Weinreb amide (V. Convertino, P. Manini, W. B. Schweizer and F. Diederich, *Org. Biomol. Chem.*, 2006, **4**, 1206-1208) by substitution with the respective magnesium acetylide (see the ESI for further details).
- ⁶⁵17 W. Yu, Y. Zhang and Z. Jin, *Org. Lett.*, 2001, **3**, 1447-1450.
- 18 K. T. Mead, *Tetrahedron Lett.*, 1987, **28**, 1019-1022.
- 19 Y. Oikawa, T. Yoshioka and O. Yonemitsu, *Tetrahedron Lett.*, 1982, **23**, 885-888.
- 20 (a) G. H. Veeneman, S. H. van Leeuwen and J. H. van Boom, ⁷⁰*Tetrahedron Lett.*, 1990, **31**, 1331-1334; (b) P. Konradsson, U. E. Udodong and B. Fraser-Reid, *Tetrahedron Lett.*, 1990, **31**, 4313- 4316.
- 21 ¹H-NMR data of glycoside **9** (500 MHz, CDCl₃): δ (ppm) = 0.09 [s, 9 H; Si(CH₃)₃], 0.97 [s, 9 H; C(CH₃)₃], 0.96–0.99 (m, 3 H; H₃-40),
- 1.05 [s, 9 H; C(CH₃)₃], 1.30 (d, ³ $J = 6.3$ Hz, 3 H; H₃-34), 1.46 (s, 3 H; $C(O)CH₃-36$, 2.12 [s, 3 H; C(O)CH₃-38], 3.05 (q, ³J = 6.4 Hz, 1 H; H-39), 3.44 (d, $3J = 8.1$ Hz, 1 H; H^{β}-35), 3.41 (qd, $3J = 6.3$, 3.9 Hz, 1 H; H-33), 3.60 (dd, ³*J* = 9.8, 3.3 Hz, 1 H; H-37), 4.19 (d, ³*J* = 3.9 Hz, 1 H; H-32), 4.79 (d, ³*J* = 3.3 Hz, 1 H; H-38), 5.06 (dd,
- ³J = 9.8, 8.1 Hz, 1 H; H-36), 7.23–7.27 (m, 4 H; H_{arom}), 7.30–7.48 (m, 10 H; Harom), 7.55−7.58 (m, 2 H; Harom), 7.60−7.65 (m, 4 H; Harom), 7.69−7.73 (m, 2 H; Harom).
- 22 F. E. McDonald and M. Wu, *Org. Lett.*, 2002, **4**, 3979-3981.
- 23 B. Wang, T. M. Hansen, T. Wang, D. Wu, L. Weyer, L. Ying, M. M. ⁸⁵Engler, M. Sanville, C. Leitheiser, M. Christmann, Y. Lu, J. Chen, N. Zunker, R. D. Cink, F. Ahmed, C.-S. Lee and C. J. Forsyth, *J. Am. Chem. Soc.*, 2010, **133**, 1484-1505.
- 24 C.-E. Yeom, M. J. Kim, W. Choi and B. M. Kim, *Synlett*, 2008, 565- 568.
- ⁹⁰25 (a) H. X. Zhang, F. Guibe and G. Balavoine, *J. Org. Chem.*, 1990, **55**, 1857-1867. (b) J. R. Frost, C. M. Pearson, T. N. Snaddon, R. A. Booth and S. V. Ley, *Angew. Chem. Int. Ed.*, 2012, **51**, 9366-9371.
	- 26 R. Alvarez, M. Herrero, S. López and A. R. de Lera, *Tetrahedron*, 1998, **54**, 6793-6810.
- ⁹⁵27 K. Green, J. W. Keeping and V. Thaller, *J. Chem. Res. (S)*, 1985, 103; *J. Chem. Res. (M)*, 1985, 1260-1267.
	- 28 J.-F. Betzer, F. Delaloge, B. Muller, A. Pancrazi and J. Prunet, *J. Org. Chem.*, 1997, **62**, 7768-7780.
- 29 Reviews: (a) J. K. Stille, *Angew. Chem. Int. Ed.*, 1986, **25**, 508-524; ¹⁰⁰(b) T. N. Mitchell, *Synthesis*, 1992, 803-815; (c) V. Farina, V. Krishnamurthy and W. J. Scott, *Org. React.*, 1997, **50**, 1-652.
- 30 J. K. Stille and B. L. Groh, *J. Am. Chem. Soc.*, 1987, **109**, 813-817.