This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Metathesis Reaction Route to Mg$_2$Si Fine Particles

H. Itaharaa, T. Yamadab, S.-Y. Oha, R. Asahia, H. Imagawaa and H. Yamaneb

We have developed a novel synthetic route for the production of fine Mg$_2$Si particles ($< 1 \mu$m) using NaSi, MgCl$_2$ and Na. Mg$_2$Si was suggested to be formed by a solid-state metathesis reaction, in which MgCl$_2$ reacts with Na to form Mg and NaCl, and then Mg reacts with NaSi.

Mg$_2$Si is a semiconducting material that exhibits Li storage1 and/or thermoelectric properties2. Mg$_2$Si has benefits in that it is composed of elements with plentiful resources and low toxicity. Mg$_2$Si has additional benefit as lightweight material (ca. 2 g/cm3) when applied it to the moving vehicle. Fine Mg$_2$Si particles are expected to be used as a raw material for the anode of Li-ion batteries and for nanostructured bulk thermoelectric elements. Fine Mg$_2$Si particles or nanomaterials are considered to exhibit stable charge/discharge reaction3, thereby enhancing the cyclability of batteries. In addition, a theoretical study reported that thermopower would be enhanced by a quantum confinement effect4 for the nanostructured thermoelectric bulk material comprising grains with diameter in the nanometer range.

Conventional solution chemistry synthesis routes are useful for the production of fine particles of various noble metals or oxides; however, this route is not applicable, in principle, for the synthesis of fine Mg$_2$Si particles, because Mg$^{2+}$ ions cannot be reduced in solution. Ball-milling or mechanical alloying tends to give an insufficient atomization effect or leads to the inclusion of undesirable impurities5. In contrast, it was recently reported that fine Mg$_2$Si particles with diameters of 1–2 µm were obtained by heating a ball-milled mixture of MgH$_2$ and Si powders6. The Mg$_2$Si particles showed an improved Li-ion storage ability7. Another group reported that Mg$_2$Si particles with diameters of ca. 100 nm were prepared by microwave heating of a powder mixture ball-milled from Mg and Si lumps8. However, insulating oxides formed at the grain boundaries9 during sintering of the Mg$_2$Si particles. Such oxides generally decrease thermoelectric performance of the sintered bodies. Thus, the development of oxide phase-free fine Mg$_2$Si particles remains a challenging issue.

Yamada et al. reported8 that a hollow structured polycrystalline Mg$_2$Si bulk was synthesized by heating a compact mixture of Mg and NaSi powders at 700 °C under an Ar atmosphere. The Mg$_2$Si particles comprising the polycrystalline bulk had diameters of 50–200 µm; therefore, fine Mg$_2$Si particles were not formed by this synthesis method. It was expected that Mg$_2$Si was formed at the boundary of Mg and Na-Si melts, thereby inducing the grain growth of Mg$_2$Si. Itahara et al. reported9 that solid-state metathesis reaction using layered CaSi$_2$ and FeCl$_3$ as starting materials gave nanocomposites containing iron silicides (e.g., FeSi and Fe$_3$Si) and Si.

The present study shows that Mg$_2$Si fine particles with diameters of less than 1 µm can be successfully prepared through a metathesis reaction route using NaSi, MgCl$_2$, and Na as starting materials. The formation mechanism of fine Mg$_2$Si particles has been clarified, and the synthetic conditions for high yield Mg$_2$Si formation with oxidation avoided have been determined. The synthesized fine Mg$_2$Si particles exhibit enhanced discharge capacity compared with that for fine oxidized Mg$_2$Si particles with similar diameter. In addition, the capacity after 10 cycles was 68% of the initial capacity, which is comparable to the highest value of 60% reported for Mg$_2$Si powder prepared by a hydrogen-driven reaction of MgH$_2$ and Si powders5.

Table 1 summarizes the mixing ratio of the NaSi, MgCl$_2$, and Na starting materials. Mixtures with various compositions (total amount of ca. 150 mg) were loaded into BN crucibles. The Mg:Si molar ratio was fixed at 2:1, while the Na content was varied (see conditions A–C, Table 1). Each crucible was placed under an Ar atmosphere within a sealed stainless-steel cell (inner volume of ca. 10 cm3). The cells were heated at 650 °C for 10 h. The samples obtained after heating were agglomerates that were then easily pulverized using a mortar and pestle.

Table 1 summarizes the mixing ratio of the NaSi, MgCl$_2$, and Na starting materials. Mixtures with various compositions (total amount of ca. 150 mg) were loaded into BN crucibles. The Mg:Si molar ratio was fixed at 2:1, while the Na content was varied (see conditions A–C, Table 1). Each crucible was placed under an Ar atmosphere within a sealed stainless-steel cell (inner volume of ca. 10 cm3). The cells were heated at 650 °C for 10 h. The samples obtained after heating were agglomerates that were then easily pulverized using a mortar and pestle.

Cite this: DOI: 10.1039/x0xx00000x

www.rsc.org/
Table 1. Synthesis conditions using NaSi, MgCl₂, and Na as source materials

<table>
<thead>
<tr>
<th>Sample</th>
<th>NaSi (mmol)</th>
<th>Na (mmol)</th>
<th>MgCl₂ (mmol)</th>
<th>Molar ratio MgSi</th>
<th>Molar ratio Na:Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.77</td>
<td>0.023</td>
<td>1.5</td>
<td>2.0:1.0</td>
<td>1.0:1.0</td>
</tr>
<tr>
<td>B</td>
<td>0.59</td>
<td>0.29</td>
<td>1.2</td>
<td>2.0:1.0</td>
<td>1.5:1.0</td>
</tr>
<tr>
<td>C</td>
<td>0.60</td>
<td>1.9</td>
<td>1.2</td>
<td>2.0:1.0</td>
<td>4.1:1.0</td>
</tr>
</tbody>
</table>

Figure 1 and Table 2 show powder X-ray diffraction (XRD) patterns for the as-prepared samples and the assigned crystalline phases, respectively. Different reaction products were obtained according to the nominal Na/Si molar ratios as follows (the ratio was increased in the order of sample A < B < C). Sample A (Na:Si = 1.0:1.0) contained MgCl₂ (unreacted starting material) and Na₂MgCl₃, as major components and trace amounts of NaMgCl₁₁, NaCl, and Mg₅Si (Fig. 1(a)). Sample B (Na:Si = 1.5:1.0) included NaMgCl₁ and trace amounts of NaCl and Mg₅Si (Fig. 1(b)). In contrast, sample C (Na:Si = 4.1:1.0) included only NaCl and Mg₅Si (Fig. 1(c)). When MgCl₂ reacts with NaSi and Na to form Mg₅Si, the reaction formula is expressed as

NaSi + 2 MgCl₂ + 3 Na → Mg₅Si + 4 NaCl \((1) \)

Equation (1) corresponds to the nominal compositions and the observed reaction products for sample C (Tables 1 and 2).

For sample C, the powder of pulverized agglomerates was washed using two different methods to remove by-product NaCl:

- Sample C-1 was washed under a N₂ atmosphere with 2-propanol and then with solvents with high solubility for NaCl (dimethylformamide and formamide), and sample C-2 was washed under an air atmosphere using 2-propanol and then with other solvents with high solubility for NaCl (ethanol and water). XRD peaks assigned to NaCl in the as-prepared sample C (Fig. 1(c)) were not observed in the patterns for washed samples C-1 and C-2 (Fig. 2(a)). SEM images (Fig. 2(b)) of samples C-1 and C-2 indicated that the powders were composed of primary particles with diameters less than 1 µm. Na and Cl were not detected by energy-dispersive X-ray spectroscopy (EDX) measured in the 8 µm square region shown in Fig. 2(b). In addition, the primary particles for both samples were considered to be Mg₅Si with high crystallinity according to the clear electron diffraction pattern obtained (see the Supplementary Information (SI), Fig. S1). The infrared (IR) spectrum for sample C-2 measured in air atmosphere has peaks that correspond to Si-OH (ca. 3,200 cm⁻¹) and Si-O-Si stretching modes (ca. 1,000 cm⁻¹) (see Fig. 2(c)). However, these peaks were absent in the IR spectrum for sample C-1, which suggests that the washing conditions without air or moisture to remove NaCl are effective to prevent oxidation (probably surface oxidation) of the fine Mg₅Si particles.

The major chloride salt phases included in the powders synthesized at 650 °C changed with the increase in the Na/Si molar ratio (sample A < B < C) of the starting materials: MgCl₂ and Na₂MgCl₃ for sample A, NaMgCl₁ for sample B, and NaCl for sample C (Table 2). The powder synthesized at 450 °C, which had the same nominal composition of starting materials as sample C, contained Na₂MgCl₃ and NaMgCl₁ together with NaCl (see SI, Figure S2 and Table S1). These results suggest that Na-rich chlorides would tend to form under conditions with an increased nominal amount of Na or increased synthesis temperature. When MgCl₂ or Na-Mg complex chlorides are present, the corresponding amount of NaSi should remain without forming Mg₅Si. NaSi or the other chlorides observed can be also removed with solvents such as dimethylformamide, formamide, ethanol, and water, as with Na and NaCl. However, the synthesis condition for sample C, in which Mg and Si, and Na and Cl react in stoichiometric ratios (Formula (1)), is the optimal condition for the highest yield of Mg₅Si.

The synthesis condition for sample A (i.e., NaSi + 2 MgCl₂ + 0.03 Na, 650 °C) resulted in almost no Mg₅Si formation from the mixture of MgCl₂ and NaSi. However, Yamada et al. reported that Mg reacted with NaSi to form Mg₅Si and Na at 700 °C. In addition, Mg and NaCl were formed by heating a mixture of MgCl₂ and Na at 650 °C (see SI, Figure S3). These results suggest that the metathesis reaction, in which a reaction of MgCl₂ and Na forms Mg and NaCl after which Mg reacts with NaSi, would be the fundamental reaction for the formation of Mg₅Si (i.e., condition C: NaSi + 2 MgCl₂ + 3.1 Na, 650 °C).

It should be noted that the diameters of Mg₅Si primary particles reported by Yamada et al. (reaction of NaSi and Mg) and those in the present study (condition C: NaSi + 2 MgCl₂ + 3.1 Na) were 50–200 µm and less than 1 µm, respectively. For the former synthesis conditions, it was suggested that a Na-rich Na-Si melt would be formed during the formation of Mg₅Si and that Mg₅Si grain growth would occur at the boundary between the Na-Si and Mg melts, thereby forming coarse Mg₅Si particles. For condition C in the present study, NaCl and Mg were formed by the reaction between MgCl₂ and Na, and the Mg formed then reacted with NaSi to form Mg₅Si. No melt (liquid) phases would be formed because the melting points of NaCl, Mg, and NaSi are higher than the synthesis temperature of 650 °C.

Table 2. Crystalline phases detected in the as-prepared samples using powder XRD.

<table>
<thead>
<tr>
<th>Sample</th>
<th>MgCl₂</th>
<th>Na₂MgCl₃</th>
<th>NaMgCl₁₁</th>
<th>NaCl</th>
<th>Mg₅Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Major</td>
<td>Major</td>
<td>Minor</td>
<td>Minor</td>
<td>Minor</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>–</td>
<td>Major</td>
<td>Minor</td>
<td>Minor</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
<td>–</td>
<td>Major</td>
<td>Major</td>
<td>Major</td>
</tr>
</tbody>
</table>
Electrodes were prepared to evaluate the charge/discharge properties by mixing the synthesized fine Mg$_2$Si particles and carbon black (mixing ratio of 66.7/33.3 wt%, sample weight ca. 5 mg), and then pressing the mixture onto Ni foam (ca. 80 mg, ca. 5×5 mm2). Another electrode was prepared using coarse Mg$_2$Si particles (Koujundo Chemical Labs., Co. Ltd., particle diameter <53 µm) for comparison. In this study, sufficient amount of carbon was added so that all particles are electrically connected to the current collector. Thus, we are able to compare reasonably the effect of the extent of surface-oxidation and the particle size of Mg$_2$Si on anode performance. Li foil was used as a counter/reference electrode and LiPF$_6$ (1 M) dissolved in a mixture of ethylene carbonate/diethyl carbonate (50/50 v/v) was used as the electrolyte. A constant current of 100 mA/g was applied with a voltage window of 0.02–1.5 V (vs. Li/Li$^+$). Figure 3 shows the change in the discharge capacity over 100 cycles. (Voltage profiles for charge and discharge processes are shown in Figure S4). For sample C-1, the initial discharge capacity was 740 mAh/g, which is approximately twice that of conventional carbon. The capacity for sample C-1 after the 100th cycle was approximately twice that for sample C-2. The capacity for the commercial Mg$_2$Si sample from the 1st to the 20th cycle was comparable to that of sample C-1. However, after the 100th cycle, sample C-1 retained a much higher capacity compared to that of the commercial Mg$_2$Si sample.

The coulombic efficiency (defined as the ratio of discharge to charge capacity) of sample C-1 for the 1st cycle was 83.7% (Table 3), while the efficiency after the 2nd cycle was more than 95%. The low coulombic efficiency for the 1st cycle is due to decomposition of the electrolyte to form a solid electrolyte interphase (SEI) at carbon black contained in the electrode13. For sample C-2, the coulombic efficiency for the 1st cycle was 43.5% (Table 3), which is approximately half of that for sample C-1. Li-O compounds, which cannot reversibly release Li, would form during the charge and discharge processes of sample C-2. The formation of Li-O compounds is expected because the C-1 and C-2 samples powders had similar particle diameters, while only sample C-2 would contain oxide phases, as suggested in Fig. 2(c).

The commercial coarse Mg$_2$Si particles (diameter <53 µm) showed much faster capacity fade with cycling than sample C-1 (diameter <1 µm). For Si or Si family materials3, capacity fade is attributed to a large volume change of the electrode that accompanies Li insertion and extraction, where the electrode

Table 3. Initial coulombic efficiency

<table>
<thead>
<tr>
<th>Sample</th>
<th>Coulombic efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>83.7</td>
</tr>
<tr>
<td>C-2</td>
<td>43.5</td>
</tr>
<tr>
<td>Commercial</td>
<td>61.4</td>
</tr>
</tbody>
</table>

Figure 2. (a) Powder XRD patterns for samples C-1 and C-2 obtained after washing sample C with formamide under a N$_2$ atmosphere and with water in an air atmosphere, respectively. (b) SEM images of samples C-1 and C-2. (c) IR spectra for samples C-1 and C-2 measured in air with the attenuated total reflectance (ATR) method.

Figure 3. (a) Discharge capacity for samples C-1 and C-2 over 100 cycles evaluated at a constant current of 100 mA/g with a voltage window of 0.02–1.5 V (vs. Li/Li$^+$). The commercial sample is Mg$_2$Si reagent powder with particle diameters less than 53 µm.
particles are broken down and detached from the current collector. The difference in the expansion rates between the inner and outer parts of the particles would be less for particles with smaller diameters. For the C-1 sample, the breaking down of particles would occur less than that for the commercial coarse particles. Therefore, the C-1 sample retained a capacity that was twice that of the commercial coarse powders. Furthermore, it is noted that the capacity for C-1 sample after 10 cycles was 68% of the initial capacity. This capacity retention is comparable to the highest value of 60% reported for fine Mg$_2$Si particles (1–2 µm diameter) prepared by the reaction of MgH$_2$ and Si (evaluation conditions: Mg$_2$Si/acetylene black = 66.6/33.3 wt%, constant current of 100 mA/g at 0.01–3.0 V vs. Li/Li$^+$).

Conclusions

Fine Mg$_2$Si particles (diameter <1 µm) were successfully prepared through a novel reaction route using NaSi, MgCl$_2$, and Na as starting materials. The formation of Mg$_2$Si fine particles was based on a metathesis reaction, in which MgCl$_2$ reacts with Na to form Mg and NaCl, and then Mg reacts with NaSi to form Mg$_2$Si. No liquid phases, which would induce grain growth of Mg$_2$Si, were present during the reaction, because the melting points of NaCl, Mg, and NaSi are higher than the synthesis temperature of 650 °C. We specified the conditions to produce the highest yield of Mg$_2$Si without oxidation. The prepared fine Mg$_2$Si particles exhibit enhanced capacity and cyclability compared with those for fine oxidized Mg$_2$Si particles with similar diameter. These results suggest that a metathesis reaction using Na or sodium compounds may provide a versatile strategy to synthesize fine particles of various functional materials that conventional synthesis techniques are not applicable.

The authors acknowledge Ms. Yumi Saiki, Ms. Akiko Ueki, Mr. Yusuke Akimoto, Mr. Juntaro Seki and Mr. Hiroaki Kadoura of Toyota CRDL for conducting the microstructural observations.

Notes and references

a Toyota Central Research & Development Labs., Inc., 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan, E-mail: h-itahara@mosk.tytlabs.co.jp
b Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
† Electronic Supplementary Information (ESI) available: [Experimental procedures, TEM images and Electron diffraction pattern for the prepared fine Mg$_2$Si and powder XRD patterns for the sample prepared different conditions]. See DOI: 10.1039/c000000x/