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A facile difunctionalization of arylketones with malonate esters 

via an electrochemical oxidation was achieved under mild 

condition. A variety of difunctionalized products were obtained 

with good to excellent yields. 

Sp3 C-H functionalization of arylketones have attracted considerable 

attention because of their wide applications, especially in organic 

synthesis.1 Consequently, considerable efforts have been devoted to 

develop this kind of reaction under mild reaction conditions, 

including α-oximation of arylketones,2 synthesis of α-diazo ketones,3  

α-azido ketones,4 aryl α-keto esters,5 α-ketoamides6 and α,β-

unsaturated carbonyl compounds,7 direct α-hydroxylation,8 α-

acidification9 and α-halogenation10 of aryl ketones. Compared with 

these direct functionalized reactions, arylketone difunctiolization 

reactions are less developed, which can provide an efficient method 

to access multisubstituted arylketones. Bis(β-dimethoxycarbonyl) 

derivatives have the potential to serve as bone affinity agents in the 

treatment of bone disease.11 More importantly, these derivatives are 

usually employed as the precursor for the synthesis of glutaric acid,12 

which is very useful in industrial chemistry. 

Electrochemical synthesis makes use of electron directly 

without the assistance of transition-metal-catalyst or toxic oxidant, 

therefore it is much more environmentally friendly and sustainable 

in comparison with the conventional redox process.13 Our group has 

recently developed a series of useful electrochemical reactions for 

different transformation.14-19 Encouraged by these successful 

transformations, we developed an arylketone difunctionalization 

reaction via an electrochemical oxidation. This strategy provides a 

facile access to the preparation of multisubstituted arylketones. 

Initial optimization was performed with a model reaction of 

acetophenone 1a with dimethyl malonate 2a. The reaction was 

conducted in an undivided cell when KI was employed as the 

electrolyte and MeOH as the solvent with a constant current of 20 

mA. To our delight, the difunctionalized product 3aa was obtained 

in 40% yield (Table 1, entry 1). However, the electrolyzed process 

was too slow and it took more than 7 hours to get this poor yield. To 

promote the reaction, base was added to the reaction. When Na2CO3 

Table 1  Optimization of the reaction conditions
a 

 

was chosen as a base, the yield of 3aa increased to 75% (Table 1, 

entry 2) and the reaction time was shortened to 3 h. Then other kinds 

of bases were examined. The result showed that KOH was the best 

choice for the electrochemical reaction (Table 1, entries 2-8). 

Afterwards, different kinds of electrolytes were examined. It was 
found iodide ion was necessary to this transformation. In the absence 

of iodide ion, the reaction didn’t occur (Table 1, entries 8-12). After 
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optimization of various iodide salts, KI proved to be the most 

efficient for this reaction (Table 1, entries 8-9 vs 12). Finally, 

different solvents were also optimized (Table 1, entries 12-15). It 

was found that MeOH was the best choice while other solvents 

couldn’t promote the reaction at all. Therefore, the optimal condition 

was described as below: KOH  as the base, KI as the electrolyte, 

MeOH as the solvent and the reaction being electrolyzed at a 

constant current of 20mA for 3 h with two platinum electrodes in an 

undivided cell under room temperature. 

Table 2   Substrate scope of acetophenonesa 

 

With the optimal condition in hand, the scope of arylketone was 

investigated first. The results were summarized in Table 2. Both 

electron-rich and electron-deficient aryl methyl ketones could be 

smoothly transformed into the desired products with high yields 

(Table 2, 3aa-3am). In general, the electron-rich methyl ketones 

were more reactive than electron-deficient ones. It was found that p-

CF3 substitution on the aromatic ring of aryl ketone led to a poor 

yield (Table 2, 3ah). Besides, a notable steric effect was observed: 

ortho substitution resulted in a lower yield compared with para and 

meta substitutions (Table 2, 3ab, 3an and 3aq; 3ad and 3ao; 3af and 

3ap). Furthermore, when multisubstituted ketones were employed as 

the substrates, the corresponding products still could be obtained 

with good yields (Table 2, 3as-3at). Interestingly, when the reaction 

substrate was dimethyl malonate (2a) with the solvent EtOH, the 

product 3ba was obtained with the yield of 58%. In contrast, when 

the substrate was switched to diethyl malonate (2b) with the solvent 

MeOH , 3aa was generated in 73% yield. These experiment results 

clearly revealed that transesterification occurred easily in the 

reaction (Scheme1). 

 

Scheme 1  The process of transesterification. 

 

 

 Scheme 2   Control experiments for the reaction. 

In order to gain the insight of the mechanism, several control 

experiments were carried out (Scheme 2). First, the reaction of 2-

iodo-1-phenylethanone with 2a under standard condition without 

electrolysis did not produce the desired product (Scheme 2a) and the 
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reactants were completely recovered. However, when the reaction 

mixture was electrolyzed, the desired product was obtained in 73% 

yield (Scheme 2b). This indicated that the electrolysis is necessary 

for this reaction. When 2-hydroxy-1-phenylethanone reacted with 2a 

under standard condition, on the other hand, we could not get the 

desired product (Scheme 2c). Subsequently, 2-oxo-2-

phenylacetaldehyde was mixed with 2a under standard condition 

without electrolysis, the desired product was generated in 62% yield 

(Scheme 2d). Moreover, the desired product can be obtained in 80% 

under nitrogen atmosphere (Scheme 2g) while in 37% under oxygen 

atmosphere (Scheme 2h). This implied that 2-oxo-2-phenyl-

acetaldehyde was not the intermediate. Furthermore, 2,2-diiodo-1-

phenylethanone was also employed as the reaction substrate to 

replace 2-oxo-2-phenylacetaldehyde under the same condition, the 

desired product was formed in 84% yield (Scheme 2e). These results 

revealed that 2,2-diiodo-1-phenylethanone should be a key 

intermediate of the reaction. In addition, acetophenone with 2a was 

carried out in the presence of iodine, we failed to get the desired 

product (Scheme 2f). Finally, the reaction was completely 

suppressed in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy 

(TEMPO, 2 equiv.) (Scheme 2i), which suggested that the reaction 

probably involved a radical process. 

According to the experiment results mentioned above, we 

proposed a plausible mechanism (Scheme 3). First, iodine ion is 

oxidized into iodine radical on the surface of the anode, and then 

catches a hydrogen atom from acetophenone (1a) to give the radical 

4. Then the radical 4 combines with iodine radical to form 2-iodo-1-

phenylethanone (5), which obtains an electron to give the radical 6. 

The radiacl 6 is unstable and can easily integrate with iodine radical 

to generate 2,2-diiodo-1-phenylethanone (7), which is then attacked 

by dimethyl malonate (2a) to produce the desired product 3aa under 

alkaline condition. Simultaneously, MeOH is reduced to methoxide 

anion with the release of hydrogen gas in the cathode. 

 
Scheme 3   Proposed mechanism for the reaction. 

 

Decarboxylation of the bis(β-dimethoxycarbonyl) derivative 

3ba was promoted by heating in the presence hydrobromic acid, 

affording 3-Benzoylpropanoic acid 8 in 71% yield (eq 1). 

O

CH(CO2Et)2

CH(CO2Et)2

O

COOH48% HBr

reflux
(1)

3ba 8
 

In summary, we have developed a new method to realize sp3 C-

H difunctionalization of arylketones under mild conditions. A series 

of multisubstituted arylketones were synthesized efficiently by virtue 

of environmentally friendly electrochemistry.  Further studies on C-

H functionalization via electrochemical method are underway in our 

lab. 
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