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Dehydrocoronamic acid can be racemised by dehydration of 5 

an N-acyl derivative to an azlactone, which undergoes facile 

racemisation.  For the N-trifluoroacetyl derivative, the 

racemisation process was combined with an enzymatic 

resolution, to achieve a dynamic kinetic resolution process by 

which the racemate can be converted to either enantiomer. 10 

A family of Hepatitis C NS3 NS4A protease inhibitors which 

contain the common chiral motif (1R, 2S)-dehydrocoronamic 

acid 1 (Figure 1) comprises several antiviral drugs and 

developmental drug candidates (Figure 2).1-9                                                                          
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Figure 1 (1R, 2S)-Dehydrocoronamic acid. 

 

Efficient synthesis of this densely functionalised quaternary 
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Figure 2. Examples of Hepatitis C NS3 NS4A protease inhibitors. 

 40 

amino-acid as a single enantiomer is challenging.  However, a 

concise route to the racemate has been developed,10,11 and routes 

to the single enantiomer based on resolution of both the 

racemate10 and a malonate precursor12 have been described.  

Synthesis from the chiral pool material butane-1,2,4-triol13 and  45 

asymmetric routes employing asymmetric alkylation under chiral 

phase-transfer catalysis11 and palladium-catalysed asymmetric 

allylic alkylation14 have also been published.  We reasoned that if 

a method for racemisation of the off-isomer could be found, this 

could be combined with the established racemic synthesis and a 50 

method of resolution to provide an overall high-yielding synthesis 

of this increasingly commercially important compound.  On 

dehydration with DCC, as an entry to subsequent  coupling 

reactions, amide derivatives of dehydrocoronamic acid 5 cleanly 

give azlactones 6 (Scheme 1).  Subsequent methanolysis of 6 55 

gives the corresponding methyl esters 7.  To our surprise, we 

discovered the enantiomeric excess of the product ester was 

lower than that of the starting acid. 
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Scheme 1. Racemisation of dehydrocoronamic acid azlactones. 
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The rate of racemisation was strongly influenced by the nature of 

the amide group.  Thus, the single enantiomer methyl 

azlactone 6a racemised‡ very slowly at room temperature in 

acetonitrile, and with t1/2 of 60 minutes at 80 °C.  Azlactone 6b 

with an electron-withdrawing 3-trifluoromethyl substituent  5 

racemised more readily, with t1/2 of 7.5 h at 15 °C in acetonitrile.  

In addition to racemisation, slower cis/trans isomerisation 

(Schemes 1 and 4) took place.  This was detectable both by NMR 

and by chiral GC after methanolysis, which showed the trans-

isomer 8 formed to be racemic.  Rates of cis/trans isomerisation 10 

of 6a and 6b were almost identical at 80 °C in acetonitrile.  

Hence the relative rates of racemisation to cis/trans isomerisation 

were lower for 6a (8.5:1 at 80 °C in acetonitrile) than 6b (165:1 

at 15 °C).  After in-situ formation of 6a from (1R)-5a, heating for 

4 h at 80 °C, then methanolysis at ambient temperature, racemic 15 

7a+8a (6:1) was isolated in quantitative  yield.  For (1R)-6b, after 

1 day at 15 °C, near-racemic (12% ee) 7b + 8b (189:1) was 

isolated in 70% yield.  This behaviour was in marked contrast to 

the thermal isomerisation of other dehydrocoronamic acid 

derivatives, for example, the benzaldehyde imine 9,9,10 where 20 

racemisation was much slower than cis/trans isomerisation 

(Scheme 2).  For this compound, after 120 minutes at 80 °C in 

toluene, the enantiomeric excess was 98.1%, but the ratio of 

imine 9 to dihydroazepine 11, formed by [3,3]-sigmatropic 

isomerisation of the trans-isomer 1010,11 was 5:1 (66% de).  25 
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Scheme 2. Isomerisation of dehydrocoronamic ester imine. 

 

Likewise, the N-BOC, cis-ethyl ester 12 underwent more rapid 40 

cis/trans isomerisation than racemisation, reaching 90% ee and 

38:62 cis/trans after 16 h in o-dichlorobenzene at 150 °C. 
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Scheme 3. Isomerisation of cis-N-BOC dehydrocoronamic acid 50 

ethyl ester. 

 

These observations can be rationialised if a trans-selective 

thermal isomerisation mechanism is possible for all 

dehydrocoronamic acid derivatives, but a different and cis-55 

stereospecific isomerisation is possible for azlactones 6 

(Scheme 4).  A diradical mechanism15-17 is widely accepted for 

cyclopropane thermal isomerisation.  For the intermediate 14, 

C-C bond rotation is possible, hence this pathway would give the 

thermodynamically more stable trans isomer 15 as the main 60 

product.  For the cis-stereospecific rearrangement, we propose a 

mechanism which proceeds by concerted [3,3]-sigmatropic 

oxadivinylcyclopropane rearrangement to an achiral 

dihydrooxepine intermediate 16, for which C-C bond rotation is 

not possible.  This mechanism should be energetically more 65 

favoured for azlactone 6 compared to other dehydrocoronamic 

acid derivatives owing to the stabilisation provided by the 

simultaneous formation of an aromatic oxazole heterocycle.  

Increasing the electron-withdrawing power of the azlactone 

substituent R1 withdraws electron density from the C=O bond and 70 

destabilises the azlactone relative to the oxazole. 
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Scheme 4. Proposed mechanisms of azlactone isomerisation. 

 

Evidence for this mechanism is provided by the 1H NMR 

spectrum of 6b (Figure 3), where in addition to the major signals 90 

which can be assigned to the cyclopropane structure, a minor set 

of  four signals [ (400 MHz, CDCl3; Me4Si) 6.18, (1 H, dt, J = 

11.2, 5.2 Hz, OCH2CH), 5.97 (1 H, dtt. J = 11.2, 5.9, 2.2 Hz, 

OCH2CHCH), 4.72 (2H, d, J = 5.9 Hz, OCH2) and 3.47(2 H, dd, 

J = 5.2, 2.2 Hz, OCH2CHCHCH2)] is observed in a 30:1 ratio 95 

which can be assigned to dihydrooxepine 16, present as an 

equilibrium component. 
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Figure 3. 1H NMR spectrum of CF3-azlactone 6b. 110 

 

Given the ready racemisation of trifluoromethyl azlactone 6b at 

ambient temperature and the utility of trifluoroacetyl as a 

removable nitrogen protecting group,18-21 we were able to apply 

this discovery to our objective of an asymmetric synthesis of 115 

dehydrocoronamic acid.  The racemisation could be applied in a 
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resolution-based approach by recycle of the off-isomer of acid 5 

to racemic ester 7 or acid 5.  The desired (1R)-ester was obtained 

by resolution of 7b by enantioselective hydrolysis of the ester 

group of the (1S)-enantiomer with Subtilisin A, with an E value 

of around 100, sufficiently high for an efficient resolution.  5 

However, this enzyme also cleaved  the trifluoroacetyl group to a 

significant extent, reducing the possible efficiency of the recycle 

of (1S)-5b.  Dynamic kinetic resolution of azlactone 6 provides a 

more direct and attractive approach than resolution/recycle of 

ester 7.  Dynamic kinetic resolution of azlactones bearing a single 10 

5-substituent, which can tautomerise to an enol form, by ring-

opening with nucleophiles in the presence of a chiral catalyst is 

well-established.22-26  Application of this concept to reaction of 

the 5,5-disubstituted azlactone 6b with alcohols mediated by 

enzymes proved feasible (Scheme 5).  On a 7.5 g scale, the 15 

isolated yield of rac-6b from rac-5b was 89%.  In the dynamic 

kinetic resolution, ethanol gave the best combination of reactivity 

and selectivity.  With Novozym-435 (immobilised Candida 

antarctica Lipase B) under optimised conditions, (100:1 w/w 

MTBE-ethanol at 25 °C) on a 1 g scale, (1S)-7c was obtained in 20 

95% ee and 97% isolated yield after 11 days (E~40).  For (1R)-

7c, the isomer required for the antiviral compounds, the highest 

enantioselectivity was achieved with immobilised Lipase PS.  On 

a 1 g scale, under the same conditions, 75% ee and 96% isolated 

yield was obtained after 18 days (E~7). 25 
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Scheme 5. Dynamic kinetic resolution of azlactone 6b. 40 

Conclusions 

We have discovered a method for racemisation of 

dehydrocoronamic acid and applied this to the asymmetric 

synthesis of either enantiomer of this commercially significant 

molecule by enzyme mediated dynamic asymmetric kinetic 45 

resolution.  A concerted [3,3]-sigmatropic mechanism is 

proposed for this isomerisation. 
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