This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Mechanistic insight into the hydroxylation of alkanes by a nonheme iron(V)-oxo complex†

Eunji Kwon,a Kyung-Bin Cho,a Seungwoo Honga and Wonwoo Namm*

Hydroxylation of alkanes by a mononuclear nonheme iron(V)-oxo complex, [Fe(V)(O)(TAML)]−, is initiated by a rate-determining hydrogen atom (H-atom) abstraction, followed by an oxygen non-rebound process. Evidence for the H-atom abstraction/oxygen non-rebound mechanism is obtained experimentally and supported by DFT calculations.

High-valent iron-oxo intermediates of heme and nonheme ligands are ubiquitous in nature and perform a wide range of important biological and chemical oxidation reactions. In cytochrome P450 (CYP 450) and their iron porphyrin models, high-valent iron(IV)-oxo porphyrin π-cation radicals, referred to compound I (Cpd I), are active oxidants in a variety of oxygenation reactions, including alkane hydroxylation. In cytochrome P450 and iron porphyrin models is initiated by a rate-determining hydrogen abstraction step by (Porp•+)Fe(IV)O, followed by an oxygen rebound step between the resulting (Porp)Fe(IV)OH and substrate radical species.

High-valent iron(IV)-oxo species have also been trapped in nonheme iron enzymes and successfully synthesized in biomimetic models. The nonheme iron(IV)-oxo species have shown reactivities in the activation of C-H bonds of substrates. The C-H bond activation by nonheme iron(IV)-oxo species occurs via a hydrogen atom (H-atom) abstraction mechanism, in which the H-atom abstraction is the rate-determining step (r.d.s.) (Scheme 1A, pathway a). However, different from the heme systems, the C-H bond activation does not occur via the H-atom abstraction/oxygen rebound mechanism. For instance, a substrate:catalyst product ratio closer to 1:2 has been experimentally observed, instead of the 1:1 stoichiometry that is postulated for a rebound reaction. Instead, it has been shown that dissociation of the substrate radical (Scheme 1A, pathway c) is more favourable than the oxygen rebound process (Scheme 1A, pathway b). The oxygen non-rebound mechanism has also been observed in the reactions of nonheme Mn(IV)-oxo and Cr(IV)-oxo complexes (Scheme 1A).

Scheme 1

Nonheme iron(IV)-oxo species have been proposed frequently as key intermediates in biological and synthetic oxidation reactions; however, there are only a couple of synthetic nonheme iron(IV)-oxo complexes reported so far. One notable example is an iron(IV)-oxo complex bearing tetraamido macrocyclic ligand (TAML), [Fe(V)(O)(TAML)]−. This iron(V)-oxo complex has shown reactivities in C-H bond activation as well as in olefin epoxidation and sulfoxidation. Very recently, Sen Gupta reported elegant results on the activation of unactivated C-H bonds by a room temperature stable iron(V)-oxo complex bearing a TAML derivative. However, mechanism of the hydroxylation of alkanes by nonheme iron(V)-oxo species has been less clearly understood (e.g., oxygen rebound versus oxygen non-rebound mechanism; Scheme 1B, pathways b versus c). We therefore performed mechanistic studies on the hydroxylation of alkanes by the iron(V)-oxo complex, [Fe(V)(O)(TAML)]− (1). Herein we report experimental and theoretical evidence suggesting that the alkane hydroxylation by the iron(V)-oxo complex occurs via a H-atom abstraction/oxygen non-rebound mechanism (Scheme 1B).
Variation of C–H bond dissociation energy (BDE) from 84.5 kcal mol⁻¹ for reaction stoichiometry to yield new species (Fig. 1a). First-order rate constants, determined by the pseudo-first-order fitting of the kinetic data for the decay of \(^{1}\mu\text{Fe}(\text{V})\)-oxo species. The natural decay rate is in agreement with what has been published earlier (Scheme 1B, pathway a). The decay of iron(V)-oxo species is relatively rapid at 0 °C (half-time of around 2000 s).

Following this procedure, we prepared \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\) by reacting \([\text{Fe}(\text{III})(\text{TAML})]^{3-}\) (0.25 mM) with 3 equiv. of m-CPBA in CH₂CN at both –40 °C and 0 °C (Fig. 1a and Figs. S1 and S2, ESI†) with good yields based on the extinction coefficient at 630 nm, which is the characteristic absorption band of iron(IV)-oxo species. The natural decay of iron(V)-oxo species is relatively rapid at 0 °C (half-time of ~500 s, shown with black circles in Fig. 1a inset), but at ~40 °C, the decay rate is in agreement with what has been published earlier (\(t_{1/2}\) of around 2000 s). After complete generation of \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\), we confirmed with \(^1\)H NMR (Fig. S2, ESI†) that no excess m-CPBA exists in the solution before we add substrate.

The C–H bond activation of alkanes by \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\) complex was purchased and purified by recrystallization from iso-propanol/H₂O mixture (further details can be found in ESI†). Previous studies showed that it is possible to generate iron(V)-oxo species at –40 °C in CH₂CN (Fig. S3, ESI†). Product analysis of the reaction solution of the ethylbenzene oxidation by \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\) complex revealed the formation of 1-phenylethanol (38 ± 4%) and styrene (12 ± 4%), and no formation of acetoephone was observed under Ar atmosphere. When the ethylbenzene oxidation was performed with \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\), the 1-phenylethanol product contained 50% of \(^{18}\text{O}\) under Ar atmosphere (of maximum 60%, see Fig. S2). This result indicates that the source of oxygen in the hydroxylated product was the iron(V)-oxo species through oxygen exchange with water. In contrast, when the ethylbenzene oxidation by \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\) was carried out in the presence of air, the products formed were 1-phenylethanol (40 ± 4%), acetoephone (80 ± 8%), and styrene (7 ± 3%). Around 15% of 1-phenylethanol contained \(^{18}\text{O}\) if the reaction was done in the presence of \(^{18}\text{O}\) (Fig. S5, ESI†), demonstrating that 18O might react with the substrate radical during the reaction. To support this conclusion, we carried out the hydroxylation of cyclohexane by \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\) in the presence of \(^{18}\text{CCl}_3\text{Br}\) under Ar atmosphere. We observed the formation of bromocyclohexane as the sole product, showing that the formed substrate radical indeed can react with molecules outside the FeO-substrate cage.

We also characterized the decayed product 2 formed in the ethylbenzene oxidation by \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\) (see Fig. 1a, blue line). ESI-MS of 2 exhibits a prominent peak at m/z 581.1 (Fig. S6, ESI†), whose mass and isotope distribution patterns correspond to \([\text{Fe}(\text{IV})(\text{TAML})(\text{m-CBA})]^{2+}\). The X-band EPR spectrum of 2 was silent, suggesting the oxidation state of +4 for the iron in 2 (Fig. S6, ESI†). While the UV-spectrum is identical to that of the natural decay of \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\), the reaction rate is at least 10 times faster than the natural decay, and the majority of the Fe(IV) product should be from the C–H activation reaction. Further, addition of ferrocene (Fc) to the resulting solution caused the regeneration of \([\text{Fe}(\text{III})(\text{TAML})]^{2+}\) and the formation of ~85% Fe⁺ (Fig. S7, ESI†), supporting that 2 is an iron(IV) species. Based on these results, we propose that a monomeric Fe(IV) species, not a dimeric \(\mu \)-oxo- [Fe(IV)(TAML)(m-CBA)]²⁺, forms in the C–H bond activation of hydrocarbons by \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\).

Then, how is the one electron-reduced Fe(IV) complex 2 formed in the alkane hydroxylation by \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\)? This observation is contrary to the oxygen rebound mechanism; the hydroxylation of alkanes by Fe(IV)-oxo species should afford Fe(III) species as a 2e⁻ reduced product in the oxygen rebound mechanism. Thus, the formation of the Fe(IV) complex 2 suggests that dissociation of the Fe(III) radical (Scheme 1B, pathway c) is more favourable than the oxygen rebound process (Scheme 1B, pathway b), as we have shown in nonheme Fe(IV)-oxo, Mn(IV)-oxo, and Cr(IV)-oxo complexes. The reaction could then continue with a second Fe(IV)O molecule reacting with the substrate radical, producing the observed substrate products (Scheme 1B, step d). The interference of O₂ and CCl₃Br in the experiments above supports this conclusion, as it shows the possibility of a third molecule reacting with the substrate radical. However, since we could not rule out a possibility that the Fe(IV) formation results from oxidation by \(^{1}\mu\text{Fe}(\text{III})(\text{TAML})\). Similarly, second-order rate constants of 1 were determined in the oxidation of other substrates, showing a linear correlation between the reaction rates and the C–H BDEs of substrates (Fig. 1b and Fig. S4, ESI†). These results, such as a large KIE value and a good correlation between reaction rates and BDEs of substrates, demonstrate that a H-atom abstraction from the C–H bonds of substrates by 1 is the r.d.s. (Scheme 1B, pathway a).
hydroxylating product, 2) another H-atom is abstracted from the intermediate is \([\text{Fe(IV)}(\text{OH})(\text{TAML})]\) state (0.8 kcal/mol), the barrier itself lies higher (18.9 kcal/mol) and is structure is \([\text{Fe(V)}(\text{O})(\text{TAML})]\) on the methodology without affecting the next step of the reaction. The lowest energy solution to the reactant produced a doublet \([\text{Fe(IV)}(\text{O})(\text{TAML})^\ddagger]\) structure rather than \([\text{Fe(IV)}(\text{O})(\text{TAML})]\). Although no experimental support exists for this, earlier theoretical studies do report of such an electronic configuration.\(^{10,16}\) Our investigation finds that this is a highly sensitive feature depending on the quality of the optimized geometry, which could be controlled by a proper choice of basis set (see ESI† for DFT methods). Since the main scope of these calculations is in the next step, where the potential initial ligand radical is of no consequence and the geometry is insensitive to different methods (vide infra), we merely note that different structures can be obtained for \(\mathbf{1}\) depending on the methodology without affecting the next step of the reaction.

The C-H activation reaction by \(\mathbf{1}\) was calculated using cyclohexane as a model substrate. The reaction in the \(S = 3/2\) spin state is calculated to go through an energy barrier of 3.6 kcal/mol. Although the \(S = 3/2\) state is only marginally higher in energy at the reactant state (0.8 kcal/mol), the barrier itself lies higher (18.9 kcal/mol) and is therefore ruled out at this stage. As the C-H activation involves an electron transfer as well as a proton transfer, the resulting intermediate is \([\text{Fe(IV)}(\text{OH})(\text{TAML})^\ddagger]\), regardless whether the reactant structure is \([\text{Fe(IV)}(\text{O})(\text{TAML})^\ddagger]\) or \([\text{Fe(IV)}(\text{O})(\text{TAML})]\). The obtained geometry here is insensitive to the basis set used (see ESI†, DFT methods section). At this point, there are four possible pathways to explore,\(^{16,18}\) such as 1) a rebound reaction takes place to give a hydroxylation product, 2) another H-atom is abstracted from the substrate to desaturate the substrate, 3) the spin state changes and the reaction continues on the \(S = 3/2\) spin state, and 4) the substrate radical dissociates to react with another \([\text{Fe(IV)}(\text{O})(\text{TAML})]\). These options except the spin-state change possibility are depicted in Fig. 2. The first option (i.e., the rebound reaction) leads to a barrier of 4.7 kcal/mol relative to \([\text{Fe(IV)}(\text{OH})(\text{TAML})^\ddagger]\), while the second option (i.e., desaturation) has a barrier of 7.6 kcal/mol. The third option requires the substrate radical to spin-flip, as the Fe(IV)(OH) moiety itself is already in its energetically lowest state. This leads to an \(S = 3/2\) spin state, which is energetically degenerate (as expected) to \(S = 1/2\). However, we have argued in a previous study\(^{18}\) that a spin flip of an organic radical, while can be fast, is still not fast enough to compete with energy barriers under 5 kcal/mol. The fourth option listed above, which is the dissociation process, requires only a dissociation energy of 1.6 kcal/mol; hence, we propose that dissociation occurs in the current compound as well, as supported by experiments (vide supra). The generality of the calculations are ensured by the strong C-H bond in cyclohexane; the feasibility shown for the C-H activation would presumably make the reaction feasible for weaker C-H bonds as well. Moreover, the relatively strong O-C bond in any rebound cyclohexanol product would lead to a larger driving force of the second part of the reaction than other weaker O-C bonds. Hence, for weaker O-C bonds, the rebound barrier is presumed to be lower by Bell-Evans-Polanyi principle,\(^{19}\) making dissociation even more likely and these calculations should therefore be applicable to a range of other substrates as well.

In summary, we have provided experimental and theoretical evidence that the hydroxylation of alkanes by a mononuclear nonheme iron(V)-oxy complex occurs via a rate-determining H-atom abstraction, followed by an oxygen non-rebound process.

The authors acknowledge financial support from the NRF of Korea through CRi (2-2012-1794-001-1 to W.N.), GRL (2013-4213-001-1 to W.N.), and Basic Science Research Program (2013062737 to K.-B.C.).

Notes and references
\(^{a}\) Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea. E-mail: wwnam@ewha.ac.kr.
\(^{b}\) Electronic Supplementary Information (ESI) available: Detailed experimental procedures and DFT methods, Tables S1 – S7, Figures S1 – S8, and coordinates. See DOI: 10.1039/c000000x/

Calculations found a ligand radical on (TAML)Fe III OH systems: R.-Z. Liao, X.-C. Li and P. E. M. Siegbahn, Eur. J. Inorg. Chem., 2014, 726. [18] Fe(VI)/(TAML)" was found in the high-spin state and was explored as a possibility in the low-spin state as well; see ESI† in reference 11.

Synopsis: The alkane hydroxylation by a mononuclear nonheme iron(V)-oxo complex occurs via a hydrogen-atom abstraction/oxygen non-rebound mechanism.