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The sp®C-H bond functionalisation of 2-pyridyl ethanols by
reaction with alkenes, in the presence of [RuCl,(arene)],
catalyst and Cu(OAc),.H,O, is performed under mild
conditions without additional base. This reaction proceeds by
a tandem alcohol dehydrogenation/alkylation with alkenes of
the resulting ketone at its a spC-H bond.

Here we report the Ru(ll) catalysed dehydrogenatibr2-pyridyl
alcohols in the presence of Cu(OAE)L,O and the subsequent
alkylation at then position of the resulting ketones with alkeneg an
with acrolein, the double alkylation and intramaikee aldol
condensation, formally via 3p-H bond functionalisation. We also
show that the 2-pyridyl ketone can be alkylatechwitkene at the-
position of the carbonyl using Ru(OA{)-cymene) catalyst but in
the presence of isopropanol (Scheme 1).

The functionalisation of SE-H bonds attracts interest for the

development of new synthetic methods and the fasidihg of
polyfunctional molecule$,the easy modification of ligands or th
preparation of molecular luminescent and photociramaterials®
The direct catalytic functionalisation of*pH bond via arylation at
the o position of the carbonyl of a ketone has been shtovbe
promoted by palladium catalysts with strong baseydoerate the
enolate intermediate® The Pd(0)/diphosphine catalysedarylation
of ketones with aryl bromides has been initiallyrfpemed by
Buchwald in the presence of NaOt-Bu, and by Harfigsing
KN(SiMe3), as a base. However, recently, Lam reported
ruthenium-catalysed oxidative annulation of 2-dry-dicarbonyl
compounds with alkynes into spiroindenes via arnlyeagnerated
enolate specids

To the best of our knowledge, the functionalisaidrsp’C-H bond
at 3 position of alcohols, by alkylation with alkenebas not been
reported yet, in spite of the well-established log#n borrowing
reactions especially with Ru(ll) catalysts that aable to
dehydrogenate alcohols via hydrido-ruthenium spefi@mation’
In the latter reactions generating aldehyde, atigtacan take place
but via aldol condensation/hydrogenati@h. We thus became
interested to investigate the consecutive catalyttcohol
dehydrogenation and neighbouring *GgH or spC-H bond
functionalisations. As the C-H bond activation stbp Ru(ll)
catalysts often requires a coordinating directimgug® we first
considered the activation of coordinating 2-pyrididohols, as some
of their derivatives are bioactive® or constitute a class of useful
N,O-bidentate ligands in 5-membered cyclic metahptexes:*
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Scheme 1 Ru(ll) catalysed dehydrogenation of 2-pyridyl aloband
tandem alkylation/condensation of 2-pyridyl ketone

In an attempt to perform the competitive Ru(ll) tgad alcohol
dehydrogenation versus oxidative dehydrogenatikenglation of
t}ae phenyl groul of the N-coordinating benzyl 2-pyridyl alcohts
with methyl acrylate?a, we first studied the action of [Ru@b-
cymene)} as a pre-catalyst in the presence of carboxylates,
Cu(OAc).H,O (1 equiv.) which surprisingly led at 12Q for 20 h

to the a-alkylated ketone3a (entries 1-2). Interestingly, in the
absence of additive3a was produced in 53% yield (entry 3 and
TableS1). The reaction thus required the presence of fRuiCl(p-
cymene)} and Cu(OAq.H,O (entries 4-5). Good results were
obtained using only 0.8 equiv. of Cu(OAt),O without air (entries
6-7 and Tabl&2). Further experiments show that an exceszad#
equiv.) (entries 7 and 9) and a slight increasehef ruthenium
loading (7.5 mol%) (entry 10) improve the reactemmversion up to
75%. It was found preferable to use only 5 mol%rathenium
catalyst for 36 h at 1T in 1,2-dichloroethane (DCE) to reach 80%
conversion and obtaiBa in 68% isolated yield (entries 11-12).
Using Ru(OAc)(p-cymene) as the catalyst is also moderately
operative with Cu(OAg)H,O (entry 13) (Tabl&3).
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Table 1. Ruthenium(ll)-catalysed $j©-H bond alkylation of benzyl
2-pyridyl methanolla with methyl acrylat@a?

OH [RuCly(p-cymene)], (5 mol%) Q
— Additive (20 mol%)
A + . A
| N COMe  Cu(OAC)H;0, | _N CO,Me
1a 2a DCE (2mL), 120°C, 20 h 3a
Entry 2a (equiv.) Additive Cu(OAg)H,0O(eq.) Conv.(%¥
1 2 GHsCO,H (20 mol%) 1 52
2 2 GHsCOXK (20 mol%) 1 57
3 2 - 1 53
4 2 - 0 L
5 2 -(no Ru catalyst) 1 -
6 2 - 0.8 56
7 4 - 0.8 69(46)
8! 4 - 0.8 9
9 6 - 0.8 72
10 4 - 0.8 75
11 4 - 0.8 80(68)
129 4 - 0.8 74(54)
13 4 - 0.8 60

la (0.25 mmol)2a (2-6 equiv.), [RuGlp-cymene)} (5 mol%), additive (20
mol%), Cu(OAc).H,O (0.8-1 equiv.), DCE (2 mL), 12&C, 20 h.’Detected
by GC, in parenthesis, isolated yields3af ‘Without Ru catalyst?Under air.
#7.5 mol% of [RuCi(p-cymene)}. 'Run in 0.5 mmol scale, 36 fin toluene,
150 °C. "0 mol% of [Ru(OAc)p-cymene)] was usedLess than 5% of
ketone 2-PyCOCHPh was formed.

We first explore the scope of the reaction with, (Scheme 2)
without addition of another base than the Cu(QAeleased acetate.

o

OH
R? [RuCly )12 (5 mol%) R
BN — uCly(p-cymene)] ; (5 mol
| RS * N | o R?
Nw % Cu(OAC).H,0 (0.8 equiv.) N y
3

2 DCE (2mL), 120 °C, 36 h

o o o [
Ph R'=Me (3a) 68% Ph Ph Ph
X X
‘ = s4%° || A ‘ \
_N R'=Et(3b) 56% N =N =N
| R'=n-Bu (3c) 55%
COR' R1=Bn(3d) 51% CN P N p-Br-CgH,
agpb  3e 5T%P 3f 50%° 3g 12%Pc
Q o o o
Ph
N ‘ A Ph ‘ X ‘ X
=N N _N _N
& tau COyMe COzMe CO,Me CO,Me
R=Me 3i 67% 31 66%¢ 3m 25%¢ 3n 40%7

%b
3h 70% R=pF, 3 52% (71%")

R =o-F, 3k, 56%

21 (0.5 mmol), 2 (2 mmol), [RuCly(p-cymene)], (5 mol%), Cu(OAc),.H,0 (0.8 equiv.),
DCE (2 mL), 120 °C, 36 h. Ptoluene, 150°C, 20 h. °Detected by GC. %toluene, 150°C, 36 h.

Scheme 2. Ruthenium(ll) catalysed 3p-H alkylation of 2-pyridyl
methanol derivatives with alkenes

yield (Scheme 3). This compouda results from a formal double
Michael addition to acrolein of the enolate of ket®, arising from
oxidation of 1la, followed by cyclisation via intramolecular aldol
condensation. The ketoeunder the same conditions does not lead
to the compound.

OH 9 "
RucCl. ‘mene)], (5 mol%
N R, — [RuCly(p-cymene)]; (5 mol%) \
| CHO Cu(OAc),.H,0 (0.8 equiv.) | _N
N ' 2 DCE (2 mL), 120°C, 36 h 4 cHo
R 9 o
o
® ® b )
[ _N F L ‘
=N ‘ R = H, 42 68% CHO CHO
CHO R = Me, 4b 57%
R=F, 4c 66% 4d 58% 4e37%

in toluene, 150 °C, 36 h

Scheme 3. Ru(ll)-catalysed shC-H alkylation of 2-pyridyl ethanol
derivatives with acrolein

Analogously, the aryl substituted derivativéisd were obtained in
57-66% vyields from the alcoholth-d. The alcoholle (R = Bn)
similarly led the derivativée in 37 % vyield, resulting from to C-C
bond formations at the carbon of the ketone, rather than at the
benzylic carbon. This reaction gives a straightBmdv access to
functional 2-pyridyl ketones containing a conjughtdormyl
cyclohexene moiety.

The above reaction constitutes a straightforwarg waperform a
formal alkylation at the: position of a coordinating ketone starting
from its alcohol. The conditions and results suggdsmt the
formation of3 initially involves the dehydrogenation of the dlobl
which generates a new active ruthenium speciesowietl by a
formal Michael addition of the enolate to the alkerFirst, we
showed that only in the presence both [RuCl(p-cymene)} and
Cu(OAc).H,0, the alcoholla was transformed into the (2-
pyridyl)benzyl ketoné (eq. 1). (see also SI Scheme S2)

OH o
N Ph  [RuCl,(p-cymene)], (5 mol%) N Ph € 1)
q.
| _N Cu(OAC)2.H,0 (80 mol%) ‘ _N
DCE (2 mL), 120 °C, 20 h 5, 95% "H NMR yield

The alkylation of the keton& with methyl acrylate2a was then
attempted: by action of both [Ru{j-cymene)} (5 mol%) and
Cu(OAc) (0.8 equiv.), but in the presenceie®rOH (2 equiv), the
alkylated ketone3a was obtained in only 10% GC-yield (Eqg. 2).
However when this reaction was performed in thesgmee of 10
mol% of Ru(OAc)(p-cymene) ini-PrOH at 100°C without addition

of Cu(OAc),, 3a was obtained in 56% GC-yield. Whereas in DCE
instead of isopropanol the alcohbl (R*=p-F-CqH,; R*=H) with
Ru(OAc)(p-cymene)but without Cu(OAc),.H,O leads only to 30 %

Using the optimised conditions (Table 1, entry X influence of yield of 3j. (see Sl, Scheme S3) These results indicate fibakey
various activated alkenes was explored. In reactbriia with catalytic species arises from the Ru(ll) catalyselydrogenation of
various acrylatea-2d, the alkylated ketone3a-3d were obtained 1a or fromiPrOH with Ru(OAc)(p-cymene) catalyst. It may then
in 51-68% isolated yields. The same reaction tdakepeasily with involve the formation of a Ru-H derivative, possiBly(H)(OAc)(-
acrylonitrile 2e andN-isopropyl-acrylamidef to give3e (57%) and cymene), from the reaction of Ru(OAg)-cymene) and-PrOH™

3f (50%). The reaction with-bromostyrene, led to a small amount

of 3g (12%) showing that electrophilic alkenes are meffieient. It i o Ph

is noteworthy that the reaction @& with the unsaturated ketone | N AN on | \N © Me(EQ-2)
containing a disubstituted C=C bond {£Hi=CHCQ-Bu 2h, N s teaiv) 2oy 7 e
regioselectively affords the alkylated ket@tein 70% yield. Conditions GC-Yield
The reaction of ary_l_substltuted derlvatl\_zkts_d was then performed ;”u%jfc*’)zy(x;‘ﬂfng]r?fmOIC/“)(OI’:%;'Z(CZ’ gf)fg'o/:)é'”o“(zeq“'v-)v DCE (2ml), 120°C 133;
under similar conditions. It led to keton@isk in 52-70% yields. The [RuoAc),(p-cymene)] (10 mol%), iProH (2 mL), 100 °C 56%

reaction has then been extended to pyridyl alcolaiging a benzyl
grouple (R°=Bn, R’=H) or alkyl groupslf (R>=t-Bu, R*=H) andlg
(R>=R°=Me) linked at thex position of the hydroxyl group, and the
give the derivative8I-n in 25-66% yields.

The reaction ofla with 4 equiv. of acrolein under similar conditions

selectively led to the dicarbonyl cyclic derivatda in 68% isolated

2| J. Name., 2012, 00, 1-3

A possible mechanism of the reaction can be prap¢Seheme 4)
based on the initial formation of Ru(OA)-cymene)*'® The
Yalcohol 1a is expected to be dehydrogenated into the kefpran
coordination to the Ru(ll) centre, as PhCOEH with no
coordinating group did not lead to tlhealkylated producB. This
reaction is expected to release AcOH and a Ru-HJOAc

This journal is © The Royal Society of Chemistry 2012
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