ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

50

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Oxidative addition of ether O-methyl bonds at a Pt(0) centre[§]

Naseralla A. Jasim, Robin N. Perutz,* Barbara Procacci and Adrian C. Whitwood

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

- ⁵ Pt(PCyp₃)₂ (Cyp = cyclopentyl) undergoes C–O oxidative addition with 2,3,5,6-tetrafluoro-4-methoxypyridine, pentafluoroanisole, 2,3,5,6-tetrafluoroanisole and 2,3,6trifluoroanisole yielding platinum methyl derivatives. The reactions occur in preference to C-H or C-F activation.
- ¹⁰ We have shown that $Pd^{0}(PR_{3})_{2}$ and $Pt^{0}(PR_{3})_{2}$ complexes can undergo C–F oxidative addition, and the resulting square-planar Pt(II) complexes are stable to C–F reductive elimination.¹⁻³ However, C–F reductive elimination is possible from 3coordinate $Pd(II)^{4}$ and from the metal aryl fluoride complexes in
- ¹⁵ oxidation state IV.⁵⁻⁸ The related oxidative addition of ether C–O bonds appears to be missing from the literature although examples of C–O reductive elimination of ethers from Pd(II) are known.^{9,10} In contrast, C–O (ester) oxidative addition at Pt(0) has recently been described¹¹ and reductive elimination of ester C–O
- ²⁰ bonds from Pd(IV) and Pt(IV) is well known.¹²⁻¹⁴ We demonstrate the importance of electron withdrawing aryl groups for achieving oxidative addition of methyl aryl ethers at Pt(0) and probe the mechanism of C–O activation.
- Activation of C–O bonds of ethers at transition metals, first ²⁵ described many years ago,¹⁵⁻¹⁷ has been rejuvenated by the work of Carmona, Paneque^{18, 19} and Goldman^{20, 21} who investigated the reactivity of iridium tris(pyrazolyl)borate and iridium pincer complexes, respectively. In both cases, the C–O activation was associated with initial methyl C–H bond activation (see Scheme
- ³⁰ S1 in ESI). Carmona and Paneque used methylated anisoles and demonstrated rearrangement to Ir–O metallacycles containing Ir=carbene linkages. Goldman used fluorinated anisoles and isolated the products of "simple" C–O(methyl) oxidative addition. Following the initial C–H cleavage, aryloxy migration
- ³⁵ and 1,2-hydride migration generated the product. Cross-coupling reactions involving unsupported aryl methyl ether C–O bonds have been described at nickel.^{22, 23} In contrast to the iridium reactions, the cross-coupling results in cleavage of the aryl C–O bond although this bond is stronger than the O–CH₃ bond.
- ⁴⁰ Here we report the reactions of $Pt^{0}(PCyp_{3})_{2}$ **1** (Cyp = cyclopentyl) with 2,3,5,6-tetrafluoro-4-methoxypyridine, pentafluoroanisole, 2,3,5,6-tetrafluoroanisole and 2,3,6-trifluoroanisole and show that $Ar^{F}O-CH_{3}$ oxidative addition occurs in preference to C–H or C–F oxidative addition. We also
- ⁴⁵ compare reactions with pentafluorophenol and 2,3,5,6tetrafluoro-4-ethoxypyridine (Scheme 1). These reactions offer competition between C–F, C–H, C–O and O–H activation.

The thermal reaction of 1 in the presence of tetrafluoro-

methoxypyridine **a** (1 eqv, hexane, 60 °C, 2 days) generated one product quantitatively (Scheme 2). The colourless crystalline material was characterised by multinuclear NMR spectroscopy, ⁵⁵ LIFDI mass spectrometry²⁴ and X-ray crystallography. ¹H NMR spectroscopy shows a triplet resonance at $\delta 0.89$ with ¹⁹⁵Pt satellites ($J_{PH} = 6.3$, $J_{PH} = 83.8$ Hz) with integration 3H relative to cyclopentyl protons and no signals to higher field. The ¹⁹⁵Pt-¹H HMQC spectrum shows that this resonance correlates with a oplatinum triplet at δ -4060. The ¹H peaks of the tricyclopentylphosphine also show cross-peaks to the platinum resonance. The ³¹P{¹H} NMR spectrum gives a singlet at $\delta 22.3$

This journal is © The Royal Society of Chemistry [year]

with Pt satellites (J_{PtP} 2962 Hz). The ¹⁹F NMR spectrum shows two sets of inequivalent fluorines at δ -168.3 (m, F *meta* to N) and at δ -99.0 (m, F *ortho* to N) in a 1:1 integration ratio. ¹³C{¹H} NMR spectroscopy reveals a triplet at δ -34.3 with ¹⁹⁵Pt

- s satellites ($J_{PC} = 7$ Hz, $J_{PtC} = 695$ Hz) which correlates with the ¹H NMR resonance at δ 0.89. This pair of correlated resonances is consistent with a methyl group bound to platinum (a methoxy group would be expected at lower field with small couplings to Pt). Compound **1a** was therefore assigned as *trans*-
- ¹⁰ Pt(PCyp₃)₂(CH₃)(OC₅F₄N). Colourless crystals were grown by slow diffusion of hexane into a concentrated benzene solution. The crystal structure was determined and confirmed the nature of **1a** (Figure 1) demonstrating conclusively that the Ar^FO–CH₃ bond of the ether undergoes selective oxidative addition at the ¹⁵ Pt(0) centre (Scheme 2).
- The reaction of **1** with pentafluoroanisole **b** proceeded analogously to that with tetrafluoromethoxypyridine generating **1b** as the only product (Scheme 2). The product **1b** exhibits similar spectroscopic features to those for **1a** and was therefore ²⁰ assigned as *trans*-Pt(PCyp₃)₂(CH₃)(OC₆F₅). A crystal structure of
- **1b** (crystals grown from hexane) confirmed its identity (Figure 1). The Pt–O and Pt–C bond lengths for **1a** are 2.1586(15) and 2.044(2) Å, respectively. The Pt–O–C angle is 130.10(15)° and the torsional angle of the ring C(3)–C(2)–O(1)–Pt is 21.2(3)°.
- ²⁵ The corresponding Pt–O and Pt–C bond lengths for **1b** are 2.1306(15) and 2.047(2) Å, while the Pt–O–C angle is $126.78(14)^{\circ}$ and the torsional angle is $27.3(3)^{\circ}$.

Goldman showed that the kinetic isotope effect (KIE) for oxidative addition of pentafluoroanisole (k_{OCH3})/ k_{OCD3}) to the

- ³⁰ iridium pincer complexes is 4.3 ± 0.3 providing strong support for initial C–H bond activation.^{20, 21} We synthesised **a**-*d*₃ and investigated the reaction of **1** with a mixture of **a** and **a**-*d*₃ in hexane. The reaction was performed with a 10-fold excess of each substrate with the consequence that no heating was required
- ³⁵ to generate a mixture of **1a** and **1a**- d_3 . The ³¹P NMR spectrum and the ¹⁹⁵Pt NMR spectrum showed clear isotopic shifts to low field of 0.17 ppm (35.3 Hz) and 14.2 ppm (1527 Hz), respectively. Determination of the initial substrate ratio by mass spectrometry and the product ratio by quantitative ³¹P{¹H} NMR
- ⁴⁰ spectroscopy yielded a kinetic isotope effect $k_{H'}k_D$ of $1.11 \pm 10\%$. The progress of the reaction of **1** with two eqv **b** at 50° C was monitored in situ by ³¹P NMR spectroscopy in protio solvents. The half-life of **1** proved to be ca. 3 times shorter in THF than in hexane (t_{1/2} 200 and 620 min, respectively). An intermediate was
- ⁴⁵ detected in the early stages of reaction in both solvents which declined with time. It exhibited a ³¹P resonance with $J_{PtP} = 3956$ Hz characteristic of Pt(0) (δ 26.9, s, in THF) and five distinct ¹⁹F resonances, consistent with a provisional assignment as Pt(PCyp₃)₂(η^2 -*C*=*C*-C₆F₅OMe) (see ESI).
- ⁵⁰ Complex **1**, dissolved in hexane, also reacted with tetrafluoroethoxypyridine **c** (1.1 eq, 60° C), but the ¹H NMR spectrum showed this time that the principal product is a platinum hydride (δ -24.6, t J_{PH} 13.1 Hz, J_{HPt} 1234 Hz). The ³¹P{¹H} NMR spectrum shows a singlet resonance at δ 46.2 (J_{PtP} = 2940
- ⁵⁵ Hz). The complex exhibits a ¹⁹⁵Pt resonance as a triplet of doublets at δ -4704 with corresponding coupling constants. The ¹⁹⁵Pt-¹H HSQC spectrum links the hydride and the cyclopentyl resonances at δ 1.85 to the ¹⁹⁵Pt resonance at δ -4704. The ¹⁹F

Figure 1. Molecular structure of 1a (above) and 1b (below). H atoms omitted. Anisotropic displacement parameters shown as 50% ellipsoids.

NMR spectrum shows two multiplets at δ -99.3 (m, F ortho to N) and -169.8 (m, F meta to N). Evidence for free C₂H₄ was obtained when the reaction was performed in C₆D₆ and monitored ¹⁰⁵ in situ by its ¹H NMR resonance at δ 5.2. Complex **1c** was assigned as *trans*-Pt(PCyp₃)₂(H)(OC₅NF₄), in keeping with the similar results obtained by Goldman.^{20, 21} The X-ray structure of a crystal of **1c** was consistent with the formulation but suffered from disorder both in the cyclopentyl rings and the OC₆F₅ group.

¹⁰⁵ The formation of platinum aryloxy hydrides can also be achieved by reaction with the corresponding phenol, as shown by reaction of **1** with pentafluorophenol **d** (300 K, 1.1 eqv in hexane) yielding **1d** as the only product which was identified as the O–H oxidative addition product Pt(PCyp₃)₂(H)(OC₆F₅). The hydride ¹¹⁰ resonated at δ –24.3 (t, *J*_{PH} 13.4, *J*_{PtH} 1178 Hz) while the ¹⁹⁵Pt

resonance appeared at δ –4696 (td, J_{PtP} 2964, J_{PtH} 1176 Hz). We also investigated the importance of the number of fluorine substituents on the reactivity of **1** with methylarylethers and potential competition with C-H activation. The reaction of **1** with ¹⁴⁵ 2,3,5,6-tetrafluoroanisole **e** proceeds more slowly than that with **b** but yields an analogous product, *trans*-Pt(PCyp₃)₂(CH₃)(OC₆HF₄) **1e**. The reaction between **1** and 2,3,6- trifluoroanisole, **f**, required excess to proceed and yielded *trans*-Pt(PCyp₃)₂(CH₃)(OC₆H₂F₃), **1f**. The rates of reaction decreased in the order **b** > **e** > **f**, as the ¹⁵⁰ number of fluorine substituents was reduced. There was no reaction between **1** and anisole even with excess substrate. The crystal structures of **1e** and **1f** (Figure S3) are similar to those of **1a** and **1b**. However, **1e** exhibits a contact between Pt and F(7) (2.972(1) Å) shorter than the sum of the Van der Waals radii

2 | Journal Name, [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]

95

45

Scheme 3. Proposed mechanisms of C-O oxidative addition

(3.22 Å) and a torsion angle C(3)-C(2)-O(1)-Pt of -1.00(14)°.

- Our results provide some guidance on the mechanism of reaction, even though a definitive conclusion is not yet possible. ⁵ The C-H activation route appears very unlikely for Pt(PCyp₁)₂
- because of the low KIE, the difficulty of forming a carbene at Pt, and the accessibility of cyclometalated products by C–H activation as observed for CpRh(PMe₃).^{25,26} Three alternative routes are consistent with a low KIE: direct oxidative addition,
- ¹⁰ phosphine-assisted reaction^{2,3} and an ion-pair route⁹ (Scheme 3). In each case, initial coordination of the substrate would occur, consistent with detection of the Pt(0) intermediate in the reaction with **b**. Direct oxidative addition reaction represents the reverse of the reductive elimination reactions observed by Buchwald.^{10,27}
- ¹⁵ The selectivity for breaking the O–CH₃ bond can be understood in the phosphine-assisted route because of the preference to put the electronegative O–Ar^F group on the metallophosphorane.^{2,28,29} The ion-pair route generates [Pt(PCyp₃)₂Me]⁺ with the ethers and [Pt(PCyp₃)₂H]⁺ with pentafluorophenol^{30,31} in parallel to recent ²⁰ C–O reductive elimination mechanisms.⁹ The increased rate in
- the more polar solvent, THF, lends support to the ion-pair route. These results demonstrate selective C–O oxidative addition at fluorinated aromatic methyl ethers. The selectivity for the O–CH₃
- bond in **b**, **e** and **f** in preference to the O–Ar bond matches ²⁵ Goldman's observations (also with fluorinated arenes). With unfluorinated Ar–O–CH₃ substrates, Paneque again observed O–CH₃ cleavage¹⁹ but Milstein observed Ar–O cleavage at Rh(PCP).¹⁷ The reaction of **a** at Pt(PCyp₃)₂ contrasts with the
- C–F oxidative addition observed with the same substrate at $_{30}$ Ni(PEt₃)₂ and with the cyclometallation product formed by C–H and C–F activation at CpRh(PMe₃).^{24,25,26}

This work was supported by EPSRC. We thank the referees for useful comments and Odile Eisenstein for discussions.

Notes and references

35 ^a Department of Chemistry, University of York, York UK YO10 5DD; Email: robin.perutz@york.ac.uk

[§] This Article is Published in Celebration of the 50th Anniversary of the Opening of the Chemistry Department at the University of York.

- † Electronic Supplementary Information (ESI) available: scheme of ⁴⁰ reactions of ethers at iridium, general procedures, syntheses, HSQC of **1a** and **1c**, kinetic isotope effect incuding spectra, in-situ monitoring of

formation of 1b, kinetic plot and spectra of intermediate, NMR data, crystallographic methods and data for 1a, 1b, 1e and 1f. See DOI: 10.1039/b000000x/

- N. A. Jasim, R. N. Perutz, A. C. Whitwood, T. Braun, J. Izundu, B. Neumann, S. Rothfeld and H. G. Stammler, *Organometallics*, 2004, 23, 6140-6149.
- A. Nova, S. Erhardt, N. A. Jasim, R. N. Perutz, S. A. Macgregor, J.
 E. McGrady and A. C. Whitwood, *J. Am. Chem. Soc.*, 2008, 130, 15499-15511.
- E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady and R. N. Perutz, Acc. Chem. Res., 2011, 44, 333-348.
- 4. T. J. Maimone, P. J. Milner, T. Kinzel, Y. Zhang, M. K. Takase and 55 S. L. Buchwald, *J. Am. Chem. Soc.*, 2011, **133**, 18106-18109.
 - 5. T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470-477.
 - K. M. Engle, T. S. Mei, X. S. Wang and J. Q. Yu, *Angew. Chem. Int.* Ed, 2011, 50, 1478-1491.
- N. D. Ball and M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 3796-3797.
- 8. T. Furuya and T. Ritter, J. Am. Chem. Soc., 2008, 130, 10060-10061.
- 9. S. L. Marquard and J. F. Hartwig, *Angew. Chem. Int. Ed*, 2011, **50**, 7119-7123 and references therein.
- R. A. Widenhoefer, H. A. Zhong and S. L. Buchwald, J. Am. Chem. Soc., 1997, 119, 6787-6795.
- K. A. Manbeck, S. Kundu, A. P. Walsh, W. W. Brennessel and W. D. Jones, *Organometallics*, 2012, 31, 5018-5024.
- J. M. Racowski, A. R. Dick and M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 10974-10983.
- 70 13. A. R. Dick, J. W. Kampf and M. S. Sanford, J. Am. Chem. Soc., 2005, 127, 12790-12791.
 - B. S. Williams, A. W. Holland and K. I. Goldberg, J. Am. Chem. Soc., 1999, 121, 252-253.
 - 15. S. D. Ittel, C. A. Tolman, A. D. English and J. P. Jesson, J. Am. Chem. Soc., 1978, 100, 7577-7585.
 - C. A. Tolman, S. D. Ittel, A. D. English and J. P. Jesson, J. Am. Chem. Soc., 1979, 101, 1742-1751.
 - M. E. van der Boom, S. Y. Liou, Y. Ben-David, L. J. W. Shimon and D. Milstein, J. Am. Chem. Soc., 1998, 120, 6531-6541.
- 80 18. P. Lara, M. Paneque, M. L. Poveda, V. Salazar, L. L. Santos and E. Carmona, J. Am. Chem. Soc., 2006, **128**, 3512-3513.
- L. L. Santos, K. Mereiter and M. Paneque, *Organometallics*, 2013, 32, 565-569.
- J. Choi, Y. Choliy, X. W. Zhang, T. J. Emge, K. Krogh-Jespersen and
 A. S. Goldman, J. Am. Chem. Soc., 2009, 131, 15627-15629.
- S. Kundu, J. Choi, D. Y. Wang, Y. Choliy, T. J. Emge, K. Krogh-Jespersen and A. S. Goldman, *J. Am. Chem. Soc.*, 2013, 135, 5127-5143.
- 22. B. T. Guan, S. K. Xiang, T. Wu, Z. P. Sun, B. Q. Wang, K. Q. Zhao ⁹⁰ and Z. J. Shi, *Chem. Commun.*, 2008, 1437-1439.
- 23. M. Tobisu, T. Shimasaki and N. Chatani, Angew. Chem. Int. Ed, 2008, 47, 4866-4869.
- 24. T. A. Dransfield, R. Nazir, R. N. Perutz and A. C. Whitwood, J. Fluorine Chem., 2010, **131**, 1213-1217.
- 95 25. B. Procacci, R. J. Blagg, R. N. Perutz, N. Rendón and A. C. Whitwood, Organometallics, 2014, 33, 45-52.
 - M. Ballhorn, M. G. Partridge, R. N. Perutz and M. K. Whittlesey, Chem. Commun., 1996, 961-962.
- 27. R. A. Widenhoefer and S. L. Buchwald, J. Am. Chem. Soc., 1998, 100 **120**, 6504-6511.
 - A. Nova, M. Reinhold, R. N. Perutz, S. A. Macgregor and J. E. McGrady, Organometallics, 2010, 29, 1824-1831.
 - 29. M. Teltewskoi, J. A. Panetier, S. A. Macgregor and T. Braun, *Angew. Chem. Int. Ed*, 2010, **49**, 3947-3951.
- 105 30. M. J. Ingleson, M. F. Mahon and A. S. Weller, *Chem. Commun.* 2004, 2398-2399.
 - M. A. Ortuño, S. Conejero and A. Lledós, *Beilstein J. Org. Chem.* 2013, 9, 1352–1382.
- 110

51. 50, em. D. oc., oc., em. 4m. 4m. 4m. 4m. 4m. 4m. 1 E. 013, and gh-27hao Ed, , J.

This journal is © The Royal Society of Chemistry [year]