This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Amino group binding peptide aptamer with double disulphide-bridged loops selected by in vitro selection using cDNA display

Yuki Mochizuki, Koichi Nishigaki and Naoto Nemoto*

Peptide aptamers that specifically bind to the amino group on a solid-phase were screened by in vitro selection using the cDNA display method. The identified peptides had a unique structure containing two cyclic loops with disulphide bonds and a linkage region, which were indispensable for molecular recognition.

Recently, the molecular recognition abilities of peptides have been applied in several fields, for example in biological science,1 material science,2 and medical science.3 To date, peptide binding to biomolecules, as well as inorganic surfaces (metals, semiconductors, and metal oxides) and organic molecules (nanocarbons, polymers and peptide assemblies) has been designed by in vitro selection manner.4 Material-binding peptides with molecular-recognition and self-assembly capabilities are new smart materials. However, there are only a few examples in the literature of in vitro selection of small molecule-binding peptides; thus small molecule recognition by peptides is still an unexplored territory. In medicine, constrained peptides, such as disulphide-rich peptides including venom peptide ‘conotoxins’5 and polycyclic peptides,6 have been investigated because of their extreme specificity and affinity towards a target protein. However, molecular recognition ability of constrained peptides containing disulphide bonds against non-protein target molecules including small molecules has not been investigated yet. Thus, we examined how a constrained peptide containing disulphide bridges can enhance the molecular recognition ability towards non-protein molecules.

cDNA display method is a technology which can covalently link a cDNA molecule and its coding protein using a puromycin-linker,7 that is an improved version of the mRNA display method.8 In the cDNA display method, disulphide bridges in the displayed peptide easily can form on magnetic beads in the preparation process.9 Thus, this method is suitable to screen target molecule-binding disulphide-rich peptides from a DNA library of coding cysteine-rich peptides in which the cysteine position is randomized. In this study, an amino group on the polystyrene-based magnetic bead was chosen as the low molecular weight target, because a functional group recognizing peptides has not been reported yet.

The in vitro selection process using cDNA display with a cysteine-rich peptide coding DNA library is schematically shown in Fig. 1 and described in detail in the ESI†. In brief, cDNA display molecules with disulphide-rich peptides were prepared from the cysteine-rich peptide coding DNA library. The cDNA display library was then incubated with amino-
molecules were amplified by PCR for the next round of the sulphate (SDS). The cDNA moieties of the cDNA display molecules were collected by elution using sodium lauryl 2-group modified magnetic beads. Weakly-bound cDNA display molecules were washed out and the remaining cDNA display molecules were cloned and sequenced. Fifteen clones were found to have almost the same sequence among the ninety sequenced clones as shown in the ESL.

The maximum consensus sequence peptide contained four cysteine residues and was named CP1. The peptide CP1 has three kinds of disulphide connectivity. To investigate which disulphide isomers can recognize amino groups on the bead, the three disulphide isomers of CP1 (i.e., CP1 (2SS)-α, CP1 (2SS)-β and CP1 (2SS)-γ; see Table 1) were chemically synthesized and assayed by the pull-down method using amino group modified beads. The captured peptides were detected with N-β-amino group (NH₂) or carboxyl group (COOH) modified magnetic beads. CP1 (Cys→Ala)-α was incubated with amino group modified agarose resin beads. Only CP1 (2SS)-α was able to recognize the amino groups on the agarose resin beads under the oxidation conditions (Fig. 3b). Furthermore, the peptide CP1 (2SS)-α could bind only amino group modified agarose-resin beads, but could not bind either non-modified or carboxyl group modified agarose-resin beads (Fig. S2, ESI†). Thus, these results suggest that CP1 (2SS)-α can recognize amino groups regardless of the nature of the solid phase that the amino groups are immobilized on. We believe that this is the first example where a peptide containing disulphide bridges is shown to recognize moieties as small as amino groups.

In previous studies, many kinds of cyclic peptides containing a disulphide bond have been developed to achieve high affinity and specificity against proteins. Although CP1 (2SS)-α that was selected by in vitro selection contains two disulphide-bridged loops, it is uncertain whether both these constrained cyclic loops are indispensable for recognition of the amino group. Hence, to investigate whether both loops are required for recognition, all possible combinatorial pattern peptides of CP1 (2SS)-α which have only a single cyclic loop, with or without each remaining region in which cysteines were substituted to serines, were chemically synthesized (Table 1). According to a binding assay of these peptides against amino groups on magnetic beads, only CP1 (2SS)-α could recognize the amino group (Fig. 4). This indicates that both cyclic loops in the peptide CP1 (2SS)-α are required for amino group recognition. Moreover, the flexible region between the cyclic loops may also be required for molecular recognition. In a previous study, we found that a peptide with two disulphide

Table 1 Chemically synthesized peptides.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Size (aa)</th>
<th>Disulphide bridge</th>
<th>Amino acid sequence (N-C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CP1 (2SS)-α</td>
<td>34</td>
<td>C7-C15 and C29-C32</td>
<td>FAM-GGSSNGC-CGP-SNFDVFNCRTYFTNS1DGYCSGQNH</td>
</tr>
<tr>
<td>2</td>
<td>CP1 (2SS)-β</td>
<td>34</td>
<td>C7-C15 and C15-C29</td>
<td>FAM-GGSSNGC-GPG-SNFDVFNCRTYFTNS1DGYCSGQNH</td>
</tr>
<tr>
<td>3</td>
<td>CP1 (2SS)-γ</td>
<td>34</td>
<td>C7-C32 and C15-C29</td>
<td>FAM-GGSSNGC-GPG-SNFDVFNCRTYFTNS1DGYCSGQNH</td>
</tr>
<tr>
<td>4</td>
<td>CP1 (Cys→Ala)-α</td>
<td>34</td>
<td>C7-C15</td>
<td>FAM-GGSSNGC-GPG-SNFDVFNCRTYFTNS1DGYCSGQNH</td>
</tr>
<tr>
<td>5</td>
<td>CP1 (1SS)-A</td>
<td>34</td>
<td>C7-C15</td>
<td>FAM-GGSSNGC-GPG-SNFDVFNCRTYFTNS1DGYCSGQNH</td>
</tr>
<tr>
<td>6</td>
<td>CP1 (1SS)-B</td>
<td>34</td>
<td>C29-C32</td>
<td>FAM-GGSSNGC-GPG-SNFDVFNCRTYFTNS1DGYCSGQNH</td>
</tr>
<tr>
<td>7</td>
<td>CP1 (1SS)-NTR</td>
<td>15</td>
<td>C7-C15</td>
<td>FAM-GGSSNGC-GPG-SNFDVFNCRTYFTNS1DGYCSGQNH</td>
</tr>
<tr>
<td>8</td>
<td>CP1 (1SS)-CTR</td>
<td>15</td>
<td>C5-C8</td>
<td>FAM-GGSSNGC-GPG-SNFDVFNCRTYFTNS1DGYCSGQNH</td>
</tr>
</tbody>
</table>

Fig. 2 Binding assay of the disulphide isomers of CP1 (2SS): CP1 (2SS)-α, β, and γ against amino groups or carboxyl groups by a pull-down assay. Each disulphide isomer of CP1 (2SS) was incubated with amino group (NH₂) or carboxyl group (COOH) modified magnetic beads at 25 °C for 2 h in a selection buffer (20 mM Tris-HCl pH 7.4, 1 M NaCl, 1 mM EDTA, 0.1% Tween20). After washing the beads, the remaining CP1 was eluted with SDS sample buffer. The eluates were subjected to tricine-SDS-PAGE and visualized with the fluorescence image analyser. A sample (3.3%) of each imputed disulphide isomer of CP1 (2SS) was loaded as a reference (Lane: Ref.).

Fig. 3 Binding assay of CP1 (2SS)-α against amino groups on several types of support. (a) The three disulphide isomers of CP1 (2SS) and CP1 (Cys→Ala) were spotted on an amino-group modified glass slide and each peptide remaining on the glass slide after washing was visualized with a fluorescence image analyser. (b) The three disulphide isomers of CP1 (2SS) and CP1 (Cys→Ala) were incubated with amino group modified agarose-resin beads. CP1-1 (2SS)-α was incubated with the agarose-resin beads under oxidizing conditions (Ox.) or reducing conditions with DTT (Red.). After washing the agarose-resin beads, each remaining peptide was eluted with SDS sample buffer. Each eluate was subjected to tricine-SDS-PAGE and visualized with the fluorescence image analyser. CP1 (2SS)-α (1 pmol) was loaded as a reference (Lane: Ref.).
Affinity. A rigid steric conformation for peptides may be very important for molecular recognition by improving the ability of the peptide to interact with a molecule.

Fig. 4 Binding assay of CP1 (2SS) derivative peptides. CP1 (2SS)-α and five derivative peptides of CP1 (2SS)-α: CP1 (1SS)-A, CP1 (1SS)-B, CP1 (1SS)-NTR, CP1 (1SS)-CTR, and CP1 (Cys→Ala) were assayed by the pull-down method under the conditions as described for Fig. 2. A sample (3.3%) of each imputed disulphide isomer of CP1 (2SS) was loaded as a reference (Lane: Ref.).

Notes and references

Graduate School of Science and Engineering, Saitama University, 255 Shino-Okubo, Sakura-ku, Saitama 338-8570, Japan.
E-mail. nemoto@fms.saitama-u.ac.jp; Fax: +81-48-858-3531; Tel: +81-48-858-353

Electronic Supplementary Information (ESI) available: Library construct, in vitro selection, binding assay, circular dichroism (CD), peptide structure prediction. See DOI: 10.1039/c000000x/