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In this paper, we develop an approach for the fast and accurate detection of organophosphorus pesticides combining surface enhanced Raman 

scatter (SERS) technology with chemometrics methods. Firstly, we measure the SERS spectra of three pesticides: methyl parathion, edifenphos 

and ethyl paraxon. And all the spectra are processed by the different preprocessing algorithms, namely baseline subtraction, Savitzky-Golay first 

derivative (FD), standard normal variate variant transformation (SNV) and multiplicative scatter correction (MSC). Subsequently, the principal 

components analysis (PCA) and nonnegative matrix factorization (NMF) are adopted to obtain the main feature of spectra, respectively. Lastly, 

the various data are utilized to develop the classification models by support vector machines (SVM) and random forest (RF), and the 

discrimination performance is evaluated through 5-fold cross-validation method. The experiments show that the baseline subtraction method can 

eliminate the fluorescence background and baseline drift perfectly. And PCA greatly shorten the training time on the premise of keeping 

classification accuracy, but NMF make the results worse. SNV can improve the discriminant accuracy up 4% except the usage of NMF, but MSC 

and the first derivative have a negative effect. The classification model of the highest accuracy (99.79%) is built by SVM with the spectra 

processed by SNV and PCA, and the training process spends 1115 s. The training time (81 s) of the RF model developed with the spectra 

processed by SNV is much shorter than the former though their accuracy is very approaching. And the classification accuracy of the model built 

with RF and the different data always keeps on the high level, which suggests that RF has the excellent robustness. These results demonstrate it 

is more suitable for the detection of organophosphorus pesticides via combining the SERS spectroscopy, RF with SNV.     

 

1 Introduction  

Organophosphorus pesticides, which are widely used to prevent and 

control a large variety of pests, play an important role to increase the 

agricultural production. Through inhibiting acetylcholinesterase1, 2, 

the pesticides kill pests by the impairing nervous system. But the 

similar impairment can also be imposed to the human beings, and 

meanwhile the pesticide residues have widely distributed across the 

fruits, vegetables and other food now. Therefore, the detection of the 

organophosphorus pesticides residues is of much significance. 

Additionally, the complicated objects and arduous detection tasks are 

unavoidable in actual detections 3, thus exploring and developing fast 

and accurate methods for pesticide detection are a preferred approach 

to solve these problems. At present, the fast detection methods 

mainly include two categories: biological and spectral methods. The 

biological methods, such as immunoassay 4, 5, enzyme inhibition 6 

and living bacterias 7, have the advantages of short detection time, 

high sensitivity and lower testing cost. Nevertheless, these methods 

are sensitive to the measurement environment and require the 

synthesis of some intricate reagents, so they are not unfit for a wide 

variety of applications in the pesticide detection. The spectral 

methods as fluorescence 8, 9, infrared 10 and Raman 11 spectroscopy 
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are universal, fast, and of simple sample operations for the various 

pesticides detection. And it is especially noted that SERS technology 

12, 13, 14, 15, 16, 17, 18, which can enhance the Raman signal by 106 to 1015 

times via using noble metal nanoparticles (Ag, Au) also possesses the 

advantages of fingerprint and high precision and is very suitable for 

the fast analysis of pesticides. The relevant works have been carried 

out by many researchers. Liu reports a shell thickness-dependent 

Raman enhancement of silver-coated gold nanoparticles (Au@Ag 

NPs) for the identification and detection of pesticide residues at 

various fruit peels 13. And Lee develops a fast and ultra-sensitive 

trace analysis of methyl parathion pesticides using confocal SERS 

spectroscopy 14. After we measure the SERS spectra of samples, the 

pesticides information of the samples can be subsequently obtained 

through the experts combining with the Raman spectral knowledge. 

The manual intervention, however, limits the development of SERS 

on the fast detection of organophosphorus pesticides. Moreover, the 

differences between the SERS spectra of analogues are minimal, and 

even the experts need a long time to differentiate them. Therefore, we 

aim at developing an approach independent of human for the 

intelligent analysis of pesticides using SERS spectroscopy.  

A large number of experiments 19, 20, 21 have demonstrated the 

classification methods in chemometrics can construct their own 

understanding (classification model) via learning the training data to 

realize the accurate identification of unknown samples. The 

classification methods, which are no longer dependent on the experts, 

are hence introduced into the analysis of SERS spectra in the paper. 
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Taking the excellent classification ability and robustness into account, 

SVM 22, 23 and RF 24, 25 will be used to develop classification models. 

Besides, the variations, noise, fluorescence background and spectral 

annihilation always arise in the spectra because the measurement can 

be influenced by the SERS-active substrate, measurement 

environment, and experimental operation and so on. To eliminate the 

negative effects, consequently some pretreatment methods are 

adopted in the paper. And the spectral data is of the high dimension, 

so the feature extraction methods are also used to extract the main 

information of SERS spectra.  

In the paper, we measure the SERS spectra of methyl parathion, 

edifenphos and ethyl paraxon solutions of different concentration, 

and it should be noted that ethyl paraxon and methyl parathion are 

the analogues. Firstly, the spectral fluorescence background and 

baseline shift are eliminated by the baseline subtraction algorithm 26. 

Subsequently, FD 27, MSC 28 and SNV 29 are adopted to diminish 

some considerable noises, respectively. And PCA 30, 31 and NMF 32 

are employed to extract the main information and reduce the 

dimension of spectral data. Finally, various data are utilized to 

develop the classification models by SVM and RF. In order to 

determine the optimal chemometrics methods for the fast detection of 

organophosphorus pesticides, the discrimination performance of all 

models is evaluated via 5-fold cross validation method.  

2 Experiments and methods 

2.1 SERS spectroscopy measurement 

Firstly, methyl parathion, edifenphos and ethyl paraxon (AR, 99%) 

are dissolved in ethanol to get different concentration solutions, 

which are 100, 50, 10, 5, 1, 0.5 and 0.1 mg/L. Up to date, the sol 

solution of silver nanoparticle is reported as the most widely active 

substrate in view of its synthetic simplicity and excellent enhanced 

effect 33. The testing solutions are mixed with the Ag sol, which are 

mixed by using ultrasonic dispersing method for 10 minutes 34. 

Before measurement, the mixed solution is dropped on a silicon 

wafer. After the evaporation of solvent sol at room temperature, 

spectra are acquired from LabRAM HR800 Raman spectrometer 

equipped with a 532 nm diode laser source. The excitation laser 

power keeps constant at 20mW, and 50× microscope objective is 

used for all measurements. For each original spectrum, we calculate 

the averaged 10 scans with each integrating time of 1s. Every scan is 

sampled with the 710 points over the range of 600-1800 cm-1. For 

every sample 50 spectra are measured, and a total of 1050 spectra are 

obtained. 

2.2 Chemometrics methods 

2.2.1 Spectral pretreatment methods 

The considerable noises caused by sample preparation, 

inhomogeneities and measurement environments have inevitably 

emerged in the SERS spectra of pesticides. Thus, all the spectra from 

600 to 1800 cm-1 are considered for preprocessing. Firstly, the 

baseline subtraction method removes spectral fluorescence 

background and baseline shift by the polynomial fit 35. And the 

Savitzky-Golay FD reduces the background and baseline drift with a 

window size of 7 points gradually 27. Then, SNV 28 centers each 

spectrum separately by subtracting its mean and then scales it by its 

own standard deviation. Finally, MSC 29 eliminates light scattering or 

changes in path length effects for each sample relative to the average 

of the calibration set by shifting and rotating each spectrum so that it 

fits closely to the average spectrum of the dataset. Their effect on the 

performance of the classification models is evaluated and discussed, 

respectively. 

2.2.2 Feature extraction methods  

Allowing for the high-dimension of spectra, the analysis process is 

time consuming. Besides, some information which is included in 

spectra is not always additive effect on the analysis results. Therefore, 

PCA and NMF are used to obtain the dominant features of SERS 

spectroscopy, respectively.    

Firstly, PCA obtains the orthogonal basis through the eigenvalue 

decomposition of data covariance matrix and converts the data into 

the scope matrix based on the basis. Then, the scopes which make 

greater contribute to the variance of data are preserved to get the 

principal components (PCs). Hence, PCA can reduce a 

multidimensional data set to its most dominant features, and remove 

random variation (noise) 36. The accumulating contribution rate is up 

to 95% for PCA here. Then, NMF 32 is a top-down generative 

algorithm that optimizes its internal representation to minimize the 

reconstruction error between input and reconstructed output. 

Additionally, its weighted least-squared problem resolution can 

prevent the occurrence of negative factors and avoid contradicting 

physical reality, which is very significant since the negative factors 

are unexplainable for the actual problems. 

2.2.3 Classification methods 

SVM, which is developed by Vapnik 37, is based on statistical 

learning theory and aims at determining the location of decision 

boundaries that produce the optimal separation of classes. In a 

two-class pattern recognition problem where classes are linearly 

separable, SVM can select the one linear decision boundary that 

leaves the greatest margin between the two classes. The margin is 

defined as the sum of distances to the hyperplane from the closest 

points of the two classes here. If the two classes are not linearly 

separable, SVM will try to find the hyperplane that maximizes the 
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margin and minimizes a quantity proportional to the number of 

misclassification errors. Besides, SVM can also be extended to 

handle the nonlinear problems with projecting the input data into a 

high-dimensional feature space through nonlinear mapping and 

formulating a linear classification problem in the feature space. 

Subsequently, the kernel functions are introduced to reduce the 

computational cost of mapping into high-dimensional feature space. 

In this paper, the radial basis function was adopted for its high 

effectiveness in training process. Through utilization of the 

techniques such as ‘one against one’ and the ‘one against the rest’, 

SVM can also be applied to the multi-class problems now. In case of 

SVM, the accuracy mainly depends on two parameters which are the 

regularization parameter C and the width of gaussian kernel g. The 

empirical value range of C runs from 0.001 to 1000, and the range of 

g is from 0.001 to 100 38. The value of C and g can be obtained by 

traversing the value range with the interval of 20.5 times to guarantee 

the highest classification accuracy. 

RF 23, 24 is developed based on the decision tree, which can be 

viewed as one ensemble method of trees to improve the algorithm 

performance further. In general, random forest classifier consists of a 

combination of tree classifiers where each classifier is generated by 

using a random vector sampled independently from the input vector, 

and each tree casts a unit vote for the most popular class to classify 

an input vector 39. Meanwhile, it also offers some unique features 

which are built-in estimation of prediction accuracy, measurement of 

descriptor importance, and measurement of similarity between 

molecules. During the training process, RF does not do any pruning 

at all. So it is noted that the classification model based on RF can be 

trained in less time even in cases where there are excessively a large 

number of descriptors (data dimension).  

All computation and chemometric methods were implemented in 

MATLAB 2011b (The Mathworks Inc., Natick, MA, USA). The free 

SVM toolbox (Zhiren Lin, Taiwan) was applied in MATLAB to 

develop the classification models. The RF is carried out by using the 

RF toolbox.  

3 Results and discussion 

3.1 SRES spectra of methyl parathion, edifenphos and ethyl 

paraxon 

The original SERS spectra obtained from ethyl paraxon, edifenphos 

and methyl parathion solutions in different concentrations (0.1, 0.5, 1, 

5, 10, 50 and 100 mg/L) and the spectra processed by baseline are all 

shown in Fig. 1. From the figure (A, B, C), the strong fluorescence 

background and baseline drift presents in the original spectra of three 

pesticides. All the spectra are handled by the baseline subtraction 

method, and the results shown in fig. 1 (D, E, F) indicate the impact 

is removed perfectly. 

For the fingerprint characteristics SERS spectral peaks appear on 

some fixed positions and represent the vibration information of 

molecules, which is the basis for the analysis and detection of 

substances using SERS. According to the previous studies, the 

spectral assignation is discussed. The main peaks of methyl Parathion 

13 at 844, 1143, 1377, and 1581 cm-1  should  be  attributed  to  

the  vibrations  of  phenyl  stretch,  N–O stretch,  C–O stretch, 

and P–O stretch, respectively. For edifenphos, the peaks at 1362, 

1297, 1207, 1110, 1071 cm-1 are associated with CH3 symmetry 

deformation, CH2 twisting mode (in plane), C-C stretch and CH 

deformation in plane, respectively. And P=O stretch and P-O band 

occur at 1207, 927 cm-1. Besides, the peaks at 1179, 1019, 997, 688 

cm-1 are due to aromatic ring breathing, and the ring stretching is at 

1570, 1506 cm-1. The main Raman peaks of ethyl paraoxon 40 

included the aromatic ring (C=C) stretching at 1572 cm-1 , the 

symmetry stretching NO2 at 1322 cm-1, the aromatic ring (C-O) 

stretching at 1265 cm-1, the C-H band (in plane) /NO2 asymmetric 

stretching at 1104 cm-1, the aromatic–NO2 scissor at 860 cm -1, and 

the C-C bending at 639 cm-1.  

 

Fig. 1 The original SERS spectra of methyl parathion (A), edifenphos 

(B) and ethyl paraxon (C), and the spectra processed by baseline 

subtraction method of methyl parathion (D), edifenphos(E) and ethyl 

paraxon (F).  

In summary, there is some different among the spectra of different 
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organophosphorus pesticides, which provides the feasibility for 

detection of pesticides using SERS. Nevertheless, we should also 

note that the spectroscopy of the structural analogs, such as ethyl 

paraxon and methyl parathion, is roughly similar. In this case, even 

some well-experienced experts also need to spend a lot of time on 

distinguishing with the two. Therefore, developing an intelligent 

discriminating approach of the organophosphorus pesticides is of 

great significant combining with SERS technology.  

3.2 Classification results 

 

Fig. 2 The SERS spectra (A) of 100 mg/L methyl parathion and the 

spectra preprocessed by first derivative (B), SNV (C) and MSC (D).  

Tab. 1 The classification results obtained with the different spectra 

and the model developed by SVM and RF. (Unit of Time: S) 

Feature 

extraction 

Pretreatment 

methods 

SVM RF 

Accuracy Time Accuracy Time 

* 

* 95.17% 5215 95.09% 83 

FD 93.41% 5423 94.26% 99 

MSC 94.34% 3728 95.27% 82 

SNV 99.79% 4646 99.79% 81 

PCA 

* 94.55% 172 94.09% 1.5 

FD 91.50% 2538 94.61% 35 

MSC 94.03% 279 94.11% 3.5 

SNV 99.79% 1115 98.69% 17 

NMF 

* 72.23% 598 91.09% 9.7 

FD 70.23% 646 86.16% 11 

MSC 75.10% 605 88.85% 8.7 

SNV 77.03% 629 90.07% 8.3 

* Without any methods 

To suppress the noise and interference further, the spectra were 

preprocessed by FD, SNV and MSC before classification, 

respectively. And 10 original SERS spectra of 100 mg/L ethyl 

paraxon and the spectra processed by different methods are shown in 

Fig. 2. Regarding the preprocessing effect on the spectra, from Fig. 3 

it is seen that the first derivative preprocessing algorithm distorts the 

spectra (Fig. 2 B), while the MSC (Fig. 2 C) and SNV (Fig. 2 D) 

produce similar results, showing less pronounced differences to the 

original spectrum (Fig. 2 A), which are mostly related to the scale 

and position of the spectrum. The similarity between the  has been 

pointed out by Helland 41. Then the feature extraction methods as 

PCA and NMF are adopted to reduce the analysis time and extract 

the main information. Afterwards the original and processed spectra 

are utilized to build the classification model using RF and SVM. The 

discrimination performance of all the models is evaluated using 

5-fold cross validation methods (Tab. 1). 

Firstly, although NMF can ensure the transformed vectors from the 

original spectra nonnegative, the accuracy of the classification model 

developed with these vectors is obviously low than the other data. 

Therefore, it suggests that NMF is unfit for the qualitative analysis of 

SERS spectroscopy. But for PCA the classification accuracy of the 

corresponding models does not get promotion, but the training time 

is reduced dramatically which is mainly due to the reduction of data 

dimension. Then, for spectral pretreatment methods FD always worse 

the analysis results, MSC cannot promote the discrimination 

performance, and SNV can improve the classification accuracy up 

4% except the usage of NMF. Finally, regarding the classification 

methods, the SVM model built with the spectra processed by SNV 

and PCA obtain the highest classification accuracy (99.79% ) and 

spend the relative short training time (1115 s). However, the accuracy 

(99.75%) of the RF model developed with the spectra processed by 

SNV is a little lower than the former, and the training time (81 s) is 

much shorter. Additionally, the phenomenon that the classification 

accuracy of the model developed with RF and the different training 

data always keeps on the similar and high level should be noticed, 

which suggests that RF has the excellent robustness. Consequently, 

with SNV pretreatment, the RF is hereafter used to carry out the fast 

and accurate detection of organophosphorus pesticides using the 

SERS spectroscopy through taking the accuracy, robustness and 

training time into consideration simultaneously. 

4 Conclusions 

In the paper, a protocol for the fast and accurate detection of 

organophosphorus pesticides is developed on the basis of SERS 

technology and the chemometrics methods include the baseline 

subtraction, spectral pretreatment, feature extraction and 

classification methods. The spectra of pesticides handled by baseline 

subtraction methods can eliminate the fluorescence background and 

baseline drift perfectly. For the feature extraction methods PCA can 
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greatly shorten the training time on the premise of keeping 

classification accuracy, but NMF cause the sharp decrease of 

accuracy. Then, regarding the pretreatment methods, SNV can 

improve the discriminant accuracy up 4% except the using of NMF. 

However, MSC and the FD have a negative effect. Finally, the 

classification model of the highest accuracy (99.79%) is built by 

SVM with the spectra processed by SNV and PCA, and the training 

process spends 1115 s. Nevertheless, compared to SVM, RF 

performs better in the consideration of the accuracy, robustness and 

training time. Consequently, the results demonstrate that RF and 

SNV can be applied more potentially for the detection of 

organophosphorus pesticides using SERS spectroscopy. 
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