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Coupled with terahertz time-domain spectroscopy (THz-TDS) technology, the feasibility of diagnosis of 

cervical carcinoma using support vector machines (SVM) and partial least squares-discriminant analysis 

(PLS-DA) had been studied.  The terahertz spectra of 52 specimens of cervix were collected.  The 

performance of preprocessing methods of multiplicative scatter correction (MSC), Savitzky-Golay (SG) 10 

smoothing and first derivative, principal component orthogonal signal correction (PC-OSC) and emphatic 

orthogonal signal correction (EOSC) were investigated for PLS-DA and SVM models, respectively.  The 

effects of the different pretreatments methods with respect to classification accuracy were compared.  The 

PLS-DA and SVM models were validated using the bootstrapped Latin-partition method.  The SVM and 

PLS-DA models optimized with the combination of SG first derivative and PC-OSC preprocessing had 15 

the best predictive results with classification rates of 94.0 ± 0.4% and 94.0 ± 0.5%, respectively.  The 

proposed procedure proved that terahertz spectroscopy combined with classifiers provides a technology 

which has potential as a new diagnosis method for cancer tissue. 
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1 Introduction 

Cervical carcinoma is the third most common malignancy in 
gynecological neoplasm worldwide 1.  Survival rate will be 
improved if cervical cancer is rapidly and exactly diagnosed.  The 
diagnosis of cervical cancer primarily relies on histopathological 5 

examination, the thin prep cytological test (TCT), and manual 
inspection with colposcopy and cervicography 2.  All of these 
methods are based on cytology and histology.  Living tissue 
pathological examination mainly relies on the experience of 
pathologists and takes a lot of time.  Therefore, it is important to 10 

find a reliable and fast method for diagnosis of cervical cancer. 
 Terahertz radiation refers to the region that lies between the 
microwave and infrared regions of the electromagnetic spectrum.  
The region is commonly defined as 0.1 to 10 THz.  Molecular 
rotations, low frequency bond vibrations, and crystalline phonon 15 

vibrations all exist in this frequency range.  Due to terahertz 
radiation is non-ionizing and can highly penetrate for biological 
tissues, it is a potential source for nondestructive biomedical and 
biological technology as well as medical imaging 3-11.  Recently, 
interest in biomedical terahertz research is growing rapidly 12 and 20 

much research has been conducted using terahertz spectroscopy 
and terahertz imaging for medical testing and diagnosis 13.  THz 
imaging had been used for detecting micro-metastatic foci in the 
lymph nodes of early-stage cervical cancer 14. 
 Chemometrics is beneficial to many experimental science and 25 

suitable for solving diverse applications including many 
important practical applications in medicine 15-19.  Principal 
component analysis (PCA) was used to analyze THz data to 
understand the origin of contrast in a THz image 20.  Wavelet 
transforms have been applied to terahertz data for denoising 21.  30 

Combined with terahertz time-domain spectroscopy, the 
feasibility of fast and reliable diagnosis of cervical carcinoma had 
been studied 22. 
 In this study, human cervical tissue was detected by time-
domain terahertz spectroscopy.  Partial least squares-discriminant 35 

analysis (PLS-DA) 23 and support vector machines (SVM) 24 
classified the THz data for cervical cancer diagnosis.  Various 
multivariate methods have been used to solve qualitative 
problems.  PLS-DA and SVM are commonly used for 
classification, however, the importance and effectiveness of the 40 

two approaches should be valued for preliminary study on a new 
topic for research.  PLS-DA has some advantages such as the 
selection of variables and noise reduction.  The PLS-DA used in 
this paper is a self-optimizing method and the optimal parameter 
in PLS-DA was gotten automatically.  SVM provides several 45 

advantages such as comparable computational efficiency and 
excellent generalization capabilities.  SVM used the linear kernel 
function in this work.  The two classification methods applied in 
this project had a big advantage in convenience of calculations 
for verifying various approaches’ performance.  Both the two 50 

methods may have limitations when handling some complicated 

classification problems.  Further research may be tried to explore 
nonlinear classification methods based on this preliminary study.  
The effectiveness and feasibility of preprocessing methods 
including multiplicative scatter correction (MSC) 25, Savitzky-55 

Golay smoothing and first derivative 26, principal component 
orthogonal signal correction (PC-OSC) 27 and emphatic 
orthogonal signal correction (EOSC) 28were also evaluated. 

2 Experiments and methods 

2.1 Sample 60 

The cervical tissues (32 normal and 20 cancerous) were provided 
by the Beijing Haidian Maternal & Child Health Hospital.  All 
the cervical tissues were put into 4% formaldehyde solution to be 
stabilized, and then were washed with ethanol solutions for 
dehydration.  The tissues were put into xylene for hyalinization, 65 

paraffin wax for embedding, and then sliced into 8 µm thick 
sections.  The sections were placed in water for flatting, and then 
spread upon quartz plates.  The slides were put in a regulated 
heating oven and dried to remove water.  Two replicate slides 
were taken from each of fifty-two tissues sections. 70 

 The transmitted THz spectra of all slides were measured by 
terahertz time-domain spectroscopy system.  In order to enhance 
the absorption of incident light, the two replicate slides of each 
tissue sample were detected together in the way as given in Fig. 
1.  The slides were secured with a sample holder which was 75 

perpendicular to the direction of light, and then measured with 
the THz-TDS system.  THz spectra for fifty-two samples were 
collected using the same procedure. 
 

 80 

Fig. 1 Schematic representation of tissue samples for TDS measurement. 

2.2 Instrumentation 

In the experiments, a transmission THz-TDS cell configuration 
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was used, as depicted in Fig. 2.  The system was used a 
commercially available femtosecond laser (SPECIM, MaiTai).  
The laser light is separated into two beams.  One beam 
illuminates a GaAs based semiconductor antenna that generates 
the THz pulse.  The coupling efficiency of the THz radiation is 5 

then improved by a parabolic mirror with a hemispherical silicon 
lens.  The sample holder is placed at the focus of the parabolic 
mirror.  The beam that passed through the sample is collected by 
another parabolic mirror and sent to a photoconductive detector.  
The other beam is the probe which travels through a distance in 10 

free space and focuses on the detecting antenna.  The probe beam 
provides a relative time delay which is periodic.  In the 
experiments, the volume of the THz spectra system through 
which the THz beam passed was filled with dry nitrogen (N2) to 
reduce absorption caused by water vapor in air. 15 

 
Fig. 2 Schematic of a terahertz time-domain transmission spectrometer 

system used in this work. 

2.3 Theory 

2.3.1 Parameters extraction 20 

To calculate the absorption coefficient of a sample, the 
measurement of a “reference pulse” and a “sample pulse” are 
required.  Because the sample pulse that is transmitted through 
the tissue slides is measured, the reference signal is the 
transmitted THz signal without the tissue slides.  The THz 25 

electric field pulses are directly measured as a function of time 
and the frequency for both signal and reference.  The spectra are 
obtained by the fast Fourier transform.  The sample’s refractive 
index  and absorption coefficient , respectively 
describing the dispersion and absorption characteristics, can be 30 

calculated through the following formula 29-31: 

 ( )
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for which d is the sample thickness,  is the velocity of light in 

vacuum, ,  represent the frequency and attenuation 35 

coefficient, respectively.  ,  are the amplitude ratio 
and phase difference of the reference and sample signal. 
2.3.2 Partial least squares-discriminant analysis 

Partial least squares-discriminant analysis (PLS-DA) is 
commonly used as a multivariate classification technique based 40 

upon the classical partial least square regression method 23.  The 
PLS-DA algorithm is a supervised method that models the 
relationship between the measured spectra features and the target 
variables containing the class label 32.  PLS-DA extracts a set of 
latent variables by performing a dimension reduction on the data 45 

set and finds the maximum separation among the classes 33.  The 
latent variables explain both the variance of the spectral data � as 
well as the high correlation with the response matrix �  that 
encodes the class membership 34.  For the PLS-DA, then 
component number is one parameter that needs to be estimated.  50 

In this work, the parameter was determined using a self-
optimizing PLS-DA from the training data sets and the 
optimization occurs within each bootstrapped Latin partition 35.  
Bootstrapped Latin-partition is a method to verify the 
performances of classification and calibration models.  In PLS-55 

DA and SVM models of this study, the matrix �  of category 
variables was created with 1 for the normal samples and 2 for the 
malignant samples.  When the predicted value ����  of a 
validation sample in PLS-DA model was no larger than 1.5, the 
sample was assigned to normal class, or assigned to malignant 60 

class otherwise. 
2.3.3 Support vector machine 

The support vector machine (SVM) is a powerful machine 
learning method 24_ENREF_22.  For classification tasks, based 
on the structural risk minimization principle, this method 65 

attempts to find the separating hyperplane which has the largest 
distance from the nearest training data points 36.  SVM has been 
extensively used in pattern recognition and regression.  LIBSVM 
was used in this work and the SVM calculations in the paper used 
the linear kernel function. 70 

2.3.4 Data preprocessing methods 

The multiplicative scatter correction (MSC) is a transformation 
method used to account for scaling and offset effects in spectral 
data 25, 37.  It removes physical effects like particle size and 
surface blaze, and it corrects differences in the base line and in 75 

the trend. 
 The Savitzky-Golay method is a polynomial filter that 
performs numerical differentiation and smoothing 26, 38, 39.  This 
filter simplifies the computation, and has the ability to process the 
signals in real-time (with a small delay) with no shifts of the 80 

peaks.  It can be performed in a computationally efficient 
procedure with differentiation. 
 Orthogonal signal correction (OSC) is a data processing 
technique introduced by Wold et al. 40.  The basic idea of the 
OSC method is to remove the systematic variations that are 85 

orthogonal or not related to the properties of the dependent 
variables 41, 42.  The removed information is structured noise, such 
as baseline, instrument variation, and measurement conditions.  
Principal component orthogonal signal correction (PC-OSC) 27 
and emphatic orthogonal signal correction (EOSC) 28 are work by 90 

creating bases that are orthogonal to the dependent variables. 
2.4 Data treatment and computation 

To establish a model for diagnosis of cervical cancer, PLS-DA 
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and SVM are used to build classification models.  Prior to 
calibration model building, MSC, SG smoothing, SG first 
derivative, EOSC and PC-OSC are applied to preprocess the 
signals respectively.  Then the data were normalized before used 
to build model.  The performance of preprocessing (MSC, SG 5 

smoothing, SG first derivative, PC-OSC and EOSC) and 
modeling approaches are evaluated by the pooled prediction 
rates.  The pretreatments were constructed from the training data 
and applied to the prediction sets.  Five Latin partitions 
bootstrapped fifty times were used to measure the generalized 10 

prediction accuracy.  For each bootstrap, the data was split into 
training and prediction sets so that each spectrum was used only 
once in the prediction set.  Four Latin partitions were combined 

into a model-building set, and the fifth was used for prediction.  
The results of the five prediction sets from each partition were 15 

pooled.  This approach was used for all the PLS-DA and SVM 
evaluations and measures of the generalized prediction rates.  The 
average prediction results were calculated across the 50 
bootstraps to provide 95% confidence intervals.  All model 
optimization and construction were performed in MATLAB. 20 

3 Results and discussion 

The average absorption spectra for normal and malignant tissue 
are given in Fig. 3A and Fig. 3B, respectively. 
 

 25 

Fig. 3 Normal (part A) and Malignant (part B) tissue spectra with average and 95% confidence intervals. 

 The processed spectral data applied in PLS-DA were the same 
as those used in the SVM classifier.  The models were also 
evaluated by using bootstrapped Latin-partitions method with 50 
bootstraps and 5 Latin-partitions.  Using different pretreatment 30 

and different combinations of preprocessing methods 
respectively, the classification results of PLS-DA and SVM using 
different preprocessing steps to build model are given in Table 1. 
 As illustrated in Table 1, the rates of classification were 
improved for SVM model using SG first derivative, EOSC and 35 

PC-OSC respectively as pretreatment investigated in the paper.  
Comparing the results of the experiments, it could be found the 
prediction results were less than 86 % for SVM model only with 
MSC or SG smoothing as preprocessing method.  The 
classification rates obtained by SVM with pretreatment methods 40 

of SG first derivative + EOSC and SG first derivative + PC-OSC 
were higher than with other two different pretreating methods.  
The prediction rate was significantly improved when the sample 
data pretreated by MSC + SG first derivative + EOSC. 
 45 

Page 4 of 8Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  5 

Table 1 The effect of preprocessing methods to the prediction results for 
SVM and PLS-DA and 95% confidence intervals from 50 bootstraps and 
5 Latin partitions. 

Method SVM PLS-DA 

No 86.0 ± 0.9 % 90.0 ± 1.0 % 
MSC 81.2 ± 0.9 % 77.3 ± 1.3 % 

SG smoothing 84.7 ± 1.0 % 88.8 ± 1.0 % 
SG first derivative 92.0 ± 0.4 % 93.0 ± 0.5 % 

EOSC 91.0 ± 0.7 % 90.0 ± 0.8 % 
PC-OSC 90.0 ± 0.8 % 90.0 ± 0.9 % 
MSC+SG 
smoothing 

81.0 ± 1.0 % 75.3 ± 1.5 % 

MSC+SG first 
derivative 

92.6 ± 0.4 % 92.4 ± 0.6 % 

MSC+EOSC 87.3 ± 1.0 % 87.0 ± 0.9 % 
MSC+PC-OSC 86.7 ± 0.9 % 86.7 ± 1.0 % 
SG smoothing 

+EOSC 
91.4 ± 0.8 % 90.0 ± 1.0 % 

SG smoothing 
+PC-OSC 

88.7 ± 0.8 % 90.0 ± 0.8 % 

SG first derivative 
+ EOSC 

94.0 ± 0.4 % 93.8 ± 0.6 % 

SG first derivative 
+ PC-OSC 

94.0 ± 0.4 % 94.0 ± 0.5 % 

MSC+SG 
smoothing 

+EOSC 
87.5 ± 0.9 % 87.4 ± 0.9 % 

MSC+SG 
smoothing + 

PC-OSC 
86.7 ± 1.0 % 86.4 ± 0.9 % 

MSC+SG first 
derivative + 

EOSC 
94.0 ± 0.4 % 92.2 ± 0.6 % 

MSC+SG first 
derivative + PC-

OSC 
93.0 ± 0.5 % 93.0 ± 0.6 % 

 

 5 

 Without any pretreatment method, the average prediction 
accuracy obtained by PLS-DA model was better than SVM.  The 
classification accuracies of the PLS-DA were significantly 
improved with pretreatment method of SG first derivative.  The 
prediction accuracies of PLS-DA rose when used SG first 10 

derivative, MSC+SG first derivative, SG first derivative + EOSC, 
SG first derivative + PC-OSC, MSC+SG first derivative + EOSC 
or MSC+SG first derivative + PC-OSC to process the data. 
 As reported in Table 1, the PLS-DA model did not achieve the 
highest average prediction rates simultaneously applying MSC, 15 

SG smoothing (or first derivative) and PC-OSC (EOSC) to 
pretreat the original data.  Based on the dataset and methods 
researched in this paper, it was needed to use the pretreating 
techniques (SG first derivative and PC-OSC) to optimize model.  
Fig. 4 gives a comparison of the principal component scores for 20 

data objects.  The original data scores on the first two principal 
components are indicated in Fig. 4A, and the principal 
component scores for the spectra data preprocessed by SG first 
derivative and PC-OSC (orthogonal components number 3) are 
shown in Fig. 4B.  Fig. 4 displays the two groups in two-25 

dimensional space.  The two groups overlapped almost 
completely without any pretreatments in Fig. 4A, however, they 
were partially overlapping with SG first derivative and PC-OSC 
in Fig. 4B.  The obvious difference indicated that the 
preprocessing methods provided effectiveness on classification. 30 

 Combined SG first derivative with PC-OSC as signal 
pretreatment procedure, the prediction accuracies of the optimal 
SVM and PLS-DA were 94.0 ± 0.4% and 94.0 ± 0.5%, 
respectively.  The SVM and PLS-DA models were built with 
orthogonal components number 3.  Table 2 gives the results of 35 

sensitivities and specificities obtained from SVM and PLS-DA 
using the combination of SG first derivative and PC-OSC with 3 
components.  These sensitivities and specificities of the fifty 
bootstraps, five Latin partitions are presented with 95% 
confidence intervals. 40 

Table 2 The results of sensitivity and specificity and 95% confidence 
intervals from five Latin partitions and fifty bootstraps for the 
classification of the tissue thin sections using SG first derivative and PC-
OSC. 

Method Sensitivity Specificity 

SVM 88.6 ± 0.5 % 96.7 ± 0.6 % 

PLS-DA 92.6 ± 0.8 % 94.9 ± 0.7 % 

 45 

4 conclusions 

In this work, the objective is to combine terahertz spectrum with 
chemometrics and to propose a reliable and fast diagnosis 
technique for diagnosing cervical carcinoma.  The classification 
model with SVM and PLS-DA based on terahertz spectral 50 

measurement of normal and malignant tissue sections was  
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Fig. 4 Comparison of principal component scores for the original signals without pretreatments (part A) and preprocessed data by SG first derivative and 

PC-OSC (part B).  Normal sample is designated by A and cancerous sample is designated by B. 

established and the effects of different preprocessing methods to 
optimize model were investigated.  Comparing the classification 5 

accuracies pretreated by different preprocessing methods, it 
indicated that SVM and PLS-DA with the combination of SG 
first derivative and PC-OSC based on terahertz spectroscopy of 
tissue can provide a better application for diagnosis of cervical 
carcinoma. 10 
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Graphical Abstract 

 
Combined with terahertz spectroscopy, partial least squares-discriminant analysis 

and support vector machines could be novel and effective diagnosis methods for 

cervical cancer. 
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