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Abstract: Laser induced breakdown spectroscopy (LIBS) combined with random forest (RF) was 

proposed to quantitative analysis sulfur (S) and phosphorus (P) in steel samples. The interference 

from characteristic spectral line of S and P in steel is difficult to accurately quantitative analysis 

due to the influence of multi-matrix. RF model was utilized to compensate the negative influence 

of matrix effect. The influences of laser pulse energy and delay time on the spectral intensity were 

studied to improve signal-to-noise ratio (SNR) of analytical line for a certain element. 

Furthermore, the parameters (ntree and mtry) of RF model were optimized by out-of-bag (OOB) 

estimation. The final RF calibration model for quantitative analysis of S and P in steel was 

constructed by means of the spectral range (520-620 nm) as input variable under the optimized 

experimental conditions. Results showed well prediction of RF calibration model for S 

(R
2
=0.9974) and P (R

2
=0.9981) compared with partial least square regression (PLSR) by using the 

peak signal of SⅡ545.3 nm and PⅡ602.4 nm, respectively, and the averaged relative error (ARE) 

of S in steel were 2.69% and 3.47% for 8# and 9# sample respectively, and of P were 1.77% and 

0.83% for 8# and 9# sample respectively. This confirms that RF model is a promising approach 

for quantitative detection of the nonmetal elements with LIBS technology in the field of 

metallurgy.  

Keywords: Laser induced breakdown spectroscopy; Random forests; Steel samples; Quantitative   

analysis; Sulfur and phosphorus 

1. Introduction 

    Various components in steel play an important role on estimating the quality and performance 

of steel. In the process of metallurgy, a real-time, on-line and effective approach for monitoring 

the composition of different types of steel is needed to ensure the quality and performance of steel. 

Strict and accurate control content of nonmetal elements, especially the nonmetal elements of S 

and P, play an extremely important role on determining some steels of the mechanical and physical 

properties.
1 

The machinability, processability and magnetism of steel can be improved through 

adding appropriate S. However, the content of S in steel shall not be higher than 0.005% (wt)
2 

based on the national standards of China. If not, its plasticity and wear resistance would be 

significantly decreased and even affect the working life of the steel. Similarly, the content of P 

should be lower than 0.035% (wt),
3
 as it tends to increase the strength and hardness, and reduce 
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the plasticity and toughness of steel by adding a small amount P. Therefore, a rapid, effective and 

direct determination method for S and P in steel is needed due to its great significance for steel 

quality control. The conventional methods for quantitative analysis of S and P in steel
4-8 

mainly 

include chemical analysis, inductively coupled plasma mass spectrometry (ICP-MS), x-ray 

fluorescence (XRF), atomic emission spectrometry (AES), spark-discharge optical emission 

spectroscopy (SD-OES) and so on. However, these analytical techniques show some shortcomings 

such as complex sample preparation or long analysis time, which hinders their application for 

in-situ, on-line and real-time analysis. 

    Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission-based 

technique for material analysis. LIBS has rapidly developed into an important analytical technique 

due to the capability of detecting several elements in the sample simultaneously.
9 

In LIBS, the 

light signal emitted by plasma that vaporizes the samples by low-energy pulsed laser and focusing 

lens, and then collected and directed to a spectrometer by a fiber optic. The spectrometer disperses 

the light emitted by excited atoms, ions, and simple molecules in the plasma. The detector records 

the emission signals to quantitative determine the content of the sample. Compared with the 

conventional quantitative analysis technologies, the obvious advantages of LIBS generally include 

the facts
 
that

10-12
: minimal sample requirement, without sample preparation, non-destructive 

detection, all types of samples (liquid, solid, gas, etc.), and even remote and in-situ analysis.
13,14 

LIBS has been widely used in materials,
15

 metallurgy,
16

 environment,
17

 archaeology,
18

 space 

exploration,
19

 medical,
20

 military,
21-23

 and many other fields, particularly in the metallurgy field.  
 
 

     Quantitative analysis of steel samples with LIBS usually can be accomplished by using a 

series of standard samples to establish calibration curve between spectral line intensity and 

corresponding content (wt%). At present, the quantitative methods for S and P in steel mainly 

include standard curve method and internal standard method, and these methods were univariate. 

Univariate analysis is the most commonly used calibration curve, namely only using single 

characteristic spectral line of the measured element as input variable to set up univariate 

regression model. Unfortunately, the univariate analysis fails to meet the analysis requirements of 

multi-matrix steel samples
25

 which is a sample with multi-component and multi-matrix, and its 

chemical composition is severely affected by the matrix effect, and there are also complex spectral 

overlap in iron matrix spectral lines. Therefore, the traditional univariate analysis fails to 
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compensate the influence of these interference factors. Hence, multivariable analysis methods 

such as partial least square regression (PLSR),
24 

random forests (RF),
26,27 

artificial neural network 

(ANN)
28-31 

and support vector machine (SVM)
32-34 

are adopted to solve matrix effect and improve 

the accuracy of quantitative analysis for steel sample. It has been proved that the running speed of 

RF is very fast and the precision of RF algorithm is incomparable, and even can prevent 

over-fitting, as well as has a good tolerance for the noise.
35

 RF, a new regression algorithm based 

upon multiple regression trees, was proposed by Leo Breiman in 2001.
36

 It is based on an 

ensemble of regression trees, from which the prediction of a continuous variable is regarded as 

average of the prediction of all trees. In modeling process, first of all, the bootstrap method
37,38

 is 

used to randomly extract the training set and test set, and then random regression tree forest tree 

(ntree) and the characteristics of random variables (mtry) are optimized through out-of-bag (OOB) 

estimation in order to improve the robustness and accuracy of RF model. Based on the above 

mentioned advantages, RF has become a new research hotspot in the current field of machine 

learning.
39,40

  

    Here we report a method to determine the content of S and P in steel based on the LIBS and 

RF technology. Normalized LIBS spectra of steel were used as analytical spectrum. The effect of 

laser pulse energy and the delay time of detector on signal intensity were studied to achieve a high 

signal-to-noise ratio (SNR). And then the two parameters (ntree and mtry) of RF model were 

optimized by OOB error estimation. The performance of calibration model was investigated by 

different input variables and spectra feature bands under the condition of analysis lines of S and P, 

respectively. Finally, RF and PLSR were employed to determine the content of S and P in nine 

kinds of steel samples under the optimized experimental conditions.  

2. Methods and materials 

2.1 LIBS setup  

The schematic diagram of the experimental setup used for LIBS system is described in Fig. 1, 

it mainly consists of the duration Nd:YAG pulse laser, optical system, Echelle spectrometer and 

computer system. The laser light is focused by fused-silica planoconvex lens perpendicularly onto 

the sample surface to form the plasma, which was generated by a Q-switched Nd:YAG laser (10 

ns full width at half maximum (FWHM) and 20 Hz repetition rate) with the optional wavelength at 

1064 nm. The distance between focusing lens (focal distance: 50 mm, and diameter: 2 mm) and 
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sample is greater than the focal length of the lens, in order to avoid that the air is staved before 

laser reach the surface of the sample. For collecting LIBS spectra from different locations of the 

sample surface, the sample was mounted on X-Y-Z manual micrometric stage. The radiant energy 

of the pulse must be higher than the breakdown energy for the sample material. Firstly, the atomic 

and molecular structure of the steel samples will be broken and heated, causing vaporization of a 

small fraction of the material. Further the incoming energy of the same laser pulse can sustain 

high temperature plasma in which the vaporized species can be excited and return later to their 

less energetic levels by emitting electromagnetic radiation. The plasma emission were collected 

through the optical fiber (with a 1000 nm core diameter and 0.22 numerical aper-ture), and then 

detected by the Echelle spectrometer (ARYELLE-UV-VIS, LTB150, German) equipped with an 

Electron-Multiplying CCD camera (UV enhanced, 1004×1002 Pixels, USA). The spectral 

resolution range of Echelle spectrometer is 200-800 nm, its optical resolution is about 0.1 nm 

(FWHM). At the same time, the spectrometer provides a constant spectral resolution (CSR) of 

6000 over a wavelength range of 220-800 nm displayed in a single spectrum. In this experiment, 

there are three parameters optimized as follows: the energy of the laser pulse was 60 mJ, pulse 

frequency of 20 Hz, detector delay time of 1.5 µs, in order to eliminate the influence of 

background noise produced in the initial formation stage of the plasma bremsstrahlung for spectral 

signals. To improve the spectral intensity, each recording was obtained by accumulating the signal 

of 20 ablation events on the same site. The build-in analysis system of Sophi 6.1.5 R2110 was 

used to acquire the spectral data.  

Here is Fig. 1 

Fig. 1 Schematic diagram of the experimental set-up for LIBS studies 

2.2 Steel samples and LIBS measurements    

A total of 9 typical steel samples were kindly provided by the China Xi-ning Special Steel CO., 

LTD (Xi-ning, Qing-hai, China) for LIBS analysis. The steel samples are all made into Φ20×6 mm 

cylinder in order to facilitate the experiment conveniently. Before the experiment operation, the 

surface of samples was swashed by alcohol. In this study, 300 LIBS spectra were collected from 

different position on each steel sample, and the analytical spectra for each steel sample were the 

average of fifty spectra. Subsequently, 54 individual records (9 samples × 6 spectra per sample = 54 

records) with nine different contents of S and P were input into the RF model. In this case, the 
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PLSR and RF model were internally calibrated using 42 records (1# - 7# samples × 6 spectra per 

sample) and tested using 12 records (8# - 9# samples × 6 spectra per sample). The data processing 

and quantitative analysis for steel samples by chemometrics methods were operated on Matlab 

(2007a).  

2.3 Random Forest  

    RF is a kind of statistical learning theory that extracts multiple samples from original sample 

by taking advantages of the bootstrap resampling method for the regression analysis. The RF model 

was built by integrating the relationship between spectra and content (S and P in steel) of each 

regression tree of each bootstrap samples, finally the predictions are made by averaging all the 

regression tree outputs. 

In general, the RF algorithm for regression works as follows: 

    (1) From the training data of n steel sequences, draw the ntree bootstrap sample (i.e., 

randomly sample, with replacement, n steel sequences). 

    (2) For each bootstrap sample, grow a tree with the following modification: at each node, 

choose the best split among a randomly selected subset of mtry (rather than all) features. The tree is 

grown to the maximum size (i.e.,until no further splits are possible) and not pruned back. 

    (3) Predict new data by aggregating the predictions of the ntree trees (average for regression).   

The prediction performance of the RF regression algorithm is assessed by a type of 

cross-validation in parallel with the training step by using the so-called OOB samples. In each 

bootstrap sample, that is a random sample of the original data with replacement and with the same 

length, some of the data is repeated, and the left out samples are called OOB. The random forest 

algorithm evaluates the importance of a variable by looking at how much prediction error increases 

when (OOB) data for that variable is permuted while all others are left unchanged. The number of 

trees (ntree) and the size of the variable subset (mtry) in the RF modeling are the two important 

keys that is reasonably essential to optimize for quantitative analysis of S and P in steel. The best 

ntree and mtry value are determined according to the root mean square error (RMSE) of OOB 

estimation. The quantitative analysis performance of RF model is estimated by root mean square 

error of calibration (RMSEC) and the correlation coefficient (R) in this study. The relevant 

equations are as follows:  
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where i, n, represent the index of the sample and the tested number, respectively; 
reference,i

x and 

ivepredict,i
y are the reference value and predictive value for i-th sample, respectively; 

referencei,
x  and 

predictivei,
y  are the average value of reference and predictive value for all samples, respectively. 

3. Result and discussion 

3.1 Optimize the parameters 

3.1.1 The influence of laser pulse energy to the SNR of spectral line for S and P   

    The laser induced plasma is generated through laser which provides the direct motivation in 

the process of forming plasma in LIBS system. Laser induced plasma is generated on the 

condition that the laser pulse energy is more than a certain threshold (i.e. several GW/cm
2
). The 

laser energy directly affects the number of excited atom, electron and molecule, and even the 

strength of the plasma emission signal. When the pulse energy is too low, the background signal of 

the spectral line is strong and the intensity of characteristic spectral line is weak, which is 

unfavorable for quantitative analysis of S and P in steel; In initial stage, spectral line intensity has 

a linear relation with the increase of laser energy. And then with the increasing of laser energy, it 

appears nonlinear relation between spectral line intensity and laser energy. Finally, it will lead to 

the saturation phenomenon (that is to say energy-spilling)
41

 if the laser pulse energy exceeds the 

threshold, which to the disadvantages of accurately quantitative analysis of S and P in steel. In this 

study, the delay time was set to 1.5 µs, and the laser pulse energy was taken 10 values between 

3-100 mJ in which each energy tested on different locations of sample surface. Fig. 2 shows that 

the changes in the relationship between the laser pulse energy and SNR with analytical lines of S

Ⅱ545.3 nm and PⅡ602.4 nm, respectively. It can be seen the black curve (element S) form Fig. 2, 

the threshold energy of plasma generated from pulse laser is between 50 - 60 mJ. When the laser 

pulse energy reaches 65 mJ, it appears the saturation phenomenon. Meanwhile, the element P has 

the similar change in the relationship between the laser pulse energy and signal-to-noise ratio with 

the element S. Therefore, in order to get the spectral lines of SNR as high as possible, the 
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optimized laser pulse energy for the quantitative analysis of S and P in steel was set to 60 mJ. 

Here is Fig. 2 

Fig. 2 The relationship between the laser pulse energy and SNR with SⅡ545.3 nm and PⅡ602.4 

nm, respectively 

3.1.2 The influence of delay time to the SNR of spectral line for S and P 

Plasma radiation is a dynamic evolution process with the time, the plasma radiation signals at 

different instants of time, the observing time and the width are all having serious impact on the 

results of quantitative analysis. At initial phase of the laser plasma formation, the strong continuous 

background spectra can be produced by violent collisions among a large number of electrons, 

excited ions and atoms; Then atomic spectra and ionic spectra are superposed on the continuous 

background spectra; As time goes on, the plasma are inflated and cooled down, accompanied with 

the background radiation decreased rapidly . However, the attenuation of atomic spectra and ionic 

spectra is slower than that of the continuous radiation background. Hence, it is crucial for getting a 

high SNR of the characteristic spectral line through selecting an appropriate delay time and integral 

gate width back. Fig. 3 presents the influence of different delay time on the spectral signal intensity 

with analytical line of SⅡat 545.3 nm and PⅡat 602.4 nm, respectively. As shown in Fig. 3, the 

SNR of S increases continuously along with the delay time between 0-1.5 µs. However, while when 

the delay time is above 1.5 µs, the SNR decreased accordingly. The P has the same changing trend. 

Therefore, the delay time was selected at 1.5 µs to obtain the highest SNR.  

Here is Fig. 3 

Fig. 3 The relationship between the delay time and SNR with SⅡ545.3 nm and PⅡ602.4 nm, 

respectively 

3.2 Selection of analytical lines of S and P in steel 

Spectral line intensity can be used to determine the content of elements in steel, while 

qualitative analysis of the element can be implemented via the characteristic spectral lines. The 

suitable characteristic spectral lines of S and P in steel are required to improve the predictive 

accuracy of RF method. The averaged LIBS spectrum of the 1# steel sample recorded at the 

optimized conditions is displayed in Fig. 4. It is observed that the spectral emission line of iron 

matrix is very dense in steel spectrum, which will lead to serious interference to characteristic 

spectral lines of other elements, especially the spectral lines of trace element S and P. The analytical 

Page 8 of 20Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



lines of S and P would be interfered strongly by almost overlapping iron matrix, so a few analytical 

lines remained were investigated to quantitative analysis of S and P in steel. Therefore, the 

characteristic LIBS spectral lines of S and P in steel were identified based on the NIST database. As 

shown as in Fig. 5 (a), the spectrum of S is mostly featureless over the UV range, with the 

exception of two overlapping S peaks around at 543.2 nm and 545.3 nm. Nevertheless, SⅡ543.2 

nm is interfered obviously stronger than that of 545.3 nm that is selected as the primary analytical 

line of S. LIBS spectra of P with the highest selectivity was obtained at an excitation wavelength 

corresponding to PⅡ602.4 nm among transitions of atomic phosphorus in 600-601 nm, as shown 

in Fig. 5 (b).  

Here is Fig. 4 

Fig. 4 The averaged LIBS spectrum of the 1# steel sample recorded at optimized conditions 

Here is Fig. 5 

Fig. 5 Typical LIBS spectra of 1# sample with analytical line of SⅡ545.3 nm of interest (a) and 

with analytical line of PⅡ602.4 nm of interest (b) 

3.3 Optimization of parameters of RF calibration model 

    The different spectral range (with the range of 220-800 nm, 500-650 nm, 520-620 nm and 

540-610 nm) as input variable for RF calibration model were investigated by means of root mean 

square error of calibration (RMSEC) and R
2 
in order to improve the precision ratio of quantitative 

analysis result and the prediction ability in this study. Within the scope of each band selected, the 

smaller the root mean square error, the greater the correlation coefficient, then the better the model 

predictive ability of RF model. The performance of RF calibration model is not same through 

RMSEC and R
2
 in different spectral range as seen as in Table 1. The R

2 
of the RF calibration model 

with the input variable of 200-800 nm spectral range is the largest than of the rests. However, the 

smallest RMSEC is 0.0002 in the wavelength range of 540-610 nm. Hence, the 520-620 nm 

spectral range is selected as input variable for RF calibration model.  

The two parameters (ntree and mtry) of the RF model were optimized by OOB estimation. The 

stability of RF calibration model can be reflected by the optimized ntree, simultaneously the 

optimized mtry can effectively improve the accuracy and precision of RF calibration model. Even 

the ntree and mtry also have an impact on the running speed and time of the Matlab (2007a). 

Therefore, it is necessary to optimize these two parameters, and its optimization process are two 
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steps: (1) Trained in the whole training set, according to OOB error to choose ntree, and the choose 

standard is to make the total error or target category error low and stable enough; (2) The optimal 

value of mtry parameter is optimized by cross-validation employing training set, which parameter 

selection criteria can be determined according to the actual problem, minimum or maximum error. 

In the case of the mtry unchanged, the affect of different ntree (ntree=100, 200, 300, 400, 500, 600 

and 700, respectively) to the predictive ability of RF calibration model is studied in this study. On 

the contrary, the influence of variational mtry (mtry=516, 589, 688, 825, 1031, 1375, 2063 and 4125, 

respectively) on calibration model predictive ability is investigated by keeping the ntree unchanged. 

Fig.6 shows the relationship of OOB error rate with ntree and mtry, and the OOB error rate 

(2.778×10
-6

) is the smallest when the mtry is 1031, and meanwhile the ntree is 200, which has a 

faster running speed. Consequently, the two optimized parameters of RF are as follows: ntree = 

200 and mtry = 1031 are based upon the OOB error rate.
42

  

Here is Table 1 

Table 1 RMSEC and R
2 

with different input data of RF calibration 

Here is Fig. 6 

Fig. 6 Relationship of OOB error rate with ntree and mtry 

3.4 Prediction the content of S and P in steel by RF model  

Predictive ability is often a primary goal of data analyses for steel samples. RF model is a 

particularly appropriate tool and has been broadly used to predict metallurgical outcomes under 

various high-throughput metallurgical platforms. In this study, the 1# - 7# (7 samples × 6 spectra 

per sample = 42 records) samples as calibrated data were used to construct the PLSR and RF model, 

and the rest 8# and 9# (2 samples × 6 spectra per sample = 12 records) as tested data were 

quantitatively predicted S and P in each steel samples. Here, the reference value and results 

obtained by RF calibration method were averaged and then plotted. In order to prove the RF 

calibration method has a better predictive ability, we have compared RF with PLSR to predict the 

content of S and P in steels. For the calibration model based on PLSR, the best latent variables for S 

and P optimized by 5-fold cross-validation were 10. The PLSR and RF model performance for S 

and P in the calibration samples are shown in Fig. 7 and Fig. 8, respectively. RF shows a better 

correlation relationship (R
2
=0.9974 for S, R

2
=0.9981 for P) than PLSR (R

2
=0.8762 for S, 

R
2
=0.9171 for P) for S and P in steels. Furthermore, the results obtained by PLSR and RF and 
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Series of Metal CRMs for spectral analysis are also given in Table 2 for comparison, showing that 

the predictive values of S and P are extremely closer to that of reference values in different steel 

samples. Therefore, RF model can relatively accurately quantitatively predict S and P in steel. Not 

only spectral interference from iron matrix and other elements has an effect on the quantitative 

prediction results, but also the content of S and P in steel. Seen from the Table 2, the higher content 

of S and P in steel, the smaller averaged relative error, like the averaged relative error of S of 8# 

(2.69%) in steel was smaller than 9# (3.47%) which the content of S is larger than of 8# no matter 

what the PLSR or RF. When considered the R
2
 and ARE of both S and P, the RF model is more 

suitable for the determination of P than S in steel. 

Here is Fig. 7 

Fig. 7 The PLSR and RF model performance for S in the calibration samples using SⅡ545.3 nm 

as analytical line 

Here is Fig. 8 

Fig. 8 The PLSR and RF model performance for P in the calibration samples using PⅡ602.4 nm 

as analytical line 

Here is Table 2 

Table 2 Comparison of Prediction Results for S and P Obtained by PLSR and RF Calibration 

Method with Series of Metal CRMs for Spectral Analysis 

Conclusion 

    In this study, S and P in steel can be quantitative detected by LIBS and RF model using 

analytical lines of SⅡ545.3 nm and PⅡ602.4 nm without spectral interferences from iron matrix 

and other elements. The experimental condition (delay time-1.5 µs and laser pulse energy-60 mJ) 

were optimized by SNR of S and P. The RF calibration model was constructed under optimized 

spectral range (520-620 nm) and parameters (200 ntree and 1031 mtry). The predictive values 

obtained by the RF calibration model are close to the reference values. Results also demonstrated 

RF has a better correlation relationship (R
2
=0.9974 for S, R

2
=0.9981 for P) than PLSR (R

2
=0.8762 

for S, R
2
=0.9171 for P) for S and P in steels. The above results demonstrated that the RF model is 

an effective approach for the nonmetal elements quantitative analysis of steel samples. Thus, RF 

model will be a promising regression method for remote, real-time and in-situ analysis for quality 

supervision and process control in steel industry, especially for nonmetal elements in steel. 
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Fig. 1 Schematic diagram of the experimental set-up for LIBS studies 

    

Fig. 2 The relationship between the laser pulse energy and SNR with SⅡ545.3 nm and PⅡ602.4 

nm, respectively 
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Fig. 3 The relationship between the delay time and SNR with SⅡ545.3 nm and PⅡ602.4 nm, 

respectively 

    

Fig. 4 The averaged LIBS spectrum of the 1# steel sample recorded at optimized conditions 
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Fig. 5 Typical LIBS spectra of 1# sample with analytical line of SⅡ545.3 nm of interest (a) and 

with analytical line of PⅡ602.4 nm of interest (b) 

 

Fig. 6 Relationship of OOB error rate with ntree and mtry 
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Fig. 7 The PLSR and RF model performance for S in the calibration samples using SⅡ545.3 nm 

as analytical line 

    

Fig. 8 The PLSR and RF model performance for P in the calibration samples using PⅡ602.4 nm 

as analytical line 

Table 1 RMSEC and R
2 
with different input data of RF calibration 

Wavelength range (nm) RMSEC R2 of calibration 

200-800 0.0007 0.9772 

500-650 0.0006 0.9753 

520-620 0.0004 0.9769 

540-610 0.0002 0.9598 

 

Table 2 Comparison of Prediction Results for S and P Obtained by PLSR and RF Calibration 

Method with Series of Metal CRMs for Spectral Analysis 
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No. Sample 

  Reference value (wt%) PLSR RF 

S P S ARE (%) P ARE (%) S ARE (%) P ARE (%) 

8# 0.013 0.014 

0.0139 

13.97 

0.0136 

10.11 

0.0127 

2.69 

0.0142 

1.77 

0.0141 0.0116 0.0128 0.0143 

0.0152 0.0113 0.0132 0.0145 

0.0156 0.0115 0.0132 0.0138 

0.0154 0.0143 0.0134 0.0137 

0.0147 0.0138 0.0127 0.014 

9# 0.0072 0.014 

0.0089 

16.43 

0.0143 

9.17 

0.0074 

3.47 

0.0137 

0.83 

0.0084 0.0132 0.0075 0.0139 

0.0071 0.0133 0.0071 0.0139 

0.0086 0.0145 0.0075 0.0141 

0.0064 0.0145 0.007 0.014 

0.0062 0.0144 0.0076 0.0141 
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Graphical Abstract 

 

   Laser induced breakdown spectroscopy (LIBS) combined with PLSR and RF was employed 

for detection of nonmetal elements in steels. 
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