Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

2		
3 4 5	1	A sensitive heterogeneous biotin-streptavidin enzyme-linked
6 7	2	immunosorbent assay for the determination of di-(2-ethyl hexyl)
8 9 10	3	phthalate (DEHP) in beverages using a specific polyclonal antibody
11 12 13	4	Ruiyan Sun, Huisheng Zhuang*
14 15	5	School of Environment Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan
16 17 18	6	Road, Shanghai 200240, P.R. China
19 20	7	
21 22 23		
24 25		
26 27 28		
29 30		
31 32 22		
34 35		
36 37 28		
39 40		
41 42 42		
43 44 45		
46 47 48		
48 49 50		
51 52		
53 54 55		
56 57		
58 59 60		

^{*} Corresponding author phone: Tel: 86-21-54748994; Fax: 86-21-54740825. E-mail address: huishengzhuang@126.com (H.s. Zhuang); 10704008.sry@163.com (R.y. Sun).

Analytical Methods Accepted Manuscript

8	ABSTRACT: Di-(2-ethyl hexyl) phthalate (DEHP) is one of the long-chain or high-
9	molecular-weight phthalic acid diesters (PAEs) family, which is the most commonly
10	used as plasticizer and additive. However, DEHP may cause birth defects, sexual
11	dysfunction, even cancers and possibly heart disease, etc. In order to detect DEHP
12	with high sensitivity and specificity, an indirect competitive biotin-streptavidin
13	enzyme-linked immunosorbent assay (BA-ELISA) has been established in this study.
14	A specific polyclonal antibody (pAb-DEHP) targeting DEHP was obtained firstly, and
15	the procedures of BA-ELISA were optimized for the determination of DEHP in
16	beverages. Under optimal conditions, good linearity was achieved within a range of
17	0.021 to 12.948 μ g L ⁻¹ . The limit of detection (IC ₁₀) was 0.0074 μ g L ⁻¹ and the
18	median inhibitory concentration (IC ₅₀) was 0.526 μ g L ⁻¹ . The BA-ELISA was highly
19	selective, with low cross-reactivity values with DEHP analogues (lower than 7%).
20	Finally, the assay was successfully used to detect DEHP in beverages; the
21	concentrations of DEHP in the samples ranged from 1.18 μ g L ⁻¹ to 40.68 μ g L ⁻¹ .
22	Satisfactory recoveries (89.07-109.33%) and coefficient of variation (CV) values
23	(5.97 to 10.68%) were obtained, which further confirmed that this proposed BA-
24	ELISA immunoassay is sensitive, rapid and accurate for monitoring DEHP in the
25	environment.
26	Key words: DEHP; Biotin-streptavidin; Enzyme-linked immunosorbent assay
27	(ELISA); Polyclonal antibody; Beverages
28	

29	1.]	Intr	odu	ction
----	-----	------	-----	-------

30	Phthalate esters are used as plasticizers in a wide variety of commercial and
31	personal care products, including building materials, clothing, detergents, electronics,
32	medical devices, packaging, skin care products, toys, insect repellent, and medication
33	coating, to improve flexibility and durability ¹⁻³ . In addition, PAEs are used as an
34	additive to various foods for improving the taste and quality ⁴ . Based on the above, the
35	global production of PAEs is estimated to be about 5 million tons in 2010^5 . Due to
36	their potential adverse effects on the reproductive system, some tissues and organs of
37	the body ^{$6-8$} , PAEs which are seen as ubiquitous endocrine disrupting chemicals
38	(EDCs), have been regulated by the Council of the European Union, the United States
39	Environmental Protection Agency (EPA) and many other countries' government
40	departments ⁹⁻¹¹ .
41	As one of the long-chain or high-molecular-weight PAEs family, DEHP has been
42	the most commonly used as plasticizer and additive ¹² . However, DEHP is a known
43	reproductive and developmental toxicant at high doses in living species ¹³ . In recent
44	years, numerous biomonitoring study (>85%) show that significant abundant of

Analytical Methods Accepted Manuscript

45 DEHP is migrated from foodstuff to the human bodies in daily life, and then makes

46 harmful affection on human's health and safety $^{14-16}$. Actually, beverages occupies a

- 47 large proportion in the diet to maintain human life. Nevertheless, little data is
- 48 available on the pollution levels and the residual concentrations of DEHP in
- 49 beverages for our study region: Shanghai, China. Hence, it is an enormous important
- 50 for monitoring DEHP in beverages in Shanghai, China.

51	The determination of DEHP in various environmental matrixes including bevera
52	ges has been largely based on chromatographic analysis, such as GC-MS ¹⁷ , gas
53	chromatography-flame ionization detection (GC-FID) ¹⁸ , gas chromatography-low
54	resolution-mass spectrometry with electron impact ionization (GC-EI-MS) ¹⁹ , gas
55	chromatography-electron capture detector (GC-ECD) ²⁰ , high performance liquid
56	chromatography (HPLC) ²¹ , liquid chromatography-mass spectrometry (LC-MS) ²² ,
57	liquid chromatography-photodiode array detector (LC-DAD) ²³ , etc. Although all the
58	above instrument analysis methods are certainly suitable and accurate for DEHP
59	analysis in all sorts of environmental samples, these instruments has much more
60	disadvantages, <i>i.e.</i> generally time-consuming, complex and labor-intensive sample
61	pretreatment procedures, expensive instrumental detection analysis system, and more
62	skill to operation, which restrict their widespread application for rapid determination
63	of environmental contaminants.
64	However, ELISA which is based on the principle of molecular biology, is a rapid,
65	easy-to-operation, cost-effective and reliable screening methods for determination of
66	environmental contaminants in environmental samples, and has become increasingly
67	prevalent and far-reaching ²⁴⁻²⁶ . In the meantime, some ELISA methods had been used
68	for detecting PAEs ²⁷⁻²⁹ . To improve the sensitivity of ELISA, chemiluminescence
69	immunoassay (CL-ELISA), fluorescence-enzyme immunoassay (FL-ELISA) and BA-
70	ELISA have been developed based on traditional ELISA assays for detecting
71	environmental contaminants ³⁰⁻³² . Among these assay, BA-ELISA can reduce the
72	nonspecific reaction with reagents because of higher affinity and specificity between

Page 5 of 32

Analytical Methods

73	streptavidin and biotin ³³ . Besides, BA-ELISA has 8-fold higher sensitivity than the
74	traditional competitive ELISA using the same antibody and coating antigen ³⁴ .
75	Therefore, in this study, a highly specific, rapid and sensitive indirect
76	competitive BA-ELISA has been established for the detection of DEHP in beverages.
77	Firstly, a specific polyclonal antibody targeting DEHP was obtained based on optimal
78	immunization primarily. Subsequently, to reduce background interference, several
79	physiochemical factors that influence assay performance, such as optimal coupling
80	concentration of DEHP coating antigen and biotinylated pAb-DEHP (Bio-pAb-
81	DEHP), incubation time, blocking solution, the concentration of streptavidin-
82	horseradish peroxidase (SA-HRP), pH of the buffer, ionic strength and organic
83	solvent were studied and optimized. Under the optimized conditions, the proposed
84	BA-ELISA immunoassay was implemented to determine DEHP in beverages sampled
85	from Auchan (China) investment Co. Ltd in Shanghai, China. Finally, the BA-ELISA
86	results about DEHP in beverages were further compared with those by GC-MS
87	analysis.
88	2 Materials and methods

89 2.1. Reagents and Solutions

90 The standard of DMP, DEP, DPrP, DBP, DIBP, DEHP, DINP (100.00%) were
91 purchased from Accustandard, Inc (New Haven, Connecticut, USA). The organic
92 materials for DEHP hapten synthesis were purchased from J&K Chemical (Beijing,
93 China). Biotinylated N-hydroxysuccinimide ester (BNHS), freund's complete
94 adjuvant (CFA) and freund's incomplete adjuvant (IFA) were purchased from Sigma-

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

95	Aldrich Co. LLC (St. Louis, MO, USA). Dimethyl sulfoxide (DMSO), dimethyl
96	formamide (DMF), 25% glutaraldehyde solution, ammonium sulfate, coomassie
97	brilliant blue G250, Tween 20, NaHCO ₃ , Na ₂ CO ₃ , KCl, NaCl, Na ₂ HPO ₄ ,
98	KH ₂ PO ₄ 12H ₂ O, 3, 3', 5, 5'-tetramethylbenzidine (TMB), hydrogen peroxide (H ₂ O ₂)
99	and polyethylene glycol 20,000 (PEG 20,000) were purchased from Sinopharm
100	Chemical Reagent Co. Ltd. (Shanghai, China). Bovine serum albumin (BSA),
101	Ovalbumin (OVA), and SA-HRP was purchased from Sangon Co. Ltd. (Shanghai,
102	China). All reagents were of analytical grade unless specified otherwise. The details
103	of the buffers and solutions were described in the electronic supplementary
104	information (ESI). All animal studies were performed in compliance with the relevant
105	laws and the institutional guidelines, and the institutional committee that has approved
106	the experiments.
107	2.2. Materials and instruments
108	Hapten was purified through column chromatography using silica gel (40 μ m
109	average particle size) from Shanghai Sanpont Co. Ltd. (Shanghai, China). Fourier
110	transform infrared spectrometry was performed on a Nicolet 6700 instrument
111	(Thermo Fisher Scientific, Inc., USA). The ¹ H Nuclear Magnetic Resonance (NMR)
112	Spectrometer was an Avance III 400MHz instrument (Bruker, Inc., Switzerland) with
113	CDCl ₃ solution. Ultraviolet-visible (UV-vis) spectra were obtained on a DU-800
114	spectrophotometer (Beckman Coulter, Inc., Brea, CA). Ultra-pure water used was
115	prepared using a Milli-Q System (18.2 k Ω) (Millipore, Bedford, MA, USA).
446	Debuttures of well migratites along were available of from Son on Distach Co. 14d

Analytical Methods

117	(Shanghai, China). Immunoassay absorbance was measured with a Multiskan
118	photometer in dual wavelength mode (450-630 nm) purchased from Thermo
119	LabSystems (Vantaa, Finland). GC-MS analysis was performed on GCMS-QP2010
120	Gas Chromatography and Mass Spectrometer (Shimadzu Scientific Instruments, Inc.,
121	Japan).
122	2.3. Synthesis of DEHP hapten
123	DEHP molecules do not contain functional groups that can connect with proteins
124	directly. Therefore, DEHP hapten must be synthesized through esterification and
125	reduction firstly as Fig.1 showed. The results of the hapten synthesis and
126	characterization are given below.
127	Fig. 1
128	Production of Di-(2-ethyl hexyl) 4-nitrophthalate (4-DEHNP): 4-Nitrophthalic
129	acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65
129 130	acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65 mL of concentrated sulfuric acid was added. The mixture was refluxed for 6 hours at
129 130 131	acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65 mL of concentrated sulfuric acid was added. The mixture was refluxed for 6 hours at 120 °C, and the solvent was evaporated under reduced pressure. The oily residue was
129 130 131 132	acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65 mL of concentrated sulfuric acid was added. The mixture was refluxed for 6 hours at 120 °C, and the solvent was evaporated under reduced pressure. The oily residue was washed with ice-water mixtures and then a yellow oily liquid was obtained.
129 130 131 132 133	 acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65 mL of concentrated sulfuric acid was added. The mixture was refluxed for 6 hours at 120 °C, and the solvent was evaporated under reduced pressure. The oily residue was washed with ice-water mixtures and then a yellow oily liquid was obtained. Subsequently, the yellow oily liquid was washed with 10% Na₂CO₃ solution until this
129 130 131 132 133 134	 acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65 mL of concentrated sulfuric acid was added. The mixture was refluxed for 6 hours at 120 °C, and the solvent was evaporated under reduced pressure. The oily residue was washed with ice-water mixtures and then a yellow oily liquid was obtained. Subsequently, the yellow oily liquid was washed with 10% Na₂CO₃ solution until this washing solutions turned colorless. After the crude product was recrystallized from
129 130 131 132 133 134 135	 acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65 mL of concentrated sulfuric acid was added. The mixture was refluxed for 6 hours at 120 °C, and the solvent was evaporated under reduced pressure. The oily residue was washed with ice-water mixtures and then a yellow oily liquid was obtained. Subsequently, the yellow oily liquid was washed with 10% Na₂CO₃ solution until this washing solutions turned colorless. After the crude product was recrystallized from cold ethanol, the resulting 19.2 g 4-DEHNP was obtained, C₂₄H₃₇NO₆, m.w.: 435.55,
129 130 131 132 133 134 135 136	 acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65 mL of concentrated sulfuric acid was added. The mixture was refluxed for 6 hours at 120 °C, and the solvent was evaporated under reduced pressure. The oily residue was washed with ice-water mixtures and then a yellow oily liquid was obtained. Subsequently, the yellow oily liquid was washed with 10% Na₂CO₃ solution until this washing solutions turned colorless. After the crude product was recrystallized from cold ethanol, the resulting 19.2 g 4-DEHNP was obtained, C₂₄H₃₇NO₆, m.w.: 435.55, yield: 92.8%. IR (KBr) v (cm⁻¹): 3048.89 (C-H, Ar stretching vibration), 2928.61,
129 130 131 132 133 134 135 136 137	 acid (10.0 g, 47.5 mmol) was dissolved in 44.6 mL of 2-ethyl hexanol and then 1.65 mL of concentrated sulfuric acid was added. The mixture was refluxed for 6 hours at 120 °C, and the solvent was evaporated under reduced pressure. The oily residue was washed with ice-water mixtures and then a yellow oily liquid was obtained. Subsequently, the yellow oily liquid was washed with 10% Na₂CO₃ solution until this washing solutions turned colorless. After the crude product was recrystallized from cold ethanol, the resulting 19.2 g 4-DEHNP was obtained, C₂₄H₃₇NO₆, m.w.: 435.55, yield: 92.8%. IR (KBr) v (cm⁻¹): 3048.89 (C-H, Ar stretching vibration), 2928.61, 2860.47, 2732.86 (C-H stretching vibration), 1731.20 (C=O absorption band),
	 118 119 120 121 122 123 124 125 126 127 128

stretching vibration), 1412.61 (d-O-CH₂CH(CH₂CH₃)CH₂CH₂CH₂- absorption band),
1278.95, 1128.22 (C-O-C absorption band), 854.03 (C-H, Ar plane bending
vibration).

Production of Di-(2-ethyl hexyl) 4-aminophthalate (4-DEHAP): 4-DEHNP (2.0 g, 4.6 mmol) was dissolved in 230 mL of benzene, and 2.8 g of purified zinc dust was added. Then 8.2 mL of concentrated hydrochloric acid was added in portions. After stirring for 15 minutes at room temperature, another 2.8 g of zinc dust was added and the mixture was stirred at room temperature for 12 hours. Then, 280 mL of cold water was added to the reaction mixture and the mixture was neutralized with 1 mol L^{-1} NaOH solution. The mixture was transferred to a separatory funnel and the benzene layer was removed later. The aqueous layer was extracted with benzene. The combined benzene extracts were washed with water and dried over anhydrous sodium sulfate. After evaporation under vacuum, the pale yellow crude solid was obtained and purified by silica gel column chromatography (n-hexane : acetic acid = 15:1) to give 1.23 g 4-DEHAP, C₂₄H₃₉NO₄, m.w.: 405.57, yield: 66.1%, and m.p.: 34-36 °C. IR (KBr) v (cm⁻¹): 3473.78, 3376.37 (-NH₂ stretching vibration), 2958.83, 2930.61, 2873.27, 2860.21 (C-H stretching vibration), 1714.16 (C=O absorption band), 1603.78, 1569.83, 1382.04 (C=C skeletal vibration), 1463.19 (d-OCH₂-CH(CH₂CH₃) -CH₂-CH₂-CH₂- absorption band), 1280.38, 1127.72 (C-O-C absorption band), 1628.00, 835.80 (C-H, Ar plane bending vibration). ¹H-NMR (CDCl₃): δ 7.68 (1H, d, ArH), 7.24 (1H, d, ArH), 6.76 (1H, dd, 1H), 4.19 (2H, q, -NH₂), 4.14 (2H, t, -O-CH₂), 4.12 (2H, t, -O-CH₂), 1.64 (2H, m, O-CH₂-CH-), 1.62-1.04 (16H, m, O-CH₂-

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
1 <u>-</u>	
40	
40	
47	
48	
49	
50	
51	
52	
52	
ວ 3	
54	
55	
56	
57	
58	
50	
29	
60	

161	CH(CH ₂ CH ₃)-CH ₂ -CH ₂ -CH ₂ -), 0.95-0.87 (12H, t, O-CH ₂ -CH(CH ₂ CH ₃)-CH ₂ -CH ₂ -CH ₂ -
162	CH ₂ -) ppm.
163	2.4. Preparation of immunogen and coating antigen
164	As a contact portion between hapten and carrier protein, linking arm could
165	become an antigenic determinant to determine the specificity of conjugating with
166	antibody ³⁵ . As shown in Fig.1, the diazotization method and the glutaraldehyde
167	method were used for preparing immunogen (BSA-DEHP) and coating antigen
168	(OVA-DEHP), respectively (see ESI). UV-vis spectrophotometer was used to identify
169	all conjugates, and then the coupling ratios were estimated based on mole absorbance
170	ε and calculated using the following equation ^{36,37} :
171	$Coupling ratio = \frac{\epsilon_{conjugate} - \epsilon_{protein}}{\epsilon_{hapten}} = \frac{(OD_{Conjugate} - OD_{protein}) \times C_{hapten} \times M_{protein}}{OD_{hapten} \times M_{hapten} \times C_{protein}} $ (1)
172	2.5. Preparation of Bio-pAb-DEHP
173	Rabbit polyclonal anti-DEHP antibodies (pAb-DEHP) were prepared as follows:
174	two male New Zealand white rabbits were immunized with BSA-DEHP through
175	subcutaneous and intramuscular injections with the immunogen. The initial
176	immunisation was performed by injecting 1.0 mg of BSA-DEHP dissolved in 0.5 mL
177	normal saline and emulsified with 0.5 mL of CFA. Twenty days after the injections,
178	the rabbits were boosted six times at two week intervals by injecting a solution of 1.0
179	mg of the immunogen dissolved in 0.5 mL normal saline and emulsified with 0.5 mL
180	of IFA. The serum titer was determined by ELISA. After antiserum titer outreached
181	60,000 with immunization at 3 months, pAb-DEHP were separated and purified from

182 rabbit serum through ammonium sulfate precipitation method, and subsequently was

dialyzed against PBS for 5 d, freeze-dried and stored at -20 °C.

Bio-pAb-DEHP were prepared as follows: 5.0 mg of pAb-DEHP was dissolved in CBS at the concentration of 1.0 mg mL⁻¹. The antibody solution was mixed with 1.0 mg mL⁻¹ BNHS in DMSO in the mass ratio of 1:10. The mixture was stirred for 4 h at room temperature and then dialyzed against PBS for 3 d, and was stored at -20 C. 2.6. Heterologous indirect competitive BA-ELISA Heterologous indirect competitive ELISA, based on the immobilisation of coating antigens, was performed in 96-well microplates as follows: the microplates were coated with the coating antigen in 100 µL of CBS overnight at 4 °C. After three times washing (200 μ L/tube of PBST), the unbound active sites were blocked with μ L/tube of blocking reagent, and were incubated at 37 °C for 60 min. After a second washing step, the DEHP standard or sample (50 µL/tube) and Bio-pAb-DEHP (50 μ L/tube) were added and the mixture was incubated for 60 min at 37 °C. After another washing step to remove unbound Bio-pAb-DEHP, SA-HRP (dilution 1:1000, μ L/tube) was added and the mixture was incubated for 60 min at 37 °C. After an additional five times washing, 100 µL of TMB substrate solution was added. The enzymatic reaction was stopped by adding 50 μ L of 2 mol L⁻¹ sulphuric acid after 15 min sufficient colour development. The absorbance of each well was immediately recorded in dual-wavelength mode (450 nm as test and 630 nm as the reference). The standard curve of BA-ELISA is determined by plotting inhibition (%) against the logarithm of the standard concentration of DEHP and negative control, and the linear range was used for quantification of DEHP concentration in the

Analytical Methods

205samples. The IC 50, the concentration at which a compound inhibited a206phenomenon by 50%, was used to evaluate the sensitivity of the method207Analogously, the limit of detection (LOD) is evaluated in terms of IC11208Inhibition (%) = $\frac{(A_{max} - A_{min}) - (A_{5} - A_{min})}{A_{max} - A_{min}} \times 100\%$ (2)209where A_{max} was the absorbance in the absence of DEHP, A_{min} was the210the blank sample, and A_{s} was the absorbance of DEHP at the standard2112.7. Cross-reactivity212The specificity of the optimized BA-ELISA assay was evaluated 1213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215CR (%) = $\frac{IC_{50} of DEHP}{IC_{50} of analogues} \times 100$ (3)2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands to220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study was222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two to225for the BA-ELISA detection and the other for GC-MS analysis.	
206phenomenon by 50%, was used to evaluate the sensitivity of the method207Analogously, the limit of detection (LOD) is evaluated in terms of IC10208Inhibition (%) = $\frac{(A_{max} - A_{min}) - (A_{s} - A_{min})}{A_{max} - A_{min}} \times 100\%$ (2)209where A_{max} was the absorbance in the absence of DEHP, A_{min} was the210the blank sample, and A_{s} was the absorbance of DEHP at the standard2112.7. Cross-reactivity212The specificity of the optimized BA-ELISA assay was evaluated 1213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215CR (%) = $\frac{IC_{50} of DEHP}{IC_{50} of analogues} \times 100$ (3)2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands to220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study was222with acetone for at least 30 min, and then were washed with hexane tha223the blanks, standards, spiked samples and real samples were undergood224extraction method (see ESI). The treated sample was divided into two second states of the GC-MS analysis.	d a particular
207Analogously, the limit of detection (LOD) is evaluated in terms of IC11208Inhibition (%) = $\frac{(A_{max} - A_{min}) - (A_s - A_{min})}{A_{max} - A_{min}} \times 100\%$ (2)209where A_max was the absorbance in the absence of DEHP, A_min was the210the blank sample, and A_s was the absorbance of DEHP at the standard2112.7. Cross-reactivity212The specificity of the optimized BA-ELISA assay was evaluated I213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215CR (%) = $\frac{IC_{50} \text{ of DEHP}}{IC_{50} \text{ of analogues}} \times 100$ (3)2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands t220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study was222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two second states of the other for GC-MS analysis.	ethods.
208Inhibition (%) = $\frac{(A_{max} - A_{min}) - (A_x - A_{min})}{A_{max} - A_{min}} \times 100\%$ (2)209where A_{max} was the absorbance in the absence of DEHP, A_{min} was the210the blank sample, and A_x was the absorbance of DEHP at the standard2112.7. Cross-reactivity212The specificity of the optimized BA-ELISA assay was evaluated 1213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215CR (%) = $\frac{IC_{50}$ of DEHP2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands to220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study was222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two to225for the BA-ELISA detection and the other for GC-MS analysis.	IC_{10} .
209where A_{max} was the absorbance in the absence of DEHP, A_{min} was the210the blank sample, and A_s was the absorbance of DEHP at the standard2112.7. Cross-reactivity212The specificity of the optimized BA-ELISA assay was evaluated 1213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215 $CR (\%) = \frac{IC_{50} \text{ of DEHP}}{IC_{50} \text{ of analogues}} \times 100 (3)$ 2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands t220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study was222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two for the BA-ELISA detection and the other for GC-MS analysis.	(2)
210the blank sample, and As was the absorbance of DEHP at the standard2112.7. Cross-reactivity212The specificity of the optimized BA-ELISA assay was evaluated 1213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215 $CR (\%) = \frac{IC_{50} \text{ of DEHP}}{IC_{50} \text{ of analogues}} \times 100 (3)$ 2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands to220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study was222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two standards225for the BA-ELISA detection and the other for GC-MS analysis.	the absorbance of
2112.7. Cross-reactivity212The specificity of the optimized BA-ELISA assay was evaluated i213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215 $CR (\%) = \frac{IC_{50} \text{ of DEHP}}{IC_{50} \text{ of analogues}} \times 100 (3)$ 2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands t220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study was222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two is225for the BA-ELISA detection and the other for GC-MS analysis.	ard concentration.
212The specificity of the optimized BA-ELISA assay was evaluated213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215 $CR (\%) = \frac{1C_{50} \text{ of DEHP}}{1C_{50} \text{ of analogues}} \times 100 (3)$ 2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands t220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study was222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two is225for the BA-ELISA detection and the other for GC-MS analysis.	
213cross-reactivity (CR) of the Bio-pAb-DEHP using a group of DEHP st214analogues. The CR values were calculated as follows:215 $CR (\%) = \frac{IC_{50} \text{ of DEHP}}{IC_{50} \text{ of analogues}} \times 100 (3)$ 2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands to220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study war222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two to225for the BA-ELISA detection and the other for GC-MS analysis.	ted by measuring
214analogues. The CR values were calculated as follows:215 $CR (\%) = \frac{IC_{50} \text{ of DEHP}}{IC_{50} \text{ of analogues}} \times 100 (3)$ 2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands t220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study war222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two for the BA-ELISA detection and the other for GC-MS analysis.	P structural
215 $CR(\%) = \frac{IC_{50} \text{ of DEHP}}{IC_{50} \text{ of analogues}} \times 100 (3)$ 2162.8. Sample preparation217All the beverages were purchased from Auchan (China) investme218Shanghai, China. Further details of these samples were provided in the219Besides, these samples collected in this study were all popular brands t220wide margin in Shanghai market.221To avoid PAEs contamination, all glassware used in the study war222with acetone for at least 30 min, and then were washed with hexane the223the blanks, standards, spiked samples and real samples were undergond224extraction method (see ESI). The treated sample was divided into two second to the BA-ELISA detection and the other for GC-MS analysis.	
 216 2.8. Sample preparation 217 All the beverages were purchased from Auchan (China) investme 218 Shanghai, China. Further details of these samples were provided in the 219 Besides, these samples collected in this study were all popular brands t 220 wide margin in Shanghai market. 221 To avoid PAEs contamination, all glassware used in the study was 222 with acetone for at least 30 min, and then were washed with hexane the 223 the blanks, standards, spiked samples and real samples were undergond 224 extraction method (see ESI). The treated sample was divided into two since the BA-ELISA detection and the other for GC-MS analysis. 	
 All the beverages were purchased from Auchan (China) investme Shanghai, China. Further details of these samples were provided in the Besides, these samples collected in this study were all popular brands t wide margin in Shanghai market. To avoid PAEs contamination, all glassware used in the study was with acetone for at least 30 min, and then were washed with hexane the the blanks, standards, spiked samples and real samples were undergone extraction method (see ESI). The treated sample was divided into two for the BA-ELISA detection and the other for GC-MS analysis. 	
 Shanghai, China. Further details of these samples were provided in the Besides, these samples collected in this study were all popular brands t wide margin in Shanghai market. To avoid PAEs contamination, all glassware used in the study wat with acetone for at least 30 min, and then were washed with hexane the the blanks, standards, spiked samples and real samples were undergone extraction method (see ESI). The treated sample was divided into two signal for the BA-ELISA detection and the other for GC-MS analysis. 	tment Co. Ltd. in
 Besides, these samples collected in this study were all popular brands t wide margin in Shanghai market. To avoid PAEs contamination, all glassware used in the study was with acetone for at least 30 min, and then were washed with hexane the the blanks, standards, spiked samples and real samples were undergone extraction method (see ESI). The treated sample was divided into two for the BA-ELISA detection and the other for GC-MS analysis. 	the Table 3.
 wide margin in Shanghai market. To avoid PAEs contamination, all glassware used in the study was with acetone for at least 30 min, and then were washed with hexane the the blanks, standards, spiked samples and real samples were undergone extraction method (see ESI). The treated sample was divided into two s for the BA-ELISA detection and the other for GC-MS analysis. 	ids that leaded by
To avoid PAEs contamination, all glassware used in the study wa with acetone for at least 30 min, and then were washed with hexane the the blanks, standards, spiked samples and real samples were undergone extraction method (see ESI). The treated sample was divided into two for the BA-ELISA detection and the other for GC-MS analysis.	
 with acetone for at least 30 min, and then were washed with hexane the the blanks, standards, spiked samples and real samples were undergone extraction method (see ESI). The treated sample was divided into two to for the BA-ELISA detection and the other for GC-MS analysis. 	was immersed
 the blanks, standards, spiked samples and real samples were undergond extraction method (see ESI). The treated sample was divided into two s for the BA-ELISA detection and the other for GC-MS analysis. 	e three times. All
extraction method (see ESI). The treated sample was divided into twofor the BA-ELISA detection and the other for GC-MS analysis.	gone similar
for the BA-ELISA detection and the other for GC-MS analysis.	wo fractions: one
226 3. Results and discussion	

a

Analytical Methods Accepted Manuscript

227	3.1. Characterization of immunogen, coating antigen, and antibody
228	From the UV spectrum (Fig.2), several characteristic absorption peaks of DEHP
229	hapten, protein, and conjugates appeared at 286 and 309 nm (for hapten), 227 and 278
230	nm (for BSA), and 234, 241, and 268 nm (for OVA). However, the characteristic
231	peaks of BSA-DEHP and OVA-DEHP were shown at 329 nm and 343 nm,
232	respectively. The results revealed that the DEHP hapten was conjugated into the
233	protein successfully. Moreover, the coupling ratio was calculated using the Equation.1
234	above. The coupling ratio was 20 for BSA-DEHP and was 36 for OVA-DEHP.
235	Fig.2
236	The immunogen BSA-DEHP was injected into New Zealand White rabbits,
237	which improved immunity for 15 weeks, with the highest antibody titer at 1:150,000.
238	The concentration of immunogen, coating antigen and Bio-pAb-DEHP were
239	determined by coomassie blue staining, <i>i.e.</i> 4.14 mg mL ⁻¹ , 1.09 mg mL ⁻¹ and 13.17
240	mg mL ⁻¹ , respectively.
241	3.2 Optimisation of BA-ELISA
242	To develop a sensitive immunoassay method, several parameters were optimized.
243	Firstly, the concentrations of coating antigen and Bio-pAb-DEHP were determined
244	using a checkerboard assay. In this immunoassay, different blocking solutions, such as
245	gelatin, OVA, skimmed milk powder (SMP), PEG 20,000, and PVA, were dissolved in
246	PBS and their background values were compared. Otherwise, the effects of different

solvent matrix effects, were determined from the DEHP standards and the relative

ionic strengths, pH in PBS buffer, concentrations of SA-HRP, incubation time and

Page 13 of 32

Analytical Methods

249	antibody titers in PBS. All determinations were performed repeat eight times and the
250	mean absorbance values were calculated. The IC_{50} and the maximum absorbance (A_{max})
251	were used to assess the optimum conditions for the $assays^{38}$.
252	As the primary influencing factor, the optimum concentrations for Bio-pAb-
253	DEHP and the coating antigen were used to improve the sensitivity of the
254	immunoassay (details seen in Table 1). According to checkerboard titration, the
255	optimum reagent concentrations were those that resulted in the maximum absorbance
256	(A_0) of approximately 1.0 and the lowest antibody and coating antigen concentrations.
257	The optimal concentrations of OVA-DEHP was 2.03 μ g mL ⁻¹ and Bio-pAb-DEHP
258	was at 1:500 dilution (1.95 μ g mL ⁻¹).
259	Table 1
260	Given that blocking is advantageous to eliminate unoccupied sites on the tubes, so
261	different blocking solutions, such as gelatin (0.1%, 0.5% and 1%), 1% OVA, 1% SMP,
262	1% PEG20,000, 1% PVA in PBS were compared (as showed in Fig.3a). An optimum
263	blocking reagent should achieve the minimal background interference, <i>i.e.</i> the lowest
264	absorbance value. 0.5% gelatin blocking solution achieved the minimal background
265	interference (0.075). The background values of the other blocking solutions as follows:
266	0.1% gelatin (0.085), 1% gelatin (0.082), 1% OVA (0.109), 1% SMP (0.094), 1%
267	PEG20,000 (0.135), 1% PVA (0.097). Therefore, 0.5% gelatin was selected as the
268	blocking solution in the following experiments
	blocking solution in the following experiments.
269	Fig. 3

Analytical Methods Accepted Manuscript

Immunoassay performance was determined under different ionic strengths (NaCl

Analytical Methods Accepted Manuscript

271	concentrations ranging from 0.05 mol L^{-1} to 2.00 mol L^{-1} ; showed in Fig.3b). A _{0max}
272	decreased from 1.264 to 0.462 with increasing salt concentration. Salt concentrations
273	lightly affected the sensitivity, with the IC ₅₀ ranging from 1.913 μ g L ⁻¹ to 6.986 μ g L ⁻¹
274	¹ . The lowest IC ₅₀ (1.913 μ g L ⁻¹) was obtained at an ionic strength of 0.10 mol L ⁻¹ .
275	Hence, a salt concentration of 0.10 mol L^{-1} was selected for the buffer in the
276	subsequent assay.

The antibody-antigen binding reaction is under a dynamic balance, so this reaction is characterized by weak intermolecular bonds, and is easily affected by pH. So, the pH of optimum assay buffer was adjusted to 5.00-9.00. It was found that the pH had an insignificant effect on the sensitivity of the assay (showed in Fig.3c). The A_{0max} values decreased with increasing pH, the IC₅₀ and A_{0max} varied in the ranges of 1.253-37.799 μ g L⁻¹ and 0.684-1.362 A.U., respectively. The best combination of IC₅₀ and A_{0max} (IC₅₀ = 1.253 µg L⁻¹, A_{0max} =0.987), was obtained at pH 7.40. Thus, pH 7.40 was used in the further immunoassay.

In addition, the dilutions of SA-HRP (500, 1000, 1500, 2000 and 3000) were investigated, and then the dilution of 1000 was determined (IC₅₀=0.813 μ g L⁻¹, A_{0max}=1.095, showed in Fig.3d). Furthermore, immunoassay performance was also determined by different incubation time (incubation times ranging from 15 to 90 min). From the Fig.3d, we can see that although A_{0max} value increased with incubation time increasing, the lowest IC₅₀ (0.991 μ g L⁻¹) was obtained at 60 min. Hence, an incubation time of 60 min was selected for the competitive reaction between antigen and antibody. Considering that different organic solvents' concentrations make a difference in

Analytical Methods

293	the matrix effect about resulting interference, so three water miscible organic solvents
294	were added into immunoassay system (showed in Fig.3f). These results indicated that
295	lower amounts of organic solvent (< 5%) negatively affected the performance of the
296	assay, and the PBS solution containing 5% DMSO (v/v) which obtained the lowest IC $_{50}$
297	value 0.809, was used to improve the analyte solubility in the future assay.
298	3.2. Sensitivity and stability of BA-ELISA
299	Under optimal conditions, a series of diluted concentrations of DEHP standard
300	sample (0 µg L ⁻¹ , 0.001 µg L ⁻¹ , 0.01 µg L ⁻¹ , 0.05 µg L ⁻¹ , 0.1 µg L ⁻¹ , 0.25 µg L ⁻¹ , 1
301	μ g L ⁻¹ , 2.5 μ g L ⁻¹ , 5 μ g L ⁻¹ , 10 μ g L ⁻¹ , 25 μ g L ⁻¹ , 50 μ g L ⁻¹) were reacted using the
302	indirect competition BA-ELISA to construct standard curve (showed in Fig.4).
303	Correlation coefficient of DEHP standard curve was 0.9850; besides, the slope and
304	intercept were 21.57 and 56.01 respectively, <i>i.e.</i> $Y = 21.57LogC_{DEHP} + 56.01$. The
305	linear working range, which is determined as the concentration range that causes 20 -
306	80% color inhibition ³⁴ , was 0.021-12.948 μ g L ⁻¹ . The LOD of the DEHP assay,
307	represented as IC ₁₀ , was 0.0074 μ g L ⁻¹ ; and the IC ₅₀ , which is a key criterion for
308	evaluating the sensitivity of BA-ELISA, was 0.526 μ g L ⁻¹ .
309	Fig. 4
310	3.3. Specificity of BA-ELISA
311	The specificity of immunoassay can be generally evaluated in the ability of the
312	antibodies to combine with only the target molecule, <i>i.e.</i> cross-reactivity (CR)
313	indirectly. The CR values were evaluated using some similar structure analogues

Analytical Methods Accepted Manuscript

about DEHP, such as dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl

Analytical Methods Accepted Manuscript

1	
2	
3	
4	
5	
5	
07	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
20	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
50	
54	
50	
00	
5/	
58	
59	
60	

315	phthalate (DPrP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), disononyl
316	phthalate (DINP), 4-DEHNP, 4-DEHAP, and were calculated using Equation 3. The
317	chemical structures of these analogues and the CR results were shown in Table 2. 4-
318	DEHNP and 4-DEHAP showed higher CR values (<i>i.e.</i> 15.68% and 19.45%,
319	respectively), because 4-DEHNP and 4-DEHAP were DEHP derivative. But 4-
320	DEHNP and 4-DEHAP are not present in beverage samples. In all cases, there was a
321	low CRs (below 7%) between DEHP and other structurally similar compounds,
322	indicated that the pAb-DEHP exhibited high affinity and was suitable for the specific
323	detection of DEHP at low levels.
324	Table 2
325	3.4. Determination of DEHP in beverages and recovery tests
326	The proposed BA-ELISA was used to detect DEHP residues in beverages
327	collected from Auchan (China) investment Co. Ltd. in Shanghai, China. DEHP was
328	found in all the samples, and the concentrations ranged from 1.18 $\pm 0.052~\mu g~L^{\text{-1}}$ to
329	40.68±0.126 μ g L ⁻¹ (Table 3). The concentrations of DEHP in beer and white liquor
330	were much higher than other samples. This is because wine can enhance mellow and
331	soft taste after the added plasticizers. These samples were also tested on GC-MS to
332	evaluate the precision of BA-ELISA. In a general, the BA-ELISA results were
333	slightly higher than the GC-MS results. This difference may be caused by the non-
334	specific absorbance of reagents used in the method, including Bio-pAb-DEHP and
335	SA-HRP In addition polyclonal antibody had cross-reactivity for other PAEs present

337	ELISA-derived concentrations.
338	Table 3
339	The recovery of the spiked samples and the CV were calculated to evaluate the
340	accuracy and precision of BA-ELISA. Four samples (samples B1, M1, W1 and W2)
341	were spiked with DEHP standard concentrations ranging from 0.05-100 μ g L ⁻¹ before
342	extraction. Moreover, the spiked samples were treated as described before, and then
343	were tested six times using BA-ELISA and GC-MS for comparison. Table 4 showed
344	that the average recoveries of BA-ELISA were ranged from 89.07% to 109.33%, the
345	CV was 5.97% to 10.68% (below 15%). Meanwhile, GC-MS showed recovery rates
346	of 89.25% to 108.89% and CVs of 2.71% to 4.74%.
347	Table 4
348	4. Conclusions
349	This study firstly developed a highly sensitive and effective indirect competitive
350	BA-ELISA for the rapid detection of DEHP in beverages on the basis of specific pAb-
351	DEHP. Several physicochemical factors that influenced the performance of proposed
352	BA-ELISA were studied and optimized. Under optimised conditions, the IC_{50} value
353	and the LOD of the assay were 0.526 μ g L ⁻¹ and 0.0074 μ g L ⁻¹ , respectively. This
354	established BA-ELISA could selectively determinate DEHP against a number of
355	structural analogues, with negligible cross-reactivity below 7%. The BA-ELISA was
356	used to detect the presence of DEHP in beverages, and satisfactory recoveries and
357	variation coefficient were achieved for DEHP from the spiked samples. These results
358	confirmed that this method would be a useful option for the sensitive and selective

1
Ζ
3
4
5
6
0
7
8
a
10
10
11
12
13
10
14
15
16
17
10
10
19
20
21
22
22
23
24
25
20
20
27
28
29
20
30
31
32
22
00
34
35
36
37
20
38
39
40
<u></u> Δ1
40
42
43
44
45
46
40
47
48
49
50
50
51
52
53
51
54
55
56
57
59

59 60 359 detection of DEHP in real environmental samples.

Analytical Methods

361 Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (Project No. 21177082), the Science and Technology Commission of Shanghai Municipality in China (Key Project of Fundamental Research No. 09JC1407600), Shanghai Jiao Tong University Science and Technology Innovation Special Fund Development projects, and Shanghai Jiao Tong University Innovation Fund for Postgraduates for their financial support. **Compliance with Ethics Requirements** In order to comply with the ethical requirements, all the authors of this article declare that they have no conflict of interest. We declare that the laboratory animals cared or used in the experiment were following the institutional and national guidelines. And this article does not contain any studies with humans.

Analytical Methods Accepted Manuscript

3			
4 5	374	Ref	ferences
6	375	1.	J. Autian, Environ. Health Persp., 1973, 4, 3-26.
7	376	2.	C. A. Stales, D. R. Peterson, T. F. Parkerton and W. J. Adams, <i>Chemosphere.</i> , 1997, 35 , 667-749.
8 9	377	3.	G. Xu, F. Li and O. Wang, Sci. Total Environ., 2008, 393 , 333-340.
10	378	4.	M. Wittassek and J. Angerer, Int. J. Androl., 2008, 31 , 131-138.
11	379	5.	Y. Guo, Z. Zhang, L. Liu, Y. Li, N. Ren and K. Kannan, J. Agr. Food Chem., 2012, 60 , 6913-6919.
12 13	380	6.	M. Matsumoto, M. Hirata-Koizumi and M. Ema, <i>Regul. Toxicol. Pharmacol.</i> , 2008, 50 , 37-49.
14	381	7.	P. Ventrice, D. Ventrice, E. Russo and G. De Sarro, <i>Environ, Toxicol, Pharmacol</i> , 2013, 36 , 88-96.
15	382	8.	E. Diamanti-Kandarakis, J. P. Bourguignon, L. C. Giudice, R. Hauser, G. S. Prins, A. M. Soto and
16 17	383		A. C. Gore, <i>Endocr. Rev.</i> , 2009, 30 , 293-342.
18	384	9.	European Communities, Off. J. Eur. Union L., 2005, 344, 40.
19	385	10.	U. S. EPA, EPA announces actions to address chemicals of concern, including phthalates: Agency
20 21	386		continues efforts to work for comprehensive reform of toxic substance laws., December, 2011.
22	387	11.	M. T. Wu, C. F. Wu, J. R. Wu, B. H. Chen, E. K. Chen, M. C. Chao, C. K. Liu and C. K. Ho.
23	388		Environ. Int., 2012, 44, 75-79.
24 25	389	12.	T. H. Yen, D. T. Lin-Tan and J. L. Lin, J. Formos. Med. Assoc., 2011, 110, 671-684.
26	390	13.	R. Kavlock, K. Boekelheide, R. Chapin, M. Cunningham, E. Faustman, P. Foster, M. Golub, R.
27	391		Henderson, I. Hinberg, R. Little, J. Seed, K. Shea, S. Tabacova and R. Tyl, <i>Reprod. Toxicol.</i> , 2002,
28 29	392		16 , 529-653.
30	393	14.	X. L. Cao, Compr. Rev. Food Sci. F., 2010, 9, 21-43.
31	394	15.	Y. Guo, Z. Zhang, L. Liu, Y. Li, N. Ren and K. Kannan, J. Agr. Food Chem., 2012, 60 , 6913-6919.
32 33	395	16.	K. Yano, N. Hirosawa, Y. Sakamoto, H. Katayama, T. Moriguchi, K. E. Joung, Y. Y. Sheen and K.
34	396		Asaoka, B. Environ. Contam. Tox., 2002, 68, 463-469.
35	397	17.	A. Schecter, M. Lorber, Y. Guo, Q. Wu, S. H. Yun, K. Kannan, M. Hommel, N. Imran, L. S.
37	398		Hynan, D. Cheng, J. A. Colacino and L. S. Birnbaum, Environ. Health Persp., 2013, 121, 473-
38	399		479.
39 40	400	18.	R. Batlle and C. Nerín, J. Chromatogr. A., 2004, 1045, 29-35.
40	401	19.	T. Fierens, K. Servaes, M. Van Holderbeke, L. Geerts, S. De Henauw, I. Sioen and G. Vanermen,
42	402		Food Chem. Toxicol., 2012, 50 , 2575-2583.
43 44	403	20.	K. Holadova, G. Prokupkova, J. Hajslova and J. Poustka, Anal. Chim. Acta, 2007, 582, 24-33.
45	404	21.	H. Kataoka, M. Ise and S. Narimatsu, J. Sep. Sci., 2002, 25, 77-85.
46	405	22.	Y. B. Luo, Q. W. Yu, B. F. Yuan and Y. Q. Feng, <i>Talanta</i> , 2012, 90, 123-131.
47 48	406	23.	B. D. Page and G. M. Lacroix, Food Addit. Contam., 1995, 12, 129-151.
49	407	24.	V. Lopez-Avila, J. Benedicto, C. Charan, R. Young and W. F. Beckert, Environ. Sci. Technol. 1995,
50	408		29 , 2709-2712.
51 52	409	25.	H.Y. Chen, H. S. Zhuang, G. X. Yang and X. L. Ji, Environ. Sci. Pollut. R., 2013, 20, 2244-2251.
53	410	26.	G. Yang, H. Zhuang, H. Chen and X. Ping, Anal. Methods., 2014, 6, 893-899.
54	411	27.	M. Zhang, Y. Cong, Y. Sheng and B. Liu, Anal. Biochem., 2010, 406, 24-28.
55 56	412	28.	M. Zhang, S. Liu, H. Zhuang and Y. Hu, Appl. Biochem. Biotech., 2012, 166, 436-445.
57	413	29.	M. Zhang, X. Yu, Y. Wang, Y. Hu and S. Liu, Food Anal. Method., 2013, 6, 1223-1228.
58	414	30.	M. C. Zhang, Q. E. Wang and H. S. Zhuang, Anal. Bioanal. Chem., 2006, 386, 1401-1406.
59 60	415	31.	M. C. Zhang, Q. E. Wang and H. S. Zhuang, Anal. lett., 2007, 40, 127-137.
00	416	32.	D. Bu, H. Zhuang, X. Zhou and G. Yang, <i>Talanta</i> , 2014, 120 , 40-46.

Analytical Methods

1 2			
3	417	33.	M. R. Blake and B. C. Weimer, Appl. Environ. Microbiol., 1997, 63, 1643-1646.
4 5	418	34.	L. Wang, Y. Zhang, X. Gao, Z. Duan and S. Wang, J. Agr. Food Chem., 2010, 58, 3265-3270.
6	419	35.	M. H. Goodrow and B. D. Hammock, Anal. Chim. Acta, 1998, 376, 83-91.
7	420	36.	D. Monroe, Anal. Chem., 1984, 56, 920A-931A.
8 9	421	37.	S. Z. Liu, D. H. Feng, M. J. Chen and C. F. Qian, Chinese Journal of Analytical Science, 2000, 16,
10	422		373-378.
11 12	423	38.	X. L. Hao, H. Kuang, Y. L. Li, Y. Yuan, C. F. Peng, W. Chen, L. B. Wang and C. L. Xu, J. Agric.
13	424		Food Chem., 2009, 57 , 3033-3309.
14	425		
15			
17			
18 19			
20			
21			
22			
24			
25 26			
27			
28			
29 30			
31			
32 33			
34			
35			
36 37			
38			
39 40			
41			
42			
43 44			
45			
46			

- 426 Table 1 Optimal concentrations of Bio-pAb-DEHP and OVA-DEHP.
- 427 Table 2 Cross-reactivity of Bio-pAb-DEHP with DEHP structural analogues.
- 428 Table 3 Concentrations of DEHP in milk and milk products by BA-ELISA and GC-MS.
- 429 Table 4 Recovery of DEHP detected by BA-ELISA and GC-MS in spiked milk and milk products.

2
3
1
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
24
21
22
23
24
27
25
26
27
28
20
29
30
31
32
22
33
34
35
36
37
57
38
39
40
41
10
42
43
44
45
16
40
47
48
49
50
50
51
52
53
54
57
55
56
57
58
00
50

60

431	Table 1 Optimal c	concentrations of Bio-pAb-DEHP	and OVA-DEHP.
-----	-------------------	--------------------------------	---------------

Dilutions of high nulstad nAh DEUD ⁴	The concentration of OVA-DEHP (µg mL ⁻¹)					
Diutions of bioinfylated pAD-DEHF —	40.57	20.28	8.11	4.06	2.03	1.02
100	1.485	1.311	1.294	1.198	1.249	1.288
200	1.258	1.212	1.048	1.111	1.092	1.166
500	0.887	0.895	0.981	0.996	1.035	0.897
1000	0.634	0.738	0.000	0.674	0.572	0.466
2000	0.534	0.556	0.507	0.478	0.437	0.406
3000	0.482	0.380	0.397	0.298	0.330	0.375
Blank	0.093	0.089	0.092	0.097	0.101	0.099

Note: ^a The concentration of biotinylated pAb-DEHP was 0.979 mg mL⁻¹.

433

Analogues	Structure	$IC_{50} \ (\mu g \ L^{-1})$	Cross-reactivity (
DEHP	CH2CH3 COOCH2CHCH2CH2CH2CH3 COOCH2CHCH2CH2CH2CH3 CH2CH3	0.526	100
DMP	COOCH ₃ COOCH ₃	7.547	2.03
DEP	COOCH ₂ CH ₃ COOCH ₂ CH ₃	7.708	3.73
DPrP	COOCH ₂ CH ₂ CH ₃ COOCH ₂ CH ₂ CH ₃	7.999	5.07
DBP	COOCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₂ CH ₃	5.360	4.63
DIBP	CH ₃ COOCH ₂ CHCH ₃ COOCH ₂ CHCH ₃ CH ₃	11.274	5.17
DINP	CH ₃ COOCH ₂ CH ₂	37.974	6.32
4-DEHNP	CH ₂ CH ₃ O ₂ N-COOCH ₂ CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ COOCH ₂ CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	3.024	15.68
4-DEHAP	CH2CH3 H2N COOCH2CHCH2CH2CH2CH3 COOCH2CHCH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH3	1.979	19.45

434 Table 2 Cross-reactivity of Bio-pAb-DEHP with DEHP structural analogues.

	G 1		Concentration (mean \pm SD) (μ g·L ⁻¹) (n	
	Samples	-	BA-ELISA	GC-MS
		B1	10.67±0.088	8.34±0.023
	Beer	B2	12.39±0.107	9.65±0.029
		B3	10.05±0.096	8.72±0.020
Beverages	Mineral water	M1	1.92±0.059	1.21±0.026
		M2	1.79±0.067	1.73±0.022
		M3	1.18±0.052	<lod< td=""></lod<>
	Tea flavored beverage	T1	1.22±0.039	0.98±0.011
		T2	1.38±0.051	1.06±0.015
		Т3	1.46±0.042	1.23±0.012
	White liquor	W1	40.68±0.126	38.77±0.037
		W2	22.82±0.114	20.05±0.026
		W3	17.95±0.099	15.86±0.033

440	Table 4 Recovery of DEHP	detected by BA-ELISA and	GC-MS in spiked beverages.
	2	2	1 0

			Sample concentration (µg·L ⁻¹)		Spiked	Average	
Samples		Level			Recovery % and CV % (n=6)		
_			BA-ELISA	GC-MS	$(\mu g \cdot L^{-1})$	BA-ELISA	GC-MS
	Beer			8.34	5	109.33±6.53	108.89±2.96
		B1	10.67		10	101.15±9.65	99.45±2.86
					20	95.28±7.42	88.73±2.71
	Mineral water				0.5	108.54±6.78	102.39±3.91
		M1	1.92	1.21	1	99.83±8.85	95.36±4.74
Davanagaa					5	92.34±7.96	89.25±2.86
Beverages					20	106.31±5.97	104.62±3.31
		W1	40.68	38.77	50	96.04±6.66	98.69±3.85
	White				100	89.07±10.68	93.96±4.06
	liquor				10	109.31 ± 7.56	106.195±2.98
		W2	22.82	20.05	20	100.86±5.35	98.36±4.33
					50	93.15±6.59	93.88±3.02

2 3 4	443	Figure Captions
5 6 7	444	
7 8 9	445	Fig.1.The synthesis of DEHP hapten, immunogen, coating antigen.
10 11 12	446	Fig.2. The UV spectra of DEHP hapten, protein and conjugates; absorbance value at Characteristic
13 14 15	447	peak, 329 nm: OD _{BSA-DEHP} =0.895, OD _{DEHP hapten} =0.783, OD _{BSA} =0.005; 343 nm: OD _{OVA-}
16 17 18	448	DEHP=0.816, OD _{DEHP hapten} =0.258, OD _{OVA} =0.149; C _{BSA} : 0.25 g L ⁻¹ , C _{OVA} : 0.28 g L ⁻¹ , C _{hapten} : 0.05
19 20 21	449	g L ⁻¹ ; protein and conjugate were dissolved in PBS buffer; hapten was dissolved in DMF.
22 23	450	Fig.3. Suitable operating conditions of the immunoassay method: (a) the blocking reagent, (b)
24 25 26	451	ionic strength in PBS buffer, (c) pH of buffer, (d) concentrations of SA-HRP, (e) incubation time,
27 28 29	452	and (f) the influence of different volume percentages of solvent on PBS buffer.
30 31	453	Fig.4. Standard curve for DEHP analyzed by BA-ELISA. The concentrations of DEHP were 0 μ g L ⁻
32 33 34	454	¹ , 0.001 μg L ⁻¹ , 0.01 μg L ⁻¹ , 0.05 μg L ⁻¹ , 0.1 μg L ⁻¹ , 0.25 μg L ⁻¹ , 1 μg L ⁻¹ , 2.5 μg L ⁻¹ , 5 μg L ⁻¹ , 10
35 36 37	455	μ g L ⁻¹ , 25 μ g L ⁻¹ , 50 μ g L ⁻¹ . The linear working range was from 0.021 μ g L ⁻¹ to 12.948 μ g L ⁻¹ . The
38 39	456	linear equation was $Y = 21.57 Log C_{DEHP} + 56.01$ (R ² =0.9850, n=16).
40 41 42	457	
42 43 44 45 46 47 48 49	458	

1		
2		
3		Gi ₂ Gi ₃ CH ₅ CH ₃ CH ₅ CH ₃
4		0, COOH divine Contraction and the Cooch, CHCH, CH, CH, CH, CH, CH, CH, CH, CH,
5		Հոչույ DEHP hapten Հոչույ ՀԱյՇԱյ ՀԱյՇԱյ ՀԱյՇԱյ
6		HZV COOCH/CHCH/CH/CH/CH, MC II/CH/CH/CH/CHCHCHCH/COOC H/ N=VCH/ MC/H/CH/CH/CH/CH/CH/CH/CH/CH/CH/CH/CH/CH/
7		CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ Immunogen CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃
8	450	$H_{2}N - \bigcup_{COOCH_{2}}COOCH_{2}CHCH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{4}CH_{3}C$
9	459	Ċŀŀ _i Cŀŀı, Ċŀŀ _i Cŀŀı, Coating antigen
10		
11	460	Fig.1. The synthesis of DEHP hapten, immunogen, coating antigen.
12		
13	461	
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34 25		
30		
30		
38		
30		
40		
40		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

468	$\frac{1}{100}$
469	Fig.3. Suitable operating conditions of the immunoassay method: (a) the blocking reagent, (b)
470	ionic strength in PBS buffer, (c) pH of buffer, (d) concentrations of SA-HRP, (e) incubation time,
471	and (f) the influence of different volume percentages of solvent on PBS buffer.
472	

