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Abstract 

Soil classification is crucial for its cultivation preparation in countries that export several agricultural 

commodities. The soil classification system adopted in Brazil is based on chemical parameters and physical 

and morphological changes. This system possesses disadvantages because many analyses are time-

consuming, especially during the sample preparation stage. Raman spectroscopy is a non-destructive 

technique that enables rapid soil sample characterisation. In this study, Raman spectroscopy was used to 

discriminate different soil samples. Although the Raman spectra of a substance can be used as a phase 

fingerprint due to its specificity, this technique is not adequate for sample discrimination and suffers from 

matrix interferences, especially during the analyses of soil samples. However, a synergic effect with 

satisfactory results regarding prediction and classification problems occurs when this method is coupled 

with chemometric tools. In this research, a robust classification method for analysing soils using Raman 

spectroscopy combined with a support vector machines (SVM-C) method and genetic algorithm (GA) for 

variable selection was developed. The results obtained from the combination of the proposed GA-SVM-C 

based on the figures of merit were sensitivity (1.000), specificity (1.000), and misclassification error (0.0%) 

in the validation step. This soil discrimination methodology was validated using X-ray fluorescence 

spectrometry. These tools can be used in routine analyses, reducing laboratory costs with good efficiency. 

 

Keywords: soils, supervised classification, Raman spectroscopy, variable selection, support vector 

machines, genetic algorithm 

 

 

 

Page 1 of 25 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



2 

 

1.Introduction 

Soil classification enables adequate preparation for cultivation, which is important for countries that export 

various agricultural commodities. The Brazilian soil classification system is based on chemical parameters 

and physical and morphological changes. However, this system possesses disadvantages because some 

analyses are time-consuming, mainly due to the sample preparation stage. The chemical elemental 

composition of soil samples is routinely evaluated using X-ray fluorescence spectrometry; this technique is a 

primary method for inferring the origin and classification of a soil [1]. 

Raman spectroscopy is an invaluable technique for the chemical and structural characterisation of materials. 

Although the Raman signal of a substance can be used as a phase fingerprint due to its specificity, this 

method is not discriminatory and suffers from matrix interference, which can particularly complicate the 

analyses of complex materials. Recently, Ishikawa and Gulick showed that artificial neural networks (ANN) 

can be trained to accurately identify key minerals for characterising the composition of igneous rock using 

spectral data acquired via in situ Raman spectroscopy [2].  

Soil contamination by energetic materials (EMs) is a serious concern in many countries. Calibration 

methods of the first order (Principal Component Regression and Partial Least Squares, at the percent level) 

have been used to obtain the Raman signatures of EMs from spectra obscured by extensive backgrounds 

caused by soil components. The authors demonstrated that Raman spectroscopy can be a useful screening 

technique at the percent level (by mass) if the soil fluorescence interference can be overcome [3]. The 

magnetic methods can be complemented with Raman spectroscopy to distinguish the different existing iron 

oxides in soil; however, some minerals cannot be easily distinguished from each other with these magnetic 

strategies. A magnetic method to differentiate lepidocrocite and ferrihydrite in soil samples was also 

validated. Raman spectroscopy is also a simple method for identifying magnetite and maghemite [4]. Laser 

Raman spectroscopy has been employed to examine four lunar soils. The Raman peak shift was used to 

calculate Mg/(Mg + Fe + Ca) and Ca/(Mg + Fe + Ca) for pyroxene and Mg/(Mg + Fe) for olivine, and thus, 

the compositional distributions of these two minerals in each of the four lunar soils were obtained. 

Classification of feldspar grains has been made based on their Raman patterns [5]. Raman spectroscopy has 

also been used to develop a method based on a tree-like classifier that differentiates between organic and 

inorganic particulate matter. This method employs a tree-like structure to classify Raman spectra as a 

decision tree. The optimal classifier is an ANN, linear discriminant analysis or SVM, in which different 

kernels are likely. SVM strategies are optimised using the simulated annealing method to achieve the 

optimal classifier. After training, an old-out experiment with two entirely different sets of Raman spectra 

were attempted to obtain the abilities of this method for real-world application [6]. Therefore, these studies 

indicate that Raman spectroscopy coupled to chemometric techniques can be used to classify Brazilian soils.  
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2.Chemometric methods 

 

Two major areas, classification and calibration, exist in the chemometrics field [7]. Classification can be 

divided into two groups: supervised and unsupervised [8]. In supervised classification (or supervised pattern 

recognition), the class that produces each pattern in the modelling sample is known. The classifier is trained 

to replicate the correct decision for new samples. In unsupervised classification (or pattern recognition 

unsupervised) the training standards have not been classified, and therefore, algorithms must locate a data 

structure that allows them to be divided into groups. Once the information is less available, the classification 

is less accurate than that obtained with supervised methods. However, this method is the only possible 

solution to problems that do not have information regarding the groups that generated the data. 

 In this paper several, supervised chemometric methods were used to treat unsupervised data with respect to 

soils; non-supervised methods are not commented because they have not produced satisfactory results.  

The supervised classification methods used herein are described briefly below.  

 

2.1 PLS-DA 

PLS-DA is a supervised classification technique used in chemometrics. The concept of PLS-DA is identical 

to that of the PLS model used for calibration, however, using dummy variables of Y matrix. Briefly, the 

algorithm uses a set of spectra that is selected from each class for training (calibrating) the model, and the 

second set of spectra is reserved for testing (validating) or verifying the model. This input matrix (matrix X) 

is regressed against the second matrix (matrix Y), which contains information concerning each class [9]. 

Commonly in PLS-DA, the Y matrix contains 1 s and 2 s with 1 s, which indicate that the corresponding 

spectrum from the input matrix is a member of the class; the Y matrix contains 1 s to 5 s for the five classes 

in a data set: soil # 1, # 2 soil, soil # 3, # 4 soil and soil # 5. 

 

2.1 SVM 

SVM and chemometrics methods can be used for both calibration and classification in situations in which 

the data are not linear, i.e., when the linear models do not work well [10-13]. The SVMs are defined by 

means of the kernel function [14]. The most common ones are linear kernels for linear classification, 

polynomial kernels for polynomial decision boundaries (e.g., a parabola), and Gaussian kernels for general 

nonlinear, semiparametric decision boundaries. In this process, the data are mapped into a higher 

dimensional input space, and an optimal separating hyperplane is constructed in this space [11,15]. For 

details of applications and algorithms, see previous reports from Ivanciuc [16], Bishop [17] and Cherkassky 

[18]. 
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2.2 Methods of variable selection 

Variable selection is a technique that aims to identify a subset of variables that are, for a given problem, 

most useful for more precise and exact models. Furthermore, the selected subset may help make the model 

more easily interpretable chemically, which is crucial in different areas of chemistry because, in a set of 

hundreds or thousands of variables, some can be noise and/or contain irrelevant information. The objective 

of variable selection is to significantly reduce the number of variables to obtain simpler, more interpretable 

and robust models [19]. 

A large number of procedures for variable selection is available in the literature, most focused on the 

selection of wavelengths in spectroscopy. These procedures can be distinguished from each other using 

mathematical criterion to find the optimal variables. 

 In this work, two variable selection techniques were employed. The first method was based on intervals for 

the development of the iPLS-DA model, and the second one was based on Darwin’s natural selection theory, 

in which a mathematic tool, genetic algorithm (GA), was used for the construction of GA-PLS-DA and GA-

SVM models. 

The iPLS-DA algorithm is a tool for the selection of spectral variables; the whole spectrum is divided into 

several equal subintervals in which PLS-DA models will be constructed for each subdivision [20]. 

Therefore, the optimal spectral regions are highlighted to construct the model based on a comparison of the 

root mean square error of cross validation (RMSECV) value for regions in comparison to the global model, 

which is used throughout the spectrum. Therefore, the regions that presented the lowest RMSECV value 

related to the global model are selected. Generally, the construction of PLS-DA models based on the 

selected variables have a number of latent variables different from the overall model to achieve a Y relevant 

variance mainly due to the width of the intervals, the number of substances that absorb/interfere and noise 

[21]. 

According to Leardi [22], GAs are quite a recent optimisation technique with the basic concept of 

mimicking the evolution of the species, according to the Darwinian theory of the "survival of the fittest." 

The application of GAs to complex problems generally produces much better results than those obtained 

with standard techniques. 

GAs consider that the chromosome has "p" genes, where each gene represents one of the variables of the 

analytical signal (Raman spectrum in this case) being the number of genes equal to the number of variables 

contained in the signal. In the variable selection, it is used binary code to encode the problem. Each gene can 

assume a value of one or zero. When the position of a certain variable is equal to one, it is selected; if the 

position contains a zero value, the variable will not be selected. Techniques based on variable selection 

using a GA involve five steps: encoding of variables (as mentioned above), the generation of an initial 

population, evaluation of response, crossover and mutation. For details of each one of these steps, see Leardi 

[22] and Davis [23]. In this work, GA theory was used to select the variables for the development of GA-
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PLS-DA and GA-SVM models. The PLS-DA and SVM model construction concept has already been 

described in items 2.1 and 2.1, respectively. 

In this work, Raman spectroscopy coupled to chemometric data analysis was successfully used to classify 

Brazilian soils provided from different origins. This method of soil sample discrimination was validated 

using X-ray fluorescence in which similarities in chemical composition of soil samples were identified.  

 

3. Experimental 
 

3.1 Sample preparation 

Five Brazilian soil samples were provided by Embrapa (Brazilian enterprise for research in agronomy) (Rio 

de Janeiro, Brazil). The soil samples were oven-dried for 48 hours, disaggregated with a rubber hammer and 

sieved to 2 mm before analyses. Figure 1 displays the five types (classes) of studied soil. 

FIGURE 1 

 

3.2 Sample identification 

X-Ray fluorescence spectra were obtained using an S4-Pioneer spectrometer from Bruker AXS GmbH, 

Karlsruhe, Germany. X-Ray fluorescence analyses were realised using four different analyser crystal types 

because each analyser crystal is sensible to different energy ranges: lithium fluoride crystals (LiF 200), in 

which the lattice plane corresponds to (200) and an element range of > K Ka1, pentaerythrite (PET), which 

includes an Al-Ti energy range, multilayer W/Si (OVO-55), which includes an O-Si energy range, and 

multilayer V/C, which is sensible to the energy of carbon. 

Raman spectra were acquired with a Renishaw InVia spectrometer (Renishaw plc, Gloucestershire, UK) 

using a UV laser (325 nm), motorised stage and microscope to focus the sample. The laser spot was 

approximately 2 µm in diameter, and the laser intensity was approximately 10 mW at the objective exit.  

Soil samples were homogenised and gently compacted in a tablet form before analyses. Raman spectrum 

analyses were then performed on 25 different points of each sample, forming a square matrix of 200  µm x 

200 µm for representative sampling. 

Figure 2 exhibits the data collection and transformation necessary to chemometric methods for classifying 

soils according to the following stages: 

An image is obtained directly from the surface of the soil and consists of a spectral hypercube of raw data, 

where the x- and y-axes represent the spatial coordinate characteristic of the soil surface and the z-axis 

defines the wavelength (λ). Thus, for each pixel image, there is a full spectrum in the third dimension. 

In the next step, for each soil sample, the data are unfolded via spatial dimension elimination, resulting in 

matrix (xy)×λ. The pixel position information is maintained on the rows of this matrix. 

The unfolded data, one for each soil sample, are used to obtain a data matrix. After this step, the spectra 

were divided into two sets, one for calibration and the other for data validation. The spectra selection was 
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performed using the Kennard-Stone algorithm for each class. This algorithm is a traditional method to 

extract a representative set of objects from a given data set [24-25]. Notably, each pixel obtained in this 

study is considered to be a sample. In addition, for the type of soil, # 2 pixel was discarded because it was 

very different from the others. 

Finally, the following chemometric methods were used for soil classification: partial least squares 

discriminant analysis (PLS-DA), interval partial least squares discriminant analysis (iPLS-DA), GA with 

partial least squares discriminant analysis (GA-PLS-DA), and SVM for classification (SVM-C) with and 

without variables selection.  

FIGURE 2 

3.3 System used for data analyses 

All calculations were carried out using MatLab software version 7.7 (MathWorks, USA) with PLS toolbox 

6.5 (Eigenvector Research, USA). 

 

4. Results and discussion 

4.1 X-Ray fluorescence (XRF) 

In this study, five different types of soil were classified and discriminated using X-ray fluorescence. Figure 3 

shows the elemental compositions of the types of soil from different origins. All soil types contained Al 

(Figure 3a) and Si (Figure 3b), with the highest concentration of these elements in soil #1, #4 and #5 (Figure 

3). Silicon is a compositional element in the most common soil minerals, such as silica (quartz) and 

aluminosilicates (clays) [26]. Raman spectroscopy corroborates the presence of quartz mineral in these soil 

samples. Aluminum and silicon oxide can also be available in the humic fraction of soils that include the 

sulphide fraction [27]. Aluminum occurs in the following soluble forms: Al3+, Al-OH, and A1-SO4 

(especially in forest soils). A soluble form of Si can occur as orthosilicic acid, which exhibits increasing 

solubility with increasing pH; however, elements P, Al, Ca and Fe can replace this dependence. 

 

FIGURE 3 

 

Elements of Ca (Figure 4c ), K (Figure 4d), Mg (Figure 4e) and Mn (Figure 4f) are usually present in soil in 

the formation of oxides or in association with the carbonate anion [28]. The presence of these metals is more 

pronounced in soil #2 and #5. Magnesium appears as magnesium oxide and is often associated with 

bioaccumulation by plants [29] and can also be found in association with other metals, such as Zn, Al and Fe 

in minerals [30]. Calcium cations are typically available in association with organic matter and with humic 

fractions [31].  

Soil #3 demonstrated a high amount of Cu (Figure 4 g), Ni (Figure 4 h), P (Figure 4i) and S (Figure 4j). 

Sulphur constitutes sulphate anions, whereas phosphorous in soils appears in apatite and phosphate-
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containing compounds [28]. Other transition metals, including Ni and Cu, are extremely vital in associations 

with organic compounds. These metals have greater mobility in alkaline soils [26]. 

The highest concentration of Fe was detected in soil #1 (Figure 4l). Fe can be present in carbonates and 

associated to organic matter [26-27]. Fractions of humic compounds serve a significant role in the 

distribution of Fe and in its solubility, which increases with decreasing pH. Fe-containing minerals and 

organic complexes are extremely vital in soil-forming processes. These compounds strongly influence the 

distribution of other elements. All Fe-containing minerals have a high sorption capacity for other metals. Fe 

mobility is increased in organic compounds, as is its bioavailability in plants [32]. The highest amount of 

titanium among the studied samples was also found in soil #1 (Figure 4m). Titanium in soils can exist as the 

TiO2 rutile form, embedded in quartz minerals (SiO2) [33]. 

Soil # 4 shows a variety of metals in its composition: Fe (Figure 4l), K (Figure 4d), Ca (Figure 4c), and Cr 

(Figure 4n) and high content of oxygen atoms (Figure 4o). These results suggest the presence of oxidised 

carbon groups, such as carboxylic acids, in this soil (see the carbon elemental spectra in Figure 4p). For the 

typical range of soil pH, carboxyl groups are deprotonated, generating carboxylate anions. Negative charge 

in the soil surface favours the metal adsorption phenomena and promotes high fertility [34-35].   

Zirconium (Figure 4q) showed higher intensity in the FRX spectra in soil # 1. Zr and quartz minerals can 

generate high resistance to weathering in soils [36]. In the other soil samples, only traces of Zr were 

observed. 

FIGURE 4 

 

4.2 Raman spectra analyses 

The Raman spectra of the analysed soils were remarkably similar in general, presenting sharp peaks in the 

low wavenumber region (200 cm-1 to 1000 cm-1) and a broad band at approximately 1600 cm-1 with intense 

fluorescence. Fluorescence is commonly found in organic and amorphous compounds and can often prevent 

the detection of the weak Raman bands, particularly in the visible region of the spectrum. A way to 

circumvent this obstacle is changing the excitation energy to NIR or to low UV region [37], which was 

performed in this work.  

The broad band found at approximately 1600 cm-1 is attributed to aromatic carbon stretching modes (C=C) 

(Figure 5) [38]. Although the carbon content in soils is not high, as observed in our XRF analyses, the C=C 

mode has a strong Raman scattering cross section, explaining the high intensity of this peak. In the low 

wavenumber region, Raman peaks that can be attributed to crystal lattice vibrations are observed [39]. Soils 

are formed primarily of silica (SiO2), feldspar and other minerals. The XRF data showed that the most 

abundant elements are Si, Al, Fe, Ca, Mg, K, Na, and Mn, most likely associated with oxygen to form 

oxides. In such a complex matrix as soil, assigning mineral-specific bands is difficult, as most bands have 

remarkably similar spectra that can overlap with each other. The most predominant bands are observed at 

264, 320, 354, 396, 465, 487, 637, and 800 cm-1, and their relative intensities vary from soil to soil. One 
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particular case can be identified; however, soils # 4 and # 5 had distinctly different spectra from the other 

Raman spectra, providing an unusually strong band at 465 cm-1 and a small band at 354 cm-1, which are the 

typical bands of quartz (α-SiO2) [40]. 

 

FIGURE 5 

 

4.3 Data analyses 

After characterising the different soils through X-ray fluorescence spectroscopy, Raman spectral profiles 

were used to make chemometric models of classification. 

The first step in the construction of these models was the data processing method selection. Several pre-

processing methods and combinations were tested. The results indicated that the best estimate was mean-

centring [41].  

Figure 6 below shows the step-by-step of the construction of the calibration and validation arrays. The 

spectra of all the samples were arranged in matrix Xcalibration (75 x 1562) and in matrix Xvalidation (49 x 1562), 

where each row represented a sample (pixel), and the columns contained the equivalent spectroscopic 

responses. Thus, the calibration and validation sets were constructed with 75 spectra (15 of each soil) and 49 

spectra (soils # 1, # 3, # 4 and # 5 with ten spectra, and nine spectra in soil # 2), respectively, in total.  

FIGURE 6 

 

4.4 Figures of merit 

In routine analytical chemistry, a large body of literature has been devoted to verifying the accuracy and 

precision of most techniques; however, validation, in the context of pattern recognition, has not been 

strongly emphasised. Understanding how classification methods can be validated is necessary for 

establishing a criterion for success [41]. In this work, the comparison of the models was performed using the 

following statistical parameters: sensitivity (sens), specificity (spec) and misclassification error (ME%). The 

misclassification error was calculated based on the following equation (1): 

ME	%	 = 	
����	
�

�	
�
	x	100	%, (1) 

where yi represents the class observed, and yref denotes the reference class. For calculation details, see 

previous work [25]. 

The other figures of merit can be defined as the following: Na represents the number of spectra in each soil; 

Nb defines the number of misclassified spectra soils; ME (%) is the Misclassification Error; TP denotes the 

proportion of positive cases that were correctly identified; FP is the proportion of negatives cases that were 

incorrectly classified as positive; TN represents the proportion of negatives cases that were classified 

correctly; and FN defines the proportion of positive cases that were incorrectly classified as negative. 
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Therefore, the sensitivity (sens) of the method is defined by TP/(TP + FN), and the specificity (spec) of the 

method is defined by TN/(TN + FP) [25].  

Thus, four different approaches were used to classify the five distinct classes of soils using various 

chemometric methods for classification. The first strategy, PLS-DA and SVM-C were used without variable 

selection methods, but the other three strategies employed different chemometric methods with variable 

selection. Described below are the four strategies used. 

 

4.5 Application of the classification methods for Raman spectra data 

4.5.1 Strategy 1: Methods of classification using PLS-DA and SVM-C without variable selection 

For the construction of the PLS-DA model, the first step is to determine the number of latent variables. The 

PLS-DA method was constructed with two latent variables based on Haaland and Thomas criteria [42].  

To create the SVM model, choosing an appropriate kernel function and determining its optimal parameters 

for generating the optimal SVM model is essential. That is, the model should possess a lower RMSECV 

value. In this work, we optimised the cost parameters (C = 10), number of support vectors  (75), and gamma 

(γ = 1e-006). As reported by Liu, the regularisation parameter, γ, determines the tradeoff between 

minimising the training error and minimising the model complexity [43].  

The results obtained were inadequate for both models, as shown in the misclassification errors of 

classification (% ME) for both calibration and/or validation sets. For the PLS-DA method, soil # 4 exhibited 

% Mes of 53.3% and 70.0% in the calibration and validation sets, respectively. When using the SVM-C 

model, soil # 3 showed % MEs equal to 100% and 30% in the calibration and validation sets, while soil # 5 

showed 100% in both sets. These results showed high % MEs. An alternative method with which we could 

test our hypothesis was the variable selection strategy; we proposed that this strategy would enhance the 

discriminant analysis. 

Three analysis strategies were applied for variable selection. The first method uses interval PLS (iPLS), and 

the others employ GAs coupled to PLS-DA or SVM-C, respectively. Thus, the spectral regions were 

selected for each algorithm used for building the chemometric models. 

 

4.5.2 Strategy 2: Methods of classification using iPLS-DA 

In constructing the model iPLS forward-DA, we used the following parameters; number of intervals, 23; 

range size, 25 and maximum, 10 latent variables. Thus, using the iPLS-DA algorithm selected the following 

spectral regions: 1494-1421, 1265-1190, 874-797, 714-556 and 389-147 cm-1, as shown in Figure 7. These 

selected intervals showed a lower RMSECV.  

 

FIGURE 7 
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The results obtained using the iPLS-DA method for the classification of five soils are shown in Table 1, 

which lists the parameters used to evaluate them in the calibration and validation sets. From the data in 

Table 1, in the calibration model, one spectrum was incorrectly classified in soil # 2 (% ME = 6.7), and three 

spectra were incorrectly classified in soil # 5 (% ME% = 20). The validation step showed no incorrectly 

classified samples with a sensitivity equal to 1 (i.e., all of the samples were designated for that class 

assigned to the appropriate class) for all of the classes (soil). The specificities were equal to 1 (i.e., no 

sample was incorrectly classified), from soil # 1 to # 3. However, soils # 4 and # 5 showed specificities of 

0.744 and 0.462, respectively.  

The theoretical model has high sensitivity and specificity. These results indicate that the probability that the 

sample was not properly being classified as not belonging to that class is high. Due to the low specificity of 

soil # 5 in the validation set, another tool for variable selection was used.  

 

4.5.3 Strategy 3: Methods of classification using GA-PLS-DA 

Because the obtained results were now inadequate, the GA was chosen for variable selection. The 

parameters used for optimisation were the following: population size, 76; window width, 5%; initial terms, 

30; mutation rate, 0.05; and crossover, single. The selected wavelengths are shown in Figure 8, in which the 

frequency with which genes were crossed are displayed (crossing-over).  

FIGURE 8 

 

The calibration and validation sets used to conduct GA-PLS-DA models were the same as previously 

described. The results obtained with the GA-PLS-DA strategy for the classification of five soils are shown 

in Table 2, which lists the parameters used to evaluate it in both calibration and validation sets. In the 

calibration step, the misclassification errors were 6.7 and 20.0% for soils # 2 and # 5, respectively. All soils 

had high sensitivity; however, soil # 5 showed small specificity in the calibration and validation sets. In the 

validation stage, none of the five soils were classified incorrectly, with sensitivities equal to 1 in all classes 

and specificities equal to 1 (soils # 1 to # 3), 0.744 (soil # 4) and 0.462 (soil # 5), as observed in Table 2. 

Even with the variable selection procedure change, a misclassification error of 20% for soil # 5, which is 

indicative of the inadequate model, as well as unsatisfactory results for the specificities of soils # 4 and # 5. 

Thus, in predictions, the probability that the sample is not classified correctly as not belonging to that class 

is high. Therefore, a non-linear method was used to overcome this problem. 

 

4.5.4 Strategy 4: Methods of classification using GA-SVM-C 

The calibration and validation sets used to the conduct GA-SVM-C models were the same aforementioned 

sets. In the calibration step, the GA-SVM-C was constructed with the following adopted parameters: radial 

basis function, cost (C = 31.6), gamma (γ = 1e-006) and the number of support vectors (SV = 56). The 
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results obtained using the GA-DA-C for classifying the five soils are shown in Table 3, which lists the 

parameters used to evaluate it in both calibration and validation sets.  

With these parameters, only soil sample # 2 was incorrectly classified (% ME = 6.7) in the calibration set, 

and all samples were classified correctly in the validation set. Notably, in this discriminant analysis, all 

calibration (except soil # 2 with sens = 0.933) and validation samples demonstrated sensitivities equal to 1 

and specificities equal to 1 (except for soil # 1 in the calibration set with spec = 0.983). 

The GA-SVM-C model was the best classification model found as presented for almost all soils a sensitivity 

equal to one (except for soil # 2 in the rankings) and specificity equal to one (except for the soil # 1 in the 

calibration set). The sensitivity values for soil # 2 indicate that the probability of a false positive is < 7%, 

and the probability of a false negative for soil # 1 is < 2%. This model is the most appropriate for forecasting 

the classification of samples. 

 

5. Conclusions 

Based on this research, an XRF method that allows immediate elemental analysis of soil samples from 

different regions was established. Raman data analyses revealed the presence of aromatic rings, as evidenced 

by the high-frequency region of different spectra. The low-frequency region of the Raman spectra indicates 

the presence of metal oxides and minerals in the samples. Although Raman spectroscopy does not directly 

provide the phase composition of complex systems such as soil, the presented approach to data analyses 

offers insight into this characteristic of the studied system. In the examined soil samples, the detected 

elements constituted the oxides, organic matter and humic compounds in metal complexes (Fe, Ca). 

The use of Raman spectroscopy using classification models and variable selection provides a simple and 

powerful tool for differentiating different soil samples. In particular, for this study, our optimal result was 

obtained from the combination of GA-SVM-C based on the figures of merit, sensitivity, specificity and 

misclassification error, in which distinguishing all five types of soil was possible. Our results demonstrate 

the potential use of these tools in routine analyses, reducing laboratory costs. 
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Captions of figures 

 

Figure 1-Photo of the five types (classes) of the studied soil. 

 

Figure 2- Scheme of collect of data hypercube following the unfolded data for 

construction of the data matrix. 

 

Figure 3 X-ray fluorescence spectra of five soil samples using two different analyzer 

crystals: a) pentaerythite (PET) and b) lithium fluoride (LiF 200). 30x11mm (300 x 300 

DPI) 

 

Figure 4 X-ray fluorescence spectra by chemical element of the five soil samples 

showing relative proportion  of a) Aluminum, b) Silicon, c) Calcium, d) Potassium, e) 

Magnesium, f) Manganese, g) Copper, h) Nickel, i) Phosphorous, j) Sulfur l) Iron, m) 

Titanium, n) Chromium, o) Oxygen, p) Carbon and q) Zirconium. 

 

Figure 5 Raman spectra of the five soil samples. Part of fluorescence background has 

been removed using a double linear baseline subtraction in the intervals 0 to 1000 cm
-1
 

and 1000 to 1800 cm
-1
. 

 

Figure 6 Strategy for the separation of samples to be used in the chemometric model for 

classification 

 

Figure 7 Selected regions of the Raman spectrum (gray) by forward iPLS in the 

calibration model. 

 

Figure 8 Selected regions of the Raman spectrum (gray) by genetic algorithm in the 

calibration model. 

 

Page 22 of 25Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



Table 1  Results obtained using iPLS-DA (2 latent variables for each class) 

Subset Calibration Validation 

Group Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 

N
a
 15 15 15 15 15 10 9 10 10 10 

N
b

 0 1 0 0 3 0 0 0 0 0 

ME (%) 0.0 6.7 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 

TP 1.00 0.93 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 

FP 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TN 0.98 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

FN 0.00 0.07 0.00 0.00 0.20 0.00 1.00 0.00 0.00 0.00 

Sens 1.00 0.93 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 

Spec 0.98 0.93 0.98 0.73 0.45 1.00 1.00 1.00 0.74 0.46 

 

N
a
: number of spectra in each soil;    

N
b
: number of misclassified spectra soils; 

ME (%): Misclassification Error; 

TP: True Positive; 

FP: False Positive; 

TN: True Negative; 

FN: False Negative; 

Sens: Sensitivity; 

Spec: Specificity. 
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Table 2  Results obtained using GA-PLS-DA (2 latent variables for each class) 

Subset Calibration Validation 

Group Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 

N
a

 15 15 15 15 15 10 9 10 10 10 

N
b

 0 1 0 0 3 0 0 0 0 0 

ME(%) 0.0 6.7 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 

TP 1.00 0.93 1.00 1.00 0.86 1.00 1.00 1.00 1.00 1.00 

FP 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TN 0.98 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

FN 0.00 0.07 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 

Sens 1.00 0.93 1.00 1.00 0.86 1.00 1.00 1.00 1.00 1.00 

Spec 0.98 0.93 1.00 0.73 0.43 1.00 1.00 1.00 0.74 0.46 

           

N
a
: number of spectra in each soil;    

N
b
: number of misclassified spectra soils; 

 ME (%): Misclassification Error; 

TP: True Positive; 

FP: False Positive; 

TN: True Negative; 

FN: False Negative; 

Sens: Sensitivity; 

Spec: Specificity. 
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Table 3  Results obtained using GA-SVM-C 

Subset Calibration Validation 

Group Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 

N
a

 15 15 15 15 15 10 9 10 10 10 

N
b

 0 1 0 0 0 0 0 0 0 0 

ME(%)
c

 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

FP 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TN 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

FN 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sens 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Spec 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

           

N
a
: number of spectra in each soil;    

N
b
: number of misclassified spectra soils; 

ME (%): Misclassification Error; 

TP: True Positive; 

FP: False Positive; 

TN: True Negative; 

FN: False Negative; 

Sens: Sensitivity; 

Spec: Specificity. 
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