Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

1	
2	
3	
4 5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22 23	
24	
25	
26	
27	
20 29	
30	
31	
32	
33	
35	
36	
37	
38	
39 40	
41	
42	
43	
44 45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55 56	
50 57	
58	
59	

1	Development and validation of a cryogen-free automatic gas
2	chromatograph system (GC-MS/FID) for online
3	measurements of volatile organic compounds
4	Ming Wang ^a , Limin Zeng ^{a,*} , Sihua Lu ^a , Min Shao ^{a,*} , Xinglong Liu ^a , Xuena Yu ^b ,
5	Wentai Chen ^a , Bin Yuan ^{a, #} , Qian Zhang ^a , Min Hu ^a , Zhanyi Zhang ^c
6	^a State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of
7	Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
8	^b Wuhan Tianhong Instruments Co., Ltd, Wuhan, 430223, China
9	[°] Guangzhou Research Institute of Environmental Protection, Guangzhou, 510620, China
10	[#] now at: NOAA Earth System Research Laboratory and Cooperative Institute for Research in
11	Environmental Sciences, University of Colorado, Boulder, CO, US
12	* Corresponding author:
13	Limin Zeng Tel.: 086 10-62756333; E-mail address: <u>lmzeng@pku.edu.cn</u>
14	Min Shao Tel: 086 10-62757973; E-mail address: mshao@pku.edu.cn
15	Abstract

Analytical Methods Accepted Manuscript

- 16 An automatic gas chromatograph system equipped with a mass spectrometer and
- 17 a flame ionization detector (GC-MS/FID) was developed for online measurements of
- 18 volatile organic compounds (VOCs) in the atmosphere. This system consisted of a

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
∠ ı 22
22 22
∠3 24
24 25
25
26
27
28
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
00 57
ວ/ ເດ
58
59
60

19	custom-built cryogen-free cooling device that can create an ultra-low temperature of
20	-165 °C, a two-channel sampling and pre-concentration system, and a commercial
21	GC-MS/FID. One channel in the sampling and pre-concentration system was
22	designated to trap C2–C5 hydrocarbons, while the other was designed to trap other
23	VOC species. The new-developed GC-MS/FID system was then employed to measure
24	VOCs in ambient air, and its observation data were compared with those from three
25	well-established techniques, including an offline GC-MS/FID coupled with canister
26	sampling, a proton transfer reaction-mass spectrometer (PTR-MS), and an online gas
27	chromatograph system equipped with an FID and a photo ionization detector
28	(GC-FID/PID). The online and offline GC-MS/FID measurements for alkanes,
29	acetylene, C2–C3 alkenes, C6–C8 aromatics, and halocarbons showed good
30	agreements. In addition, the online GC-MS/FID measurements for C6-C9 aromatics,
31	acetone, and methacrolein+methylvinylketone (MACR+MVK) agreed well with the
32	PTR-MS observations. Mixing ratios of C2–C7 alkanes, C3–C5 alkenes, and C6–C8
33	aromatics also showed good agreements between the online GC-MS/FID and
34	GC-FID/PID techniques. These results of inter-comparison demonstrated the accuracy
35	of online GC-MS/FID measurements for C2-C12 NMHCs, C3-C4 carbonyls, and
36	halocarbons.
37	Keywords: ambient monitoring; VOCs; GC-MS/FID; inter-comparison

39	Volatile organic compounds (VOCs) play an important role in photochemical
40	formation of ground-level ozone (O ₃) and secondary organic aerosols (SOA). VOCs
41	can be directly emitted into the atmosphere from anthropogenic and natural sources,
42	and some of them (e.g. carbonyls and alkyl nitrates) can also be photochemically
43	produced from VOCs oxidation. ¹ Accurate measurements for ambient VOCs are
44	essential for top-down evaluation of VOCs emission inventories, ² investigation of
45	VOCs relationships with O ₃ and SOA using observation-based models, ³ and indirect
46	determination of hydroxyl radical (OH) abundances or photochemical aging of air
47	masses. ⁴
48	VOCs in the atmosphere include hundreds or even thousands of compounds with
49	mixing ratios and reactivity spanning several orders of magnitude. ⁵ There are still
50	challenges for VOCs measurements, especially for those species at parts per trillion
51	(pptv) levels and/or with high reactivity. A typical VOCs analysis process at least
52	involves two steps: sampling and instrumental analysis. Ambient air samples can be
53	analyzed immediately upon collection by an on-line instrument at the site (i.e. the
54	online method), or air samples can be collected and stored for a later analysis in
55	laboratory using canister-based or adsorbent-based methods (i.e. the offline
56	method). ^{6,7} The online sampling approach is especially suitable for reactive or polar
57	species with poor stability in canisters or other containers. The detection of speciated

Analytical Methods Accepted Manuscript

58	VOCs can be achieved by a range of instruments, such as gas chromatography (GC)
59	with various detectors (e.g. mass spectrometer (MS), flame ionization detector (FID),
60	photo ionization detector (PID), and electron capture detector), direct inlet MS, and
61	some spectroscopic techniques. ^{6, 8, 9} Compared with the time-consuming
62	chromatographic methods, direct inlet MS (e.g. proton-transfer reaction mass
63	spectrometry, PTR-MS) and spectroscopic techniques (e.g. differential optical
64	absorption spectroscopy, DOAS) can provide VOCs data with high time resolutions. ^{8,9}
65	However, these instruments also some disadvantages. PTR-MS is only able to detect
66	species with a proton affinity higher than that of water and can not distinguish
67	isomeric/isobaric compounds.8 DOAS measurements for ambient VOCs correspond
68	to their average concentrations in several kilometers, and the retrieval of ground-level
69	mixing ratios is still a challenging task. ^{9, 10} Additionally, the detection limits of DOAS
70	are not low enough to measure species at pptv levels. The GC system combined with
71	different detectors can be employed to measure a large suite of VOC species,
72	including hydrocarbons, alcohols, carbonyls, halocarbons, and alkyl nitrates. ⁶
73	Therefore, it is still the most commonly used technique for speciated VOCs
74	measurements nowadays. ¹¹⁻¹³
75	Besides sampling and instrumental analysis, a pre-concentration step is often
76	required for GC-based VOCs measurements. The commonly used pre-concentration
77	techniques include cryogenic trapping, ^{6, 11} sorbent enrichment, ⁷ and a combination of
78	these two methods. ¹²⁻¹⁴ Liquid cryogen can create an ultra-low temperature to trap
	'

79	VOCs, ⁶ but its supply and transportation are possibly unavailable at rural or remote
80	sites. Therefore, online techniques for VOCs measurements in remote regions usually
81	used solid adsorbents for the concentration of air sample. ¹⁵ However, several studies
82	reported that the use of solid adsorbents use was prone to artifacts, such as enrichment
83	losses of highly volatile compounds (e.g. C2 species) and desorption losses of \geq C7
84	components. ¹⁶⁻¹⁸
85	The accuracy of VOCs data from field measurements can not be established by
86	repeating experiments due to expenses and inevitable changes of atmospheric
87	conditions. ¹⁹ The field inter-comparison of simultaneous measurements by different
88	instruments is considered to be a useful approach to evaluate the accuracy of ambient
89	measurement data, and are especially helpful for validating observation results
90	obtained by new-developed techniques. ²⁰⁻²²
91	In this paper, we described a cryogen-free automatic GC-MS/FID system for
92	online measurements of ambient VOCs. Observation results from the custom-built
93	online GC-MS/FID were then compared with simultaneous measurements by another
94	three commercial techniques, including an offline GC-MS/FID coupled with canister
95	sampling, a PTR-MS, and a GC-FID/PID, to validate the performance of this
96	new-developed system.

Analytical Methods Accepted Manuscript

97 2 Experimental

98 2.1 Development of an online GC-MS/FID system

99 2.1.1 Instrumentation

- 100 The online GC-MS/FID system consisted of three major components: a
- 101 cryogen-free cooling device for creating ultra-low temperatures, a sampling and
- 102 pre-concentration system for VOCs collection and enrichment, and a gas
- 103 chromatography equipped with a MS and an FID for VOCs separation and detection.
- **2.1.1.1 Cryogen-free cooling device**

105 The custom-built cryogen-free cooling device used a multicomponent mixed

- 106 refrigerant in cascade refrigeration cycle to obtain an ultra-low cryogenic temperature
- 107 of -165 °C for VOCs enrichment. The working principle for this cooling device is
- 108 similar with that for a home refrigerator. In the refrigeration cycle, the compressed
- 109 refrigerant was precooled in a countercurrent heat exchanger, where it liquefied. The
- 110 liquid then passed through a capillary tube, dropping to a lower pressure, and
- 111 evaporated such that the resulting cooled vapor precooled the incoming high-pressure
- 112 fluid. As depicted in Fig. 1, this cooling device had two stages of refrigeration
- 113 circulations. The first-stage circulation included a compressor (1 in Fig. 1), a
- 114 condenser (3), a heat exchanger (5), a capillary tube (7), and an evaporated condenser
- 115 (10). Refrigerant A circled with the direction of $1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 10 \rightarrow 5 \rightarrow 1$. The
- 116 second-stage circulation included a compressor (2), an oil separator (4), a heat

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

117	exchanger ($\boldsymbol{6}$), an evaporated condenser ($\boldsymbol{10}$), a capillary tube ($\boldsymbol{8}$), and an evaporator
118	(9). Refrigerant B circled with the direction of $2 \rightarrow 4 \rightarrow 6 \rightarrow 10 \rightarrow 8 \rightarrow 9 \rightarrow 6 \rightarrow 2$. After the
119	heat-exchange with liquid refrigerant B , the evaporator 9 was cooled to -165 °C and
120	was used as the cold region for VOCs enrichment.
121	The most significant advantage of this cooling device is that it can create
122	ultra-low trapping temperatures without using cryogen (e.g. liquid nitrogen), and the
123	only requirement for its operation is three-phase electric power (380 V) which is a
124	common method of alternating-current electric power generation, transmission, and
125	distribution worldwide. Therefore, this device especially facilitates long-term
126	measurements of ambient VOCs in rural or remote regions where cryogen are not
127	available.
128	2.1.1.2 Sampling and pre-concentration system
129	A schematic of the custom-built sampling and pre-concentration system is
130	depicted in Fig. 3. The sampling lines for ambient air and standard gases were both
131	Teflon tubes with 1/4-inch outside diameter (OD). A 0.25- μ m Teflon filter (Whatman,
132	UK) was fitted on the front of ambient air sampling line to prevent particles into this
133	system. A six-port stream select valve (Valve 1; Valco Instruments, Houston, TX, US)
134	was used to direct ambient air and standard gases directed into this system. To remove
134 135	was used to direct ambient air and standard gases directed into this system. To remove ozone in ambient air, a U-tube filled with crystalline Na ₂ SO ₃ (O ₃ trap) was installed
134 135 136	was used to direct ambient air and standard gases directed into this system. To remove ozone in ambient air, a U-tube filled with crystalline Na ₂ SO ₃ (O ₃ trap) was installed after the Valve 1. Air samples were then drawn into two parallel channels using a
 134 135 136 137 	was used to direct ambient air and standard gases directed into this system. To remove ozone in ambient air, a U-tube filled with crystalline Na_2SO_3 (O ₃ trap) was installed after the Valve 1. Air samples were then drawn into two parallel channels using a downstream pump (N86KTE, KNF Neuberger, France) for water removal and VOCs 7

Analytical Methods Accepted Manuscript

1
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
04 57
55
56
57
58
59
60

138	enrichment. Each channel was equipped with a water management trap (H ₂ O trap; a
139	quartz tube with 25-cm length and 1/4-inch OD), an enrichment trap, and a mass flow
140	controller (MFC). The enrichment trap for Channel 1 was a porous layer open tubular
141	(PLOT) capillary column with 0.53-mm inside diameter (ID) and 25-cm length (J&W
142	Scientific, CA, US) that was designed to trap C2–C5 hydrocarbons, while Channel 2
143	used a deactivated quartz capillary (25 cm, 0.32 mm ID, J&W Scientific) to trap other
144	VOC species in air samples. A twelve-port switching valve (Valve 2, Valco
145	Instruments) was employed to control flow pathways of carrier gas during different
146	stages. The carrier gas for this sampling and pre-concentration system was ultra-pure
147	helium (> 99.999% He).
148	2.1.1.3 Gas chromatography and detectors
149	A commercial gas chromatography (QP-2010S, Shimadzu, Japan) that housed
150	two separate columns and two detectors was employed for VOCs separation and
151	detection. A PLOT (Al ₂ O ₃ /KCl) column (15 m, 0.32 mm ID, J&W Scientific)
152	connected with an FID was used to quantify C2-C5 hydrocarbons. A DB-624 column
153	(30 m, 0.25 mm ID, J&W Scientific) connected with a MS was applied to analyze
154	other VOC species (e.g. C5-C12 hydrocarbons, OVOCs, halocarbons, and alkyl
155	nitrates). The carrier gases for these two columns were both ultra-pure helium (>
156	99.999%).
157	2.1.2 The analysis cycle for VOCs measurements
158	A complete analysis cycle for ambient VOC measurements by this online $\frac{8}{8}$

2
3
4
5
6
7
1
0
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
51
50
0Z
ວ ວ
54
55
56
57
58
59
60

159	GC-MS/FID system include five stages: preparation, sampling and pre-concentration,
160	injection/GC analysis, idle/GC analysis, and back purge/GC analysis.
161	In the preparation stage, air samples passed through sampling line and two
162	three-way valves V3 and V5, and vented from the sampling and pre-concentration
163	system via the pump at a flow rate of 5.5 L min ⁻¹ (see the green lines and arrows in
164	Fig. 2). The ventilation of sampling inlet using ambient air samples could reduce or
165	avoid interferences by previous samples. In addition, temperatures for $\mathrm{H_{2}O}$ traps and
166	enrichment traps during the preparation stage had been set at their corresponding
167	values for sampling and pre-concentration stage.
168	After the 3-minute preparation stage, the in-port for Valve 1 was switched to S3,
169	the valve V3 was closed, valves V3', V4, V4', and V5 were opened, and then air
170	samples were drawn into the two parallel channels for VOCs enrichment at rates of 60
171	mL min ⁻¹ as maintained by a downstream mass flow controllers (Fig. 3a). The water
172	management temperatures for Channel 1 and 2 were set at -50 °C and -30 °C,
173	respectively. The temperatures of enrichment traps for both channels were set at
174	-150 °C.
175	In the injection/GC-analysis stage, the downstream pump was shut down, the
176	in-port of Valve 1 was switched to S4, Valve 2 was switched to position B . The
177	concentrated VOCs in enrichment traps were volatilized by thermal desorption at
178	110 °C and were injected into the GC system by Helium carrier gas (Fig. 3b).
179	After the 1-minute injection, GC analysis continued for VOCs separation and 9

Analytical Methods Accepted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

180	detection. Meanwhile, the sampling and pre-concentration system shifted to the idle
181	condition (Fig. 3c). The in-port of Valve1 was switched to S1, meanwhile Valve 2 was
182	switched to position A. Temperatures of water management and enrichment traps
183	gradually dropped to -165 °C.
184	Twenty minutes after the injection/GC-analysis stage, a 5-minute back purge for
185	the sampling and pre-concentration system was programmed for removing residues in
186	water management traps and cleaning sampling lines to prevent samples carryover
187	effects. During the first 2 minutes, the water management trap and the enrichment trap
188	for Channel 1 were both heated to 110 °C. Helium carrier gas passed through V4',
189	enrichment trap, CO_2 trap, water management trap, O_3 trap, V3, V3', and V5 at a flow
190	rate of 180 mL min ⁻¹ , and vented into the atmosphere using the downstream pump.
191	During the second 2 minutes, the traps for Channel 2 were heated to 110 °C and back
192	flushed by carrier gas. Both channels were heated and back flushed in the last minute
193	(Fig. 3d). After the back purge stage, the sampling and pre-concentration system
194	shifted to the idle condition again.
195	In a complete analysis cycle, the GC was programmed for a 32.7 min run time,
196	with a temperature program as follows: the initial temperature was 35 °C for 3 min,
197	then the GC oven was ramped at 6 °C min ⁻¹ to 180 °C, and held at 180 °C for 5 min.
198	2.2 Field measurements of VOCs by four techniques
199	To validate VOCs measurement data obtained by the new-developed

1
2
3
4
5
6
7
י פ
0
9 10
10
10
12
13
14
15
16
1/
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
25
30
30
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
55

200	
200	GC-MS/FID system, another three commercial techniques were also employed at an
201	urban site of Beijing (the PKU site, 40.00° N, 116.31° E) to observe ambient VOCs
202	during August to September, 2010, including (1) an offline GC-MS/FID system
203	coupled with canister sampling, (2) a PTR-MS, and (3) an online GC-FID/PID.
204	Canister sampling coupled with GC-MS/FID analysis is an U.S. EPA recommended
205	offline method for VOCs measurements. The GC-FID/PID is commonly used for
206	online measurements of hydrocarbons. PTR-MS is an acceptable method to observe
207	aromatics and carbonyls. Detailed descriptions about the PKU site were provided by
208	previous studies. ²⁵⁻²⁷ Briefly, the PKU site is located in the northwest of Beijing city
209	and represents the urban atmospheric environment in Beijing.
210	2.2.1 Offline GC-MS/FID coupled with canister sampling
211	Whole air samples were instantaneously collected by pre-cleaned evacuated
211 212	Whole air samples were instantaneously collected by pre-cleaned evacuated 3.2-L canisters, which were then returned to our lab in Peking University for VOCs
211212213	Whole air samples were instantaneously collected by pre-cleaned evacuated 3.2-L canisters, which were then returned to our lab in Peking University for VOCs analysis. Detailed analytical methods and quality assurance and quality control
211212213214	Whole air samples were instantaneously collected by pre-cleaned evacuated 3.2-L canisters, which were then returned to our lab in Peking University for VOCs analysis. Detailed analytical methods and quality assurance and quality control (QA/QC) procedures for this offline method were described by Liu et al. (2008) and
 211 212 213 214 215 	Whole air samples were instantaneously collected by pre-cleaned evacuated 3.2-L canisters, which were then returned to our lab in Peking University for VOCs analysis. Detailed analytical methods and quality assurance and quality control (QA/QC) procedures for this offline method were described by Liu et al. (2008) and Wang et al. (2010). ^{13, 25} Briefly, a 500-mL aliquot of air sample from each canister
 211 212 213 214 215 216 	Whole air samples were instantaneously collected by pre-cleaned evacuated 3.2-L canisters, which were then returned to our lab in Peking University for VOCs analysis. Detailed analytical methods and quality assurance and quality control (QA/QC) procedures for this offline method were described by Liu et al. (2008) and Wang et al. (2010). ^{13, 25} Briefly, a 500-mL aliquot of air sample from each canister was concentrated using a three-stage cryofocusing pre-concentration system (Entech
 211 212 213 214 215 216 217 	Whole air samples were instantaneously collected by pre-cleaned evacuated 3.2-L canisters, which were then returned to our lab in Peking University for VOCs analysis. Detailed analytical methods and quality assurance and quality control (QA/QC) procedures for this offline method were described by Liu et al. (2008) and Wang et al. (2010). ^{13, 25} Briefly, a 500-mL aliquot of air sample from each canister was concentrated using a three-stage cryofocusing pre-concentration system (Entech 7100, Entech Instruments, US), and then the vaporized VOCs were injected into a gas
 211 212 213 214 215 216 217 218 	Whole air samples were instantaneously collected by pre-cleaned evacuated 3.2-L canisters, which were then returned to our lab in Peking University for VOCs analysis. Detailed analytical methods and quality assurance and quality control (QA/QC) procedures for this offline method were described by Liu et al. (2008) and Wang et al. (2010). ^{13, 25} Briefly, a 500-mL aliquot of air sample from each canister was concentrated using a three-stage cryofocusing pre-concentration system (Entech 7100, Entech Instruments, US), and then the vaporized VOCs were injected into a gas chromatography system (GC, HP-7890A, Hewlett Packard, US) for analysis. A PLOT
 211 212 213 214 215 216 217 218 219 	Whole air samples were instantaneously collected by pre-cleaned evacuated 3.2-L canisters, which were then returned to our lab in Peking University for VOCs analysis. Detailed analytical methods and quality assurance and quality control (QA/QC) procedures for this offline method were described by Liu et al. (2008) and Wang et al. (2010). ^{13, 25} Briefly, a 500-mL aliquot of air sample from each canister was concentrated using a three-stage cryofocusing pre-concentration system (Entech 7100, Entech Instruments, US), and then the vaporized VOCs were injected into a gas chromatography system (GC, HP-7890A, Hewlett Packard, US) for analysis. A PLOT (Al ₂ O ₃ /KCl) column with an FID was employed to separate and detect C2–C4

Analytical Methods Accepted Manuscript

220	hydrocarbons. A DB-624 column with an MS (HP-5975C, Hewlett Packard, US) was
221	used to measure C5–C12 hydrocarbons, alkyl nitrates, and halocarbons.
222	The online and offline GC-MS/FID systems both applied a PLOT column
223	connected an FID to quantify light hydrocarbons and a DB-624 column equipped with
224	a MS to measure the other VOC species. However, the sampling and
225	pre-concentration methods for these two techniques showed significant differences: (1)
226	the online GC-MS/FID system collected ambient air using a Teflon tube, while the
227	offline method used canisters to sample and store whole air samples; (2) the Entech
228	7100 pre-concentration system for the offline system used liquid nitrogen as cryogen,
229	while the new-developed system employed a cryogen-free cooling device to create a
230	ultra-low temperature; (3) the Entech 7100 used three series connected traps to
231	pre-concentrate VOCs, while the custom-built system used two parallel traps to
232	concentrate C2–C5 NMHCs and the other VOC species separately.
233	2.2.2 PTR-MS
234	PTR-MS is a commonly used technique for online measurements of ambient
235	VOCs. ⁸ Target compounds react with H_3O^+ in the drift tube of PTR-MS to form
236	$VOC \cdot H^+$ which can be detected by a quadruple mass spectrometer. ⁸ In this study, a
237	commercial high-sensitivity PTR-MS (Ionicon Analytik, Innsbruck, Austria) was
238	employed to measure ambient isoprene (m/z 69), C6–C9 aromatics (m/z 79 for

239 benzene, m/z 93 for toluene, m/z 105 for styrene, m/z 107 for C8 aromatics, and m/z

Analytical Methods

240	121 for C9 aromatics), methanol (m/z 33), and C2–C4 carbonyls (m/z 45 for
241	acetaldehyde, m/z 59 for acetone, m/z 71 for methyl vinyl ketone (MVK) and
242	methacrolein (MACR), and m/z 73 for methyl ethyl ketone (MEK)). Background
243	signals of PTR-MS were determined by 15-min measurements for zero air every 2.5 h.
244	A Pt-coated quartz wool converter performed at 370 °C was used to remove VOC
245	species in ambient air to produce zero air. The method detection limits (MDL) for
246	each compound ranged from 40 to 200 pptv. Detailed descriptions about the PTR-MS
247	set-up and quality QA/QC procedures were provided by Yuan et al. (2012) and Chen
248	et al. (2014). ^{28, 29}

249 2.2.3 Online GC-FID/PID system

The commercial online GC-FID/PID system (Syntech Spectra GC955 series 611/811 VOC analyzer) was used to measure non-methane hydrocarbons (NMHCs) in ambient air. This system works semi-continuously: the first step is flushing the sample tube by drawing air through it with a pump. Then the pump was switched off and a volume of 35 ml sample gas was pre-concentrated on absorbents with the help of an indirect piston system. This procedure would be repeated until enough air sample (i.e. ~220 mL for the series 811 and ~180 mL for the series 611) has been drawn. For the series 811, C2–C5 NMHCs in ambient air were pre-concentrated on Carbosieves SIII at low temperature of -5 °C. The enriched compounds were then thermally desorbed by heating (270 °C) and were purged into the separation column, which consisted of a

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

260	stripper column (AT TM -5, 5 m \times 0.25 mm ID) and a analysis column (PLOT
261	(Al ₂ O ₃ /Na ₂ SO ₄), 10 m \times 0.32 mm ID). The target compounds were then detected by a
262	PID and an FID. The series 611 was applied to measure C6-C10 NMHCs. Air
263	samples were pre-concentrated on Tenax GR at normal atmospheric temperature
264	(~30°C). Target compounds were then desorbed at 230°C, and were brought into a
265	stripper column (AT TM -1, 2 m \times 0.32 mm ID) and a analysis column (AT TM -1, 28 m \times
266	0.32 mm ID) for separation and a PID for detection. The MDLs for NMHCs ranged
267	from 0.05 to 0.20 ppbv. Detailed descriptions about this system were provided by Xie
268	et al. (2008) and Zhang et al. (2014). ^{15, 26}
269	2.2.4 Time resolutions of VOCs measurements
270	The sampling acquisition times and analysis cycle lengths for VOCs
271	measurement by these four techniques are summarized in Table 2. The time resolution
272	for online GC-MS/FID measurements was 60 min, and ambient air was sampled
273	during the first 5 minutes of each hour. The entire analysis cycle length for the online
274	GC-FID/PID was 30 min, and meanwhile the next sample was collected. The cycle
275	length for PTR-MS was 25 s, and the integration times for most single ions were 1s,
276	except mass 21 (0.1 s) and mass 137 (2 s). ²⁸ To compare with online GC-MS/FID
277	measurements, canister samples were instantaneously collected in the first 5 minutes

Page 15 of 36

1

2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
20
24
25
26
27
28
29
30
24
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
тJ ЛС
40
4/
48
49
50
51
52
52
55
54
55
56
57
58
59
60
00

3 Results and discussion 279

3.1 Calibrations and Quality Assurance/Quality Control (QA/QC) procedures 280

for online GC-MS/FID system 281

282	Three cylinder standard gases of VOCs were employed to calibrate the online
283	GC-MS/FID system. The calibrations of NMHCs and alkyl nitrates were based on a
284	mixture standard gas of 56 NMHCs (Spectra Gases, Newark, New Jersey, US) and a
285	laboratory-prepared alkyl nitrates standard gas provided by the Earth System
286	Research Laboratory, National Oceanic and Atmospheric Administration (NOAA),
287	respectively. A 63-chemicals mixture standard (Spectra Gases) was used to calibrate
288	C2–C6 carbonyls, methanol, and halocarbons. Figure 4a and b show typical
289	chromatograms of FID measurements for 56-NMHCs standard gas and ambient air,
290	respectively. It can be found that peaks for target compounds (i.e. C2-C5
291	hydrocarbons) were separated well by the PLOT column at the setting
292	chromatographic conditions.
293	The calibration standards of multiple mixing ratios (0.5–8.0 ppbv) were
294	generated by dynamic dilution of cylinder standard gases (~1 ppmv). The calibration
295	curves for measured VOCs were extremely linear with correlation coefficient (r)
296	greater than 0.996 and negligible intercepts. Reproducibility of the new-developed
297	system was evaluated based on seven replicate analyses of 1-ppbv standard mixtures
298	The precisions for target compounds (i.e. relative standard deviations of replicate
	15

Analytical Methods Accepted Manuscript

3	
Δ	
5	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
20	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
ΔΛ	
1-1	
40	
46	
47	
48	
49	
50	
50	
51 	
52	
53	
54	
55	
50	
20	
57	
58	
59	
60	

1 2

	299	analyses) ranged fro	n 0.8 to 6.1%. The MDL	for each compound was ca	alculated
--	-----	----------------------	------------------------	--------------------------	-----------

- 300 using the method recommend by EPA TO-15
- 301 (www.epa.gov/ttnamti1/files/ambient/airtox/to-15r.pdf). The MDLs for NMHCs,
- 302 OVOCs, halocarbons, and alkyl nitrates were 0.002–0.021, 0.008–0.026, 0.003–0.016,
- 303 and 0.001–0.003 ppbv, respectively.

The drift in MS responses was corrected based on two types of internal standards.

- 305 One was the diluted commercial mixture standard (Spectra Gases), which included
- 306 four chemicals, namely bromochloromethane, 1,4-diflurobenzene, chlorobenzene-d5,

307 and 1-bromo-3-flurobenzene. The other type of internal standards were those

308 compounds in ambient air which had stable mixing ratios during the entire

309 measurement period.^{6, 23} In this study, trichlorotrifluoroethane (CFC-113) in ambient

310 air was selected as the internal reference compound to validate MS responses because

311 its ambient responses are high enough to be accurately detected by MS and its

312 ambient levels during several months can be considered to be constant (~85 pptv).²⁴

313 The smoothed CFC-113 responses were used to correct the systematic temporal drift

314 in MS responses based on the following equation:

315
$$\operatorname{Response}_{\operatorname{VOC}}^{c} = \frac{\operatorname{Response}_{\operatorname{VOC}}^{s}}{\operatorname{Response}_{\operatorname{CFC-113}}^{s}} \times \operatorname{Response}_{\operatorname{CFC-113}}^{\operatorname{ref}}$$
(1)

316 where $\text{Response}_{\text{VOC}}$ and $\text{Response}_{\text{VOC}}^{c}$ are the measured and corrected responses 317 for target VOC species, respectively. $\text{Response}_{\text{CFC-113}}^{s}$ corresponds to the smoothed 318 CFC-113 responses. $\text{Response}_{\text{CFC-113}}^{\text{ref}}$ is the CFC-113 response in ambient air when 319 calibration curves were established. Ambient mixing ratios for target VOC species

1
2
3
4
5
6
7
י פ
0
3
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20
20
31
21
ა <u>∠</u>
აა ექ
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
54
22
56
5/
58
59
60

320	were then calculated based on $\operatorname{Response}_{\operatorname{VOC}}^{c}$ and corresponding response factors (i.e.
321	the slope of calibration curve).
322	The 1-ppbv mixture standard of 56 NMHCs was analyzed once a day to check
323	the stability of the new-developed GC-MS/FID system. Figure 5 shows temporal
324	variations of response factors for <i>m</i> , <i>p</i> -xylene and toluene detected by MS and ethene
325	and <i>i</i> -pentane detected by FID for daily calibrations. It should be pointed out that
326	response factors of m,p -xylene and toluene have been corrected based on ambient
327	responses of CFC-113. It can be found that response factors for these compounds
328	varied within $\pm 10\%$, suggesting the stability of this system.
329	3.2 Comparisons of ambient VOCs measurements by four techniques
330	3.2.1 Time series of ambient VOCs measurements
331	Figure 6 shows the time series of online GC-MS/FID, online GC-FID/PID,
332	PTR-MS, and offline GC-MS/FID measurements for benzene, toluene, styrene, C8
333	aromatics, C9 aromatics, and isoprene in ambient air at the PKU site from August 12
334	to September 6, 2010. As shown in this figure, all of these techniques can track
335	fluctuations of VOCs levels. The observations for benzene and toluene by these four
336	systems showed good agreements, whereas measurements for isoprene, styrene, C8
337	and C9 aromatics showed some disagreements, which will be further discussed in the
338	following sections.

Comparison between the online and offline GC-MS/FID

Analytical Methods Accepted Manuscript

2
3
4
5
5
6
7
8
õ
9
10
11
12
13
10
14
15
16
17
10
10
19
20
21
22
~~
23
24
25
26
20
21
28
29
30
24
31
32
33
34
25
35
36
37
38
20
39
40
41
42
13
44
45
46
47
10
48
49
50
51
52
52
53
54
55
56
50
5/
58
59
60
00

1

339

3.2.2

340	There are a total of 24 canister samples that were collected to compare with the
341	online GC-MS/FID measurements for NMHCs and halocarbons. As shown in Table 3,
342	ambient mixing ratios of alkanes, acetylene, C2-C3 alkenes, C6-C8 aromatics, and
343	halocarbons agreed well between these two techniques, with r of 0.88–0.99 and linear
344	regression slopes of 0.83–1.20. However, the offline GC-MS/FID measurements for
345	reactive NMHCs (e.g. C4–C6 alkenes, styrene, and C9 aromatics) tended to be lower
346	than the online GC-MS/FID observations. This was possibly due to the losses of
347	reactive NMHCs during storage in canisters. ^{30, 31}
348	3.2.3 Comparison between the online GC-MS/FID and PTR-MS
349	Isoprene, C6–C9 aromatics, and C3–C4 carbonyls were measured in common by
350	the online GC-MS/FID and PTR-MS. The PTR-MS data with high time resolution
351	were averaged over the sampling period of online GC-MS/FID (i.e. the first 5 minutes
352	of each hour) and then compared with the online GC-MS/FID observations. As shown
353	in Table 3 and Fig. 7, the online GC-MS/FID and PTR-MS measurements showed
354	good agreements for benzene, toluene, styrene, C8 aromatics, C9 aromatics, acetone,
355	and MACR+MVK, with r of 0.88–0.99 and slopes of 0.80–1.29. MEK measurements
356	by these two techniques exhibited a good correlation ($r = 0.89$), but the PTR-MS
357	observations were 39% higher than those from the online GC-MS/FID. One possible
358	explanation was that the MEK signals at 73 mass detected by the PTR-MS were 18

Analytical Methods

2
3
4
5
5
6
7
8
õ
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
26
27
28
20
29
30
31
32
202
33
34
35
36
27
37
38
39
40
44
41
42
43
44
40
46
47
<u>4</u> 8
40
49
50
51
52
52
ეკ
54
55
56
50
ວ/
58

60

interfered by some additional species. Methyl glyoxal was suggested to be a candidate
of the ions at 73 mass.³²

361	The online GC-MS/FID and PTR-MS measurements for isoprene showed a
362	poorer correlation than other species, with r of 0.73 (Fig. 7b). Interestingly, mixing
363	ratios of daytime isoprene showed a good agreement between these two techniques,
364	with r of 0.88 and a linear regression slope of 0.91; however, the nighttime isoprene
365	measurements by the PTR-MS were significantly higher than those from the online
366	GC-MS/FID (Fig. 8). This was possibly because the PTR-MS measurements for
367	isoprene (m/z 69) were interfered by additional species, such as furan,
368	2-methyl-3-buten-2-ol, cyclopentene, and pentanal. ^{8, 20} In this study, none of these
369	species were measured by the online GC-MS/FID, and thus it is difficult to identify
370	which species resulted in this disagreement. Further research is required to identify
371	the exact interference species for nighttime isoprene measurements by PTR-MS in
372	urban atmosphere of Beijing.

Analytical Methods Accepted Manuscript

373 3.2.4 Comparison between the online GC-MS/FID and GC-FID/PID

374 There are 52 NMHC species commonly measured by the online GC-MS/FID and

375 GC-FID/PID. The online GC-MS/FID measurements represented VOCs average

376 levels during the first 5 minutes of each hour, while the online GC-FID/PID

377 observations corresponded to 30-minutes average mixing ratios. In this study, the

378 online GC-FID/PID data in the first half hour were selected to compare with the

Analytical Methods Accepted Manuscript

1 2		
3		
4 5		
6 7		
8 9		
10 11		
12		
14		
15 16		
17 18		
19 20		
21		
23		
25		
26 27		
28 29		
30 31		
32 33		
34 35		
36		
37 38		
39 40		
41 42		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54 55		
56 57		
58		
59 60		

379	online GC-MS/FID data. It should be pointed out that this difference in sampling
380	times of these two techniques would possibly result in some disagreements of VOCs
381	measurements, especially when ambient VOCs levels undergoing intensive changes.
382	Mixing ratios of C2-C7 straight-chain alkanes, C4-C5 branched alkanes, most of
383	C2–C4 alkenes, isoprene, and C6–C8 aromatics showed good agreements between
384	these two techniques, with r of 0.80–0.96 and slopes of 0.75–1.23. However, the
385	online GC-FID/PID measurements for some cycloalkanes and alkenes tended to be
386	higher than the online GC-FID/MSD observations (Table 3). Since the online
387	GC-FID/PID identified target compounds based on their retention times, and thus the
388	co-elution of target compounds with other species would result in positive biases for
389	specific VOC measurements. ³³
390	3.3 Advantages of this new-developed GC-MS/FID system
391	The advantages of the online GC-MS/FID system include: (1) the cryogen-free
392	cooling device can create an ultra-low temperature of -165 °C with the only
393	requirement of electric power (380 V), and thus this system especially facilitates
394	VOCs measurements in rural or remote regions where liquid cryogens are not readily
395	available; (2) the pre-concentration traps eliminate the use of solid adsorbents for
396	VOCs enrichment which could be a potential source of artifacts; (3) the sampling and
397	pre-concentration system employs two independent channels to measure a wide
398	variety of compounds; (4) Teflon lines and joints are used for this system to prevent
	20

399	the losses of polar compounds (e.g. aldehydes and alcohols); (5) this system can be
400	easily constructed and connected to any existing GC system with great flexibility.
401	4 Conclusions
402	An online GC-MS/FID system was developed to measure a variety of VOC
403	species in ambient air, such as C2-C12 hydrocarbons, C3-C6 carbonyls, methanol,
404	halocarbons, and alkyl nitrates. The heart of this system was a custom-built
405	cryogen-free cooling device which can create an ultra-low temperature of -165 °C.
406	C2–C5 hydrocarbons in air samples were pre-concentrated at a PLOT column trap,
407	followed by the FID detection. The other VOC species were enriched by a deactivated
408	quartz capillary trap and were quantified by the MS. Based on current mixture
409	standards, this new-developed system quantified 110 ambient volatile organic
410	compounds with precisions ranging from 0.8 to 6.1%. The method detection limits for
411	NMHCs, OVOCs, halocarbons, and alkyl nitrates were 0.002-0.021, 0.008-0.026,
412	0.003-0.016, and 0.001-0.003 ppbv, respectively. Simultaneous measurements for
413	ambient VOCs by the online GC-MS/FID and three well-established techniques were
414	conducted to validate VOCs data obtained by this new-developed system. Mixing
415	ratios of alkanes, acetylene, C2–C3 alkenes, C6–C8 aromatics, and halocarbons
416	measured by the online GC-MS/FID showed good agreements with those observed by
417	the offline GC-MS/FID. The online GC-MS/FID measurements for aromatics and
418	carbonyls also showed good agreements with PTR-MS observations. By comparing 21

Analytical Methods Accepted Manuscript

3
4
5
5
6
7
8
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
24 05
25
26
27
20
28
29
30
31
51
32
33
34
25
35
36
37
38
20
39
40
41
42
7 <u>~</u> 40
43
44
45
46
47
47
48
49
50
50
51
52
53
50 54
54
55
56
57
50
58
59
60

1 2

419	with these well-established techniques, the performance of this new-developed
420	GC-MS/FID system to measure C2-C12 hydrocarbons, C3-C4 carbonyls, and
421	halocarbons was validated.
422	Acknowledgements
423	This study was funded by the China Ministry of Science and Technology special

- 424 fund for Instrument Development (No. 2012YQ060027) and the National High
- 425 Technology Research and Development Program of China (863 Program) (No.

426 2014AA06A507).

2	
3	
4	
с С	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
30	
37 28	
39	
40	
41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53	
54	
55 56	
57	
58	
59	
60	

427 **References**

428	1. R. Atkinson, Atmos. Environ., 2000, 34, 2063-2101.
429 430	 C. Warneke, J. A. de Gouw, J. S. Holloway, J. Peischl, T. B. Ryerson, E. Atlas, D. Blake, M. Trainer and D. D. Parrish, J. Geophys. ResAtmos., 2012, 117, D00V17.
431 432 433	3. K. D. Lu, Y. H. Zhang, H. Su, T. Brauers, C. C. Chou, A. Hofzumahaus, S. C. Liu, K. Kita, Y. Kondo, M. Shao, A. Wahner, J. L. Wang, X. S. Wang and T. Zhu, J. Geophys. ResAtmos., 2010, 115, D07303.
434 435	4. D. H. Ehhalt, F. Rohrer, A. Wahner, M. J. Prather and D. R. Blake, J. Geophys. ResAtmos., 1998, 103, 18981-18997.
436 437	5. D. D. Parrish, A. Stohl, C. Forster, E. L. Atlas, D. R. Blake, P. D. Goldan, W. C. Kuster and J. A. de Gouw, J. Geophys. ResAtmos., 2007, 112, D10S34.
438 439	6. J. J. Colman, A. L. Swanson, S. Meinardi, B. C. Sive, D. R. Blake and F. S. Rowland, Anal. Chem., 2001, 73, 3723-3731.
440	7. H. Martin, J. Chromatogr. A, 2000, 885, 129-151.
441	8. R. S. Blake, P. S. Monks and A. M. Ellis, Chem. Rev., 2009, 109, 861-896.
442 443	9. X. Li, T. Brauers, A. Hofzumahaus, K. Lu, Y. P. Li, M. Shao, T. Wagner and A. Wahner, Atmos. Chem. Phys., 2013, 13, 2133-2151.
444 445	10. K. H. Chiu, U. Sree, S. H. Tseng, C. H. Wu and J. G. Lo, Atmos. Environ., 2005, 39, 941-955.
446 447	11. B. C. Sive, Y. Zhou, D. Troop, Y. L. Wang, W. C. Little, O. W. Wingenter, R. S. Russo, R. K. Varner and R. Talbot, Anal. Chem., 2005, 77, 6989-6998.
448	12. H. Peng, J. Wang, Z. Shen, D. Wu and Y. Guan, Analyst, 2011, 136, 586-590.
449 450	13. Y. Liu, M. Shao, S. H. Lu, C. C. Liao, J. L. Wang and G. Chen, Atmos. Chem. Phys., 2008, 8, 1531-1545.
451 452	14. M. de Blas, M. Navazo, L. Alonso, N. Durana and J. Iza, Sci. Total Environ., 2011, 409, 5459-5469.
453 454	15. X. Xie, M. Shao, Y. Liu, S. H. Lu, C. C. Chang and Z. M. Chen, Atmos. Environ., 2008, 42, 6000-6010.
455 456	16. E. C. Apel, J. G. Calvert, T. M. Gilpin, F. Fehsenfeld and W. A. Lonneman, J. Geophys. ResAtmos., 2003, 108, D9.
457 458	17. J. Slemr, F. Slemr, R. Partridge, H. D'Souza and N. Schmidbauer, J. Geophys. ResAtmos., 2002, 107, D19.
	23

Analytical Methods Accepted Manuscript

1	
2	
4	
5	
7	
8	
9 10	
11	
12	
13	
15	
16 17	
18	
19 20	
21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 26	
30 37	
38	
39 40	
41	
42 43	
44	
45 46	
40	
48 40	
49 50	
51	
52 53	
54	
55 56	
57	
58	
59 60	

459 460	18. A. Volz-Thomas, J. Slemr, S. Konrad, T. Schmitz, E. C. Apel and V. A. Mohnen, J. Atmos. Chem., 2002, 42, 255-279.
461 462 463	19. D. D. Parrish, M. Trainer, V. Young, P. D. Goldan, W. C. Kuster, B. T. Jobson, F. C. Fehsenfeld, W. A. Lonneman, R. D. Zika, C. T. Farmer, D. D. Riemer and M. O. Rodgers, J. Geophys. ResAtmos., 1998, 103, 22339-22359.
464 465	20. C. Warneke, J. A. De Gouw, W. C. Kuster, P. D. Goldan and R. Fall, Environ. Sci. Technol., 2003, 37, 2494-2501.
466 467	21. W. C. Kuster, B. T. Jobson, T. Karl, D. Riemer, E. Apel, P. D. Goldan and F. C. Fehsenfeld, Environ. Sci. Technol., 2004, 38, 221-228.
468 469	22. S. Kato, Y. Miyakawa, T. Kaneko and Y. Kajii, Int. J. Mass Spectrom., 2004, 235, 103-110.
470	23. J. L. Wang, W. C. Lin and T. Y. Chen, Atmos. Environ., 2000, 34, 4393-4398.
471 472	24. C. Wang, M. Shao, D. Huang, S. Lu, L. Zeng, M. Hu and Q. Zhang, Atmos. Environ., 2014, 89, 816-826.
473 474	25. B. Wang, M. Shao, S. H. Lu, B. Yuan, Y. Zhao, M. Wang, S. Q. Zhang and D. Wu, Atmos. Chem. Phys., 2010, 10, 5911-5923.
475 476	26. Q. Zhang, B. Yuan, M. Shao, X. Wang, S. Lu, K. Lu, M. Wang, L. Chen, C. Chang and S. Liu, Atmos. Chem. Phys., 2014, 14, 6089-6101.
477 478	27. M. Wang, M. Shao, W. Chen, B. Yuan, S. Lu, Q. Zhang, L. Zeng and Q. Wang, Atmos. Chem. Phys., 2014, 14, 5871-5891.
479 480	28. B. Yuan, M. Shao, J. de Gouw, D. D. Parrish, S. Lu, M. Wang, L. Zeng, Q. Zhang, Y. Song, J. Zhang and M. Hu, J. Geophys. ResAtmos., 2012, 117, D24302.
481 482	29. W. Chen, M. Shao, S. Lu, M. Wang, L. Zeng, B. Yuan, Y. Liu, Atmos. Chem. Phys., 2014, 14, 3047-3062.
483	30. CC. Hsieh, SH. Horng and PN. Liao, Aerosol Air Qual. Res., 2003, 3, 17-28.
484	31. S. A. Batterman, G. Zhang and M. Baumann, Atmos. Environ., 1998, 32, 1647-1655.
485 486	32. J. A. de Gouw, P. D. Goldan, C. Warneke, W. C. Kuster, J. M. Roberts, M. Marchewka, S. B. Bertman, A. A. P. Pszenny and W. C. Keene, J. Geophys. ResAtmos., 2003, 108, D21.
487	33. D. K. W. Wang and C. C. Austin, Anal. Bioanal. Chem., 2006, 386, 1099-1120.

488 Tables

489 Table 1 Target compounds and configurations for two parallel channels of

490 custom-built online GC-MS/FID system.

Channel	Channel 1	Channel 2				
		C5–C12 NMHCs, OVOCs,				
Target compounds	C2–C5 NMHCs	halocarbons, and alkyl				
		nitrates etc.				
Water management traps	quartz tube (25 cm, 1/4 inch OD)					
Enrichmont trong	PLOT (Al ₂ O ₃ /KCl) column	deactivated quartz capillary				
Enrichment traps	(25 cm, 0.53 mm ID)	(25 cm, 0.53 mm ID)				
Separation columns	PLOT (Al ₂ O ₃ /KCl)	DB-624				
Separation columns	(15 m, 0.32 mm ID)	(30 m, 0.25 mm ID)				
Detectors	FID	MS				

Analytical Methods Accepted Manuscript

491 Table 2 Sampling acquisition times and cycle lengths for four VOCs measurement

492 instruments.

Instrument	Sample acqisition time	Cycle length	Coverage percent ^b
online GC-MS/FID	5 min	60 min	
online GC-FID/PID	20-30 min	30 min	50%
offline GC-MS/FID	~1-2 min	60 min	100%
PTR-MS	1 s ^a	25 s	8%

493 ^a PTR-MS single ion intergration time;

494 ^b The coverage percent means the percentage of measurement data that used in correlation analysis

495 between observations by this instrument and the online GC-MS/FID system.

Analytical Methods

Table 3 Linear regression analysis results for ambient VOCs measurements by the

online GC-MS/FID with those measured by offline GC-MS/FID, online GC-FID/PID,

and PTR-MS.

	offline GC-MS/FID			online GC-FID/PID			PTR-MS		
Spacios		n=24			n=548			n=54	8
species									
	r	slope	intercept	r	slope	intercept	r	slope	intercept
ethane	0.95	0.97	-0.13	0.94	1.22	-0.47			
propane	0.98	1.08	-0.01	0.96	1.12	-0.39			
<i>i</i> -butane	0.97	1.10	-0.04	0.94	1.06	-0.23			
<i>n</i> -butane	0.92	1.05	0.11	0.91	1.02	-0.25			
<i>i</i> -pentane	0.97	0.98	0.05	0.91	1.00	-0.12			
<i>n</i> -pentane	0.99	1.02	-0.09	0.93	1.02	-0.06			
<i>n</i> -hexane	0.98	1.04	-0.07	0.91	1.13	0.02			
<i>n</i> -heptane	0.97	1.04	0.03	0.92	0.88	-0.04			
<i>n</i> -octane	0.97	0.87	-0.01	0.57	1.05	-0.04			
<i>n</i> -nonane	0.93	0.83	0.00	0.42	0.20	-0.01			
acetylene	0.96	1.17	0.12						
ethene	0.97	0.88	0.28	0.91	2.07	0.08			
propene	0.98	0.78	0.06	0.94	1.13	0.09			
trans-2-butene	0.64	0.66	-0.04	0.50	2.16	-0.15			
1-butene	0.95	0.73	-0.07	0.88	1.11	-0.03			
cis-2-butene	0.54	0.62	-0.05	0.80	1.23	0.01			
1,3-butadiene	0.75	0.62	-0.01						
1-pentene	0.72	0.75	-0.01	0.72	6.36	-0.17			
trans-2-pentene	0.53	0.44	0.01	0.64	1.22	0.02			
cis-2-pentene	0.59	0.45	0.00	0.59	1.34	0.01			
1-hexene	0.67	0.68	-0.01						
isoprene	0.83	0.63	-0.09	0.87	1.07	0.10	0.73	0.79	0.26
benzene	0.99	0.98	-0.12	0.96	0.95	0.12	0.96	0.80	0.07
toluene	0.98	1.02	-0.23	0.91	0.97	-0.03	0.99	0.94	0.05
ethylbenzene	0.99	0.94	-0.10	0.92	0.73	-0.08			
<i>m</i> , <i>p</i> -xylene	0.97	0.90	-0.02	0.93	0.75	0.06			
o-xylene	0.93	0.84	-0.04	0.88	0.70	-0.12			
styrene	0.87	0.55	-0.04	0.80	0.29	-0.03	0.88	0.93	0.02
<i>i</i> -propylbenzene	0.86	0.85	0.00	0.63	0.45	-0.01			
n-propylbenzene	0.90	0.86	-0.01	0.82	0.51	-0.01			
<i>m</i> -ethyltoluene	0.82	0.70	0.00	0.53	0.57	0.00			
<i>p</i> -ethyltoluene	0.73	0.73	0.00	0.66	0.45	0.01			
,3,5-trimethylbenzene	0.72	0.49	0.00	0.59	0.28	-0.01			
o-ethyltoluene	0.77	0.72	0.00	0.63	0.54	-0.01			
,2,4-trimethylbenzene	0.91	0.58	0.00	0.90	0.41	-0.03			
,2,3-trimethylbenzene	0.85	0.56	0.00	0.63	0.74	-0.04			
C8 Aromatics							0.98	0.87	0.09
C9 Aromatics							0.96	0.99	0.12
acetone							0.90	1.29	-0.44
MEK ^a							0.89	1.39	-0.18
MACR+MVK ^a							0.93	0.83	0.15
CH_2Cl_2	0.91	0.89	0.02						
CHCl ₃	0.90	1.03	0.00						
C ₂ HCl ₃	0.88	1.10	0.00						
C ₂ Cl ₄	0.89	0.83	0.00						

 ^a MEK: methylethylketone; MACR: methacrolein; MVK: methylvinylketone.

Analytical Methods Accepted Manuscript

500 Figures

504 condenser; 4: oil-separator; 5 and 6: heat-exchanger; 7 and 8: capillary tube; 9:

505 evaporator; 10: evaporated condenser. The first and second stage circulation systems

506 are illustrated by red and blue lines, respectively.

Fig. 2 Schematic of the custom-built automatic GC-MS/FID system for online VOCs measurements. The green lines and arrows illustrate flow paths of carrier gases during preparation stage.

Fig. 3 Schematic of the sampling and pre-concentration system. The flow paths of carrier gase during (a) sampling and pre-concentration, (b) injection, (c) idle (GC analysis), and (d) back purge stages are illustrated by green lines and arrows.

3 56-NMHCs mixture standard and (b) a typical ambient air sample.

Fig. 5 Response factors of (a) *m,p*-xylene and toluene detected by MS and (b)
ethene and *i*-pentane detected by FID for daily calibrations. Response factors of *m,p*-xylene and toluene have been corrected based on measured responses of

8 CFC-113 in ambient air. The gray areas represent $\pm 10\%$ uncertainty range.

10 Fig. 6 Time series of (a) benzene, (b) toluene, (c) C8 aromatics, (d) C9 aromatics, (e)

- 11 styrene, and (f) isoprene mixing ratios measured by online GC-MS/FID (red dots),
- 12 online GC-FID/PID (green dots), PTR-MS (grey lines), and offline GC-MS/FID
- 13 (blues dots) at the PKU site from August 12 to September 6, 2010.

Fig. 7 Scatter plots of the PTR-MS and online GC-MS/FID measurements for (a) styrene, (b) isoprene, (c) C8 aromatics, (d) benzene, (e) C9 aromatics, (f) toluene, (g) acetone, (h) MACR+MVK, and (i) MEK. Each filled circle represents one data point. The error bars correspond to the standard deviations for 5-min averages of PTR-MS data. The blue and green lines correspond to the linear regression fit for all data points and the 1:1 relationship, respectively.

24 (19:00–07:00) and daytime (08:00–18:00), respectively. The red and green lines

25 correspond to the linear regression fit for daytime isoprene and 1:1 relationship,

26 respectively.

Graphical Abstract

An cryogen-free automatic gas chromatograph system was developed for online measurements of volatile organic compounds in the atmosphere.

