Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

A multi-residue analysis of sulphonamides in edible animal tissues using QuEChERS extraction and HPLC – MS/MS

Hiba Abdallah,^{ab} Carine Arnaudguilhem,^b Ryszard Lobinski^{bc} & Farouk Jaber ^{*ad}

^a CNRSL, Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound
 5 (LAOC), Beirut, Lebanon

^b CNRS/UPPA, Laboratory of Bio-Inorganic Analytical and Environmental Chemistry (LCABIE), UMR5254,
 Hélioparc, 2, Av. President Angot, 64053 Pau, France

8 ^c Department of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland

^d Laboratory of Analysis of Organic Compounds (509), Faculty of Sciences I, Lebanese University, Hadath,
 Prime Lebrary

10 Beirut, Lebanon

11 Abstract

A HPLC- double reaction monitoring MS/MS method was developed for the determination of a wide range (>20) sulphonamide residues in several edible animal (sheep, pork, beef, chicken and dromedary) tissues. Sample preparation was based on the simultaneous extraction into acetonitrile solution followed by a clean-up using primary secondary amine beads. Quantification was carried out using matrix-matched calibration curves. The limit of detection (LODs) and limit of quantification (LOQs) ranged from 0.5 to 14.5 µg.kg⁻¹ and from 1.8 to 48.4 μ g.kg⁻¹, respectively. Decision limit (CC α) and decision capability (CC β) obtained were below 100 μ g.kg⁻¹ for sulphonamides and below 5 μ g.kg⁻¹ for dapsone. The method was validated in terms of recoveries and inter and intra-day precision by reference analyses of meat samples using LC-Orbitrap MS and by the analysis of a reference material. The method was applied to the analysis of several animal tissue samples collected in Lebanon. The highest values were observed for sulfamethazine and sulfadimethoxine at 70.2 and 62.5 μ g.kg⁻¹ in sheep tissues.

Analytical Methods Accepted Manuscript

Tel : 00 96 11 45 08 11 Fax : 00 96 11 45 08 10

Corresponding author: Farouk Jaber

Address : Laboratory for Analysis of Organic Compound Lebanese Atomic Energy Commission, B. P. 11-8281, Riad El Solh 1107 2260 Beirut, Lebanon

E-mail address: fjaber@cnrs.edu.lb

Analytical Methods Accepted Manuscript

Keywords: QuEChERS, mass spectrometry, sulphonamides residues, edible animal tissues.

1. Introduction

Sulphonamides (SAs) are the most common (after tetracyclines) veterinary antibiotics used in the EU. They are relatively cheap and efficient to combat many common bacterial infections.^{1,2} SAs are *N*-substituted derivatives of the *p*-aminobenzenesulfonic acid with amphoteric properties. They can be metabolized in the animal body to produce N1 (oxidation) and N4 (acetylation) derivatives. Glucuronide conjugation and aromatic hydroxylation can also take place leading to sulfinamide, AZO-SAs or nitro-SAs (Fig. 1).^{3,4} As a consequence of the extensive usage of SAs, their residues (parent compounds or metabolites) can persist in edible tissues of farm animals.⁴⁻⁶ The exposure of consumers to SAs can lead to allergies and hematological, gastrointestinal and neurological diseases.^{7,8} The use of SAs in animals is regulated; according to the EU regulation 37/2010, SAs are authorized substances whereas dapsone is a prohibited one. The maximum residue limit (MRL) for the total amount of SAs in edible tissues, such as muscle, liver, kidney and milk, is 100 µg.kg⁻¹⁹ which requires the development of relevant monitoring analytical methods.

High performance liquid chromatography (HPLC) coupled to triple quadrupole mass spectrometry (MS),¹⁰⁻¹³ operated in "Multiple Reaction Monitoring" (MRM) or "Selected Reaction Monitoring" (SRM),^{10,12,14-16} mode, is a common technique of choice for a wide range of chemical residues. The analytes are usually detected by monitoring the ions corresponding to at least two mass transitions which, in combination with their chromatographic retention time, offer sufficient analytical selectivity. The high throughput of HPLC- MS/MS analysis is dependent on the simultaneous multispecies efficient extraction method. These criteria are fulfilled by leaching with aqueous acetonitrile solution followed by the extract cleanup. This principle, referred to as QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) was first developed for the extraction of pesticides ¹⁷ but has been increasingly used for the recovery of veterinary drugs from various types of matrices, offering an increased sample throughput and reducing the cost of analysis.

54 The literature concerning the simultaneous HPLC - triple quad MS/MS analysis of 55 SAs residues in edible animal tissues is relatively scarce and limited to few tissue varieties Page 3 of 24

Analytical Methods

(poultry and fish $^{16,18-20}$) and to a limited number of compounds (6 16 , 7 19 and 16 compounds 1⁸). The objective of this work was to develop a wide-scope method in terms of the number of compounds determined (23 – the most complete list reported recently by non-targeted highresolution MS²¹) and in terms of the variety of matrices analysed (sheep, chicken, beef, pork, and dromedary kidney, liver and muscle).

- 2. Materials and methods
- 2.1. Reagents and samples

The structures of the studied SAs are summarized in Fig. 1. SAs were obtained from Ehrenstorfer (Augsburg, Germany) (Sulfaguanidine (SGN), Sulfadiazine (SD), Sulfathiazole (STZ), Sulfamerazine (SM), Sulfamethoxypyridazine (SMP), Sulfamonomethoxine (SMM), Sulfadoxine (SDO), Sulfaphenazole (SNZ), Sulfadimethoxine (SDM) and Sulfaquinoxaline (SQX)) and Sigma Aldrich (China) (Sulfacetamide (SAA), Sulfisomidine (SIM), Sulfapyridine (SP), Sulfameter (SME), Sulfamethizole (SMT), Sulfamethazine (SMZ), Sulfachloropyridazine (SCP), Sulfamethoxazole (SMX). Sulfisoxazole (SIX). Sulfabenzamide (SB), Sulfanitrane (SNT), Sulfaclozine (SCL) and Dapsone (Da)). The internal standard SMX-D₄ was obtained from C/D/N Isotopes (Pointe-Claire, QC, Canada). All the standards were of high purity grade (>95 %).

Analytical Methods Accepted Manuscript

LC-MS grade methanol (MeOH), acetonitrile (MeCN), acetic acid (AA) and formic acid 98% (FA) were purchased from Honeywell (Germany), Fluka (Germany), Sharlu (Spain) and BDH AnulaR (England), respectively. Water was purified using EasypureTM II (Thermo Scientific, USA). For the "QuEChERS" extraction sodium citrate, sodium hydrogencitrate sesquihydrate, magnesium sulfate and primary secondary amine were purchased from Sigma Aldrich. Sodium chloride was purchased from Riedel de Haen. Purified extracts were filtered through a 0.2 µm Ultrafree-CL Centrifugal filter with a low-binding Durapore PVDF membrane (Millipore, France).

Edible beef, sheep, chicken, pig and dromedary tissues (liver, kidney, muscle) were collected from slaughterhouses and farms in Lebanon. A reference material (FAPAS pig kidney N°02227) was obtained from the Food and Environment Research Agency (United Kingdom).

Analytical Methods Accepted Manuscript

87 2.2. Standards solutions

Individual standard stock solutions (ca 1000 mg.l⁻¹) were prepared by dissolving an appropriate amount of each compound in MeCN and MeOH depending on their solubility. A mixed standard working solution (10 mg. 1^{-1}) used for the spiking of the control samples was prepared by appropriate dilutions with MeCN. Another mixed standard working solution (1 mg.l⁻¹) was prepared by dilution of the 10 mg.l⁻¹ mixed standard working solution with the initial mobile phase (water/MeOH 0.01% formic acid (95:5, v/v)). A working internal standard solution (10 mg.l⁻¹) of SMX-D₄ was prepared by dilution of the stock solution (ca. 550 mg, l^{-1}) in MeCN. All stock and working solutions were stored in dark at -20 0 C.

2.3. Extraction

Extraction and cleanup were based on QuEChERS extraction as described elsewhere.²¹ Extraction efficiency was evaluated using samples spiked with appropriate amounts of solutions of SAs and SMX-D₄ (IS) at 100 µg.kg⁻¹. A 5-g finely ground sample of meat was weighed. Then, 5 mL of water and 10 mL 1% acetic acid in MeCN (v/v) were added to the sample. After agitation for 1 min, 0.5 g of sodium hydrogencitrate sesquihydrate, 1.0 g sodium citrate, 4.0 g of anhydrous magnesium sulfate and 1g of sodium chloride were added. The mixture was vigorously shaken, vortexed for 1 min and centrifuged at 3500 rpm for 5 min. 6 mL of the supernatant was purified with 150 mg of primary secondary amine and 900 mg of anhydrous magnesium sulfate followed by shaking and centrifugation in the conditions as above. 4 mL of the supernatant was evaporated to dryness with N₂ (35 ⁰C), reconstituted with 500 μ l 0.01% (v/v) formic acid in 95% (v/v) MeOH and then filtered through a 0.2 μ m PVDF, low-binding Durapore (Millipore) filter.

Liquid chromatography–mass spectrometry (LC–MS²)

Chromatographic analysis was performed using an Agilent 1200 HPLC system (Agilent, USA). Separations were achieved with a Zorbax Eclipse XDB-C8 column (3.5 μ m, 2.1×100 mm, Agilent). The column was kept at 30 °C. The flow-rate and injection volume were 0.2 ml/min and 5µL, respectively. The mobile phases used were: (A) 0.01% formic acid and (B) 0.01% formic acid in MeOH. The gradient elution program was: 0-10 min (5% -10%) B, 10-12 min (10% - 50%) B, 12-15 min (50% - 100%) B, 15-17 min (100%) B. Then, the elution gradient was linearly ramped down to 5 % B for 2 min and maintained for 11 min to allow the conditioning of the column prior to next injection.

2.4.

Page 5 of 24

Analytical Methods

 Mass spectrometry analysis was carried out using an Agilent 6410 electrospray triple quadrupole mass spectrometer operated in positive mode. All the SAs were measured in the same chromatographic run by tandem MS carried out in the MRM acquisition mode. Two precursor-to-product ion transitions were monitored of each analyte *(Table 1)*. The most intense transition was used for quantification ("quantification transition") and the second transition for confirmation of the presence of the analyte ("confirmation transition").

124 The optimization of MS parameters (precursor ions, skimmer voltage, collision 125 energy, and quantification and confirmation transitions) was performed by flow injection 126 analysis for each compound dissolved in the mobile phase. Data acquisition was carried out 127 using MassHunter software (Agilent).

2.5. Validation

Linearity, accuracy, intra-day and inter-day precision, limits of detection (LOD) and quantification (LOQ), decision limit (CC_{α}), detection capability (CC_{β}) and stability were studied to validate the whole procedure according to the European Commission 2002/657/EEC recommendations²². SAs quantification was performed using matrix-matched calibration. Linearity was verified by spiking meat samples with the target compounds at 5 levels (blank, 50, 100, 150, 200 µg.kg⁻¹) for SAs and (blank, 1.25, 2.5, 3, 5 µg.kg⁻¹) for dapsone and a fixed concentration of SMX-D4 (100 µg.kg⁻¹). Calibration curves were obtained by least-squares linear regression analysis of the peak area versus concentration corrected with a deuterated internal standard SMX-D₄.

Analytical Methods Accepted Manuscript

Accuracy of the method was assessed by determining the concentration of 3 uncontaminated meat samples spiked with 100 µg.kg⁻¹ and 5 µg.kg⁻¹ of SAs and dapsone respectively, using matrix-matched calibration, and comparing the calculated concentration with the theoretical concentration. Precision (intra- and inter-day) was investigated at the same concentration level. The values of CC_{α} and CC_{β} were calculated for all analytes using a matrix-matched calibration curve. CC_{α} was calculated at the statistical certainty of $1-\alpha$ ($\alpha =$ 0.05 for authorized compounds and 0.01 for unauthorized compounds) and CC_{β} for 1- β (β = 0.05 for both authorized and unauthorized compounds) to detect the concentration at the spiked levels 100 and 5 µg.kg⁻¹ for SAs and dapsone, respectively.^{23,24} LOD and LOQ were determined as the lowest amount of analyte which could be detected and quantified, respectively. The LOD and LOQ were estimated at 3 and 10 times the standard deviation of the response obtained for 10 samples spiked at 25 and 5 µg.kg⁻¹ for SAs and dapsone

Analytical Methods Accepted Manuscript

respectively, divided by the slope of the calibration curve. All the experiments were repeated for each concentration level on 3 different days. The stability was assessed by spiking beef samples at different concentration (50 (1.25), 100 (2.5), 150 (3) and 200 (5) μ g.kg⁻¹ for SAs (and dapsone) compounds, respectively, stored at -18 ^oC for 12 weeks.

155 3. Results and Discussion

156 The choice of the analytes was made to match the most complete list reported so far.²¹

3.1. Extraction procedure

The extraction procedure was developed for beef muscle in a previous study.²¹ In order to evaluate the efficiency of this procedure, samples of liver, muscle and kidney derived from beef and pork were spiked at 100 μ g.kg⁻¹ of SAs and 5 μ g.kg⁻¹ of dapsone.

For pork matrices (Fig.2a) recoveries of 70-120% for 19 SAs and of 4 SAs 50-70% were achieved for muscle and kidney samples. Most SAs were extracted from liver with recoveries higher than 50%. For beef matrices (Fig.2b), QuEChERS allowed the extraction recoveries of 70-120% for 21 SAs from kidney and for 16 SAs in muscle tissues. In liver, most of the tested SAs yielded recoveries of 50-70%. Similar results were obtained for sheep (Fig.2c) (70-100% from muscle and kidney and 54-80% from liver samples) and dromedary (Fig.2d) (70-120% from muscle and kidney and 60-90% from liver samples), and chicken (70-90% and 55-70%, respectively) (Fig.2e). In general, the recoveries decreased in the order kidneys > muscle > liver for beef, pork, sheep, and in the order; muscle > kidneys > liver for dromedary.

3.2. LC-MS/MS determination

ESI source and positive ionization mode were selected due to the presence of primary or secondary amino groups in the SAs. MRM mode was applied; two transitions per analyte were selected. The more sensitive one was used for quantitation whereas the other one for the identity confirmation. A typical Total Ion Count (TIC) chromatogram for a beef muscle spiked with 23 SAs at the fixed levels (100 and 5 μ g.kg⁻¹ for SAs and dapsone respectively) is shown in *Fig. 3*. Page 7 of 24

Analytical Methods

Typical fragment ions were observed for most SAs at m/z 156 (cleavage of the S-N bond [M-RNH₂]⁺), m/z 108 (elimination of the RNH₂SO group) and at m/z 92 (cleavage of the M-RNH₂-SO₂ group]⁺. Another number of specific transitions were detected for some compounds due to the variable amine substituent, such as, e.g., ions of m/z 124 and 186 for SIM and SMZ, m/z 215 for SME and SMM, m/z 184, 126, 113 and 130 for SP, SMP, SIX and SCL, respectively. For the di-substituted SAs, SNT was detected at m/z 134 and 156. The values of the parameters optimized and the MRM transitions selected are given in *Table 1*.

3.3. Figures of merit

The monitoring of SAs in the animal tissues was performed by Multiple Reaction Monitoring (MRM). The identity confirmation was accomplished by comparing the retention time and the ion ratio of the 2 transitions within 2% and 20%, respectively. The quantification was performed with the most intense transition by matrix-matched calibration. The method was validated following the criteria defined in the Decision 2002/657/EC for quantitative confirmatory methods.²² Method detection limit (LOD), quantitation limit (LOQ), precision (intra-day and inter-day), accuracy, decision limit (CC_{α}), detection capability (CC_{β}) and stability were evaluated for all compounds using spiked beef tissue. No SAs compound was detected in any of the blank beef tissue samples.

Linearity was that of a matrix-matched calibration curve obtained by spiking a beef tissue with the selected antibiotics in the range from 50 to 200 and 1 to 5 µg.kg⁻¹ for SAs and dapsone, respectively. A correlation coefficient (\mathbb{R}^2) higher than 0.990 was obtained for all the compounds, except for SNT (*Table 2*). Accuracy (expressed as *A* (%) = mean measured *concentration* * 100 / theoretical concentration), intra-day and inter-day precision (expressed as *Relative Standard Deviation*, *RSD*) of the analytical method were assessed by the analysis of 3 different samples spiked at 100 and 5 µg.kg⁻¹ levels for SAs and dapsone, respectively. The analysis was performed by the same operator on three separate days (3 experiments per day) (*Table 2*). The A% value varied from 71% to 117%. The inter-day precision (*RSD R*) values were below 23% except for SGN and SNT and the intra-day precision (*RSD r*) below 15% for all SAs except for SNT. These results obtained for *A*%, *RSD R* and *RSD r* are consistent for all the analytes with the requirements of the 2002/657/EC decision.²²

The decision limit (CC_{α}) was defined as "the limit at and above which it can be concluded with an error probability of α that a sample is non-compliant", and the detection capability (CC_{β}) as "the smallest content of the substance that may be detected, identified

Analytical Methods Accepted Manuscript

and/or quantified in a sample with an error probability of β^{α} . In the case of SAs, α and β errors were set at 5% (authorized antibiotics) and 1% in the case of dapsone (unauthorized antibiotic). The decision limit (CC_{α}) and the detection capability (CC_{β}) were calculated from the matrix matched calibration curve using the ISO 11843 method by using the following equations: ²⁴

$$\begin{split} & \text{Eq1:} \quad \text{CC}_{\alpha} \ = \ \text{C}_{\text{MRL}} + \ \textbf{t}_{\nu,\alpha} \frac{\widehat{\sigma}}{a} \sqrt{1 + \frac{1}{IJ} + \frac{(X_{\text{MRL}} - \overline{X})^2}{\sum (X_{ij} - \overline{x})^2}} \\ & \text{Eq 2:} \quad \text{CC}_{\beta} \ = \ \text{C}_{\text{MRL}} + \ \delta_{\nu,\alpha,\beta} \frac{\widehat{\sigma}}{a} \sqrt{1 + \frac{1}{IJ} + \frac{(X_{\text{MRL}} - \overline{X})^2}{\sum (X_{ij} - \overline{x})^2}} \end{split}$$

where *a* is the slope of the regression line which equals the recovery of the analyte, C_{MRL} is the MRL value of the analyte, $t_{v,\alpha}$ the associated *t*-value, σ is an estimation of the residual standard deviation of the regression function, *I* the number of replicates per concentration, *J* the number of concentrations of the spiked samples, x_{MRL} is the referenced MRL value of the analyte, *x* is the mean of the x_{ij} values (Eq.1) and $\delta_{v,\alpha,\beta}$ is a statistical function that can be fairly approximated by $2t_{v,\alpha}$ (Eq.2).

The results reported for CC_{α} and CC_{β} values in *Table 2* ranged from 101 to 118 µg.kg⁻¹ which is similar to the SAs MRL level. For dapsone, CC_{α} and CC_{β} values were 0.5 and 0.6 µg.kg⁻¹ respectively, which is less than the lowest spiked concentration. We can thus conclude that the developed method is applicable for the detection of SAs and dapsone with a statistical certainty of 95 and 99%, respectively. In comparison with the values reported in literature for SAs,^{10,15,18} the calculated CC_{α} and CC_{β} values from this study are equal (in most cases) indicating a high sensitivity of the reported methodology.

The limit of detection (LOD) is the smallest value of the concentration of an analyte which can be detected and the limit of quantification (LOQ) is the smallest value of the concentration of an analyte which can be quantified. These limits were calculated as the standard deviation (SD) of the intensity obtained for tissues spiked at levels close to the LOD and LOQ divided by the slope (a) of the calibration curve according to the formulae: LOD = 3.3 (SD/a) and LOQ = 10 (SD/a). In each case, LOD was found to be lower than the MRL and ranged from 1.7 to 15 μ g.kg⁻¹; LOQ ranged from 5.8 to 49.7 μ g.kg⁻¹for SGN and SQX,

respectively. For dapsone, LOD and LOQ values of 0.5 and 1.8 µg.kg⁻¹, respectively, were found (Table 2).

In order to evaluate the stability of 23 SAs in meat samples, different beef muscles were spiked with the analytes at 4 concentration levels (50 (1.25), 100 (2.5), 150 (3) and 200 (5) μ g.kg⁻¹ for SAs (and dapsone) respectively, stored at -18 ^oC for 1, 2, 6 and 12 weeks and extracted as described in section 2.3. All SAs were found to be stable for at least 12 weeks at -18 ⁰C (*Appendix A, Fig. A1*).

3.4. Analysis of marketed samples

The developed method was tested on different matrices (kidney, muscle, liver) collected from beef, pig, sheep, chicken and dromedary. Forty samples were analyzed: 12 beef (6 muscle, 3 liver and 3 kidney), 12 sheep (4 muscle, 4 liver and 4 kidney), 8 pig (4 muscle, 2 liver and 2 kidney), 4 chicken (2 muscle and 2 liver) and 4 dromedary (2 muscle, 1 liver and 1 kidney). The concentrations of the detected compounds are summarized in Table 4. LC/MS/MS chromatograms obtained for samples S5 and S20 are shown in Appendix B, Fig. B1.

Seventeen samples showed the presence of SDM, SMZ, SD and SQX with some detected at MRL/2<C<MRL. SDM was detected at 62.5, 59.1 and 50.5 µg.kg⁻¹ levels in beef and pork muscle, respectively. SMZ was detected at 70.2 µg.kg⁻¹ in sheep liver and at 25.6 and 23.2 µg.kg⁻¹ in sheep muscle and kidney, respectively. Traces of SMZ and SD (LOD<C<LOQ) were observed in some muscle, liver and kidney of beef, sheep, pork and chicken as shown as in Table 4. The confirmation according to the Commission Decision 2002/657/EC²²: the correct ratio of the intensities of the two transitions and the correct retention time was successful in all cases.

Analytical Methods Accepted Manuscript

- 3.5. Quality assurance

The samples with the detectable concentrations of SAs were analysed using HPLC-Orbitrap MS according to the procedure reported elsewhere.²¹ Note that in terms of precision, linearity, accuracy, CC_{α} and CC_{β} , HR Orbitrap-MS matches the LC-MS/MS performance for the most compounds but shows lower sensitivity. The results presented in Fig. C1 show good $(R^2 > 0.992)$ correlation between LC-Orbitrap MS and LC - MS/MS.

A FAPAS (Food Analysis Performance Assessment Scheme) test material 02227 of pig kidney containing SP, SMZ and SDO at concentrations of 120, 68.7 and 63.4 μ g.kg⁻¹ was analysed. The concentrations found for SP, SMZ and SDO were 106, 44 and 62 μ g.kg⁻¹ with Z scores -0.52, -1.6 and -0.53, respectively. The fitness for purpose of the presented method was thus demonstrated with all -2 ≤ Z scores ≤ 2 (*Table 3*).

275 4. Conclusion

 HPLC – double reaction monitoring MS/MS preceded by HPLC allows a rapid, sensitive,
precise and accurate determination of 23 sulfonamides in different edible animal tissues
required to be monitored by the European Commission 2002/657/EEC decision. The method
offers lower detection limits (1-3 times) in comparison with the use of Orbitrap mass analyser
making triple Quad MS better for quantitative analysis. However, unlike MS/MS, the
Orbitrap-MS methods using both "full scan" and "MSⁿ" mode may offer the possibility to
explore sets of data retrospectively.

283 Acknowledgements

We thank the Lebanese National Council for Scientific Research (CNRSL) and the LebaneseAtomic Energy Commission (LAEC) for financial support.

286 Caption to the tables

- 287 Table 1: SAs retention time (RT) and MS/MS parameters
- Table 2: Extraction recovery, AR (%) and validation parameters of analysis of SAs in beef
 muscle using QuEChERS-LC-MSMS
- Table 3: Results for analysis of CRM (pig kidney) using QuEChERS extraction method, LC MSMS and Orbitrap-MS
- 292 Table 4: Concentration of SAs in positively analysed samples

Caption to the figures

- 295 Fig.1: Structures of SAs antibiotics
- Fig.2: Recovery values (%) obtained from a) pork samples, b) beef, c) sheep, d) dromedaryand e) chicken with selected buffered QuEChERS method
- Fig.3: Total Ion Counts (TIC) of a beef muscle spiked with 23 sulphonamides at the fixed
 levels: 100 μg.kg⁻¹ and 5 μg.kg⁻¹ for SAs and dapsone, respectively. a) SGN, b) SAA, c) SD,

2		
3	300	d) SIM, e) SMZ, f) STZ, g) SP, h) SM, i) SME, j) SMP, k) SMM, l) SMT, m) Da, n) SCP, o)
4	201	SCL n) SMX a) SDO r) SDM s) SIX t) SR u) SNZ v) SOX w) SNT and v) SMX D.
5	501	SCL, p $SWIX, q$ $SDO, 1$ $SDWI, s$ SIX, t SD, u SWZ, v SQX, w $SW1$ and x $SWIX-D_4$
6		
7	302	Captions to supplementary data
8		
9	303	Appendix A
10		
11	204	Fig. A 1. Stability of SA g in anitad boof muscle at different concentrations $a = 50$ (1.25) b) 100
12	304	Fig. A1. Stability of SAS in spiked beef muscle at different concentrations a) $50(1.25)$, b) 100
13	305	(2.5) , c) 150 (3) and d) 200 (5) μ g.kg ⁻¹ for SAs and dapsone, respectively.
14		
15	306	<u>Appendix B</u>
16		
17	307	Fig.B1: LC-MS/MS chromatograms of some analysed samples (a) S5 containing SDM (59.1
18	308	$\mu g k g^{-1}$) and (b) S20 containing SMZ (70.2 $\mu g k g^{-1}$)
19	500	μ_{B}
20	309	Appendix C
21		
22	24.0	
23	310	Fig.C1: Correlation graph of concentrations (µg.kg ⁻) determined of studied compounds with
20	311	triple quadrupole mass spectrometry (QqQ) and Orbitrap analyzers in meat samples
25	312	
26	313	
27	314	
28	315	
20	316	
20	217	
31	517	
32	318	
33	319	
34	320	
35	321	
36	322	
37	323	
38	324	
30	325	
40	225	
40 41	220	
42	327	
43	328	
44	329	
45	330	
46	331	
47	332	
48	333	
49	334	
50	335	
51	335	
52	550	
53	33/	
54	338	
55	339	
56	340	
57	341	
58	342	
59		
60		11 Page

References

1 L. Kantiani; M. Llorca; J. Sanchís; M. Farré; D. Barceló, Emerging food contaminants: a
review, *Anal. Bioanal. Chem.*, 2010, **398**, 2413.

346 2 S. A. E. Kools; J. F. Moltmann; T. Knacker, Estimating the use of veterinary medicines in
the European union, *Regul. Toxicol. Pharm.*, 2008, 50, 59.

348 3 M. J. García-Galán; M. Silvia Díaz-Cruz; D. Barceló, Identification and determination of
metabolites and degradation products of sulfonamide antibiotics, *TrAC Trends Anal. Chem.*,
2008, 27, 1008.

4 C. Huang; B. Guo; X. Wang; J. Li; W. Zhu; B. Chen; S. Ouyang; S. Yao, A generic approach for expanding homolog-targeted residue screening of sulfonamides using a fast matrix separation and class-specific fragmentation-dependent acquisition with a hybrid quadrupole-linear ion trap mass spectrometer, *Anal. Chim. Acta*, 2012, **737**, 83.

5 M. M. Aguilera-Luiz; J. L. Martínez Vidal; R. Romero-González; A. Garrido Frenich, Multiclass method for fast determination of veterinary drug residues in baby food by ultrahigh-performance liquid chromatography-tandem mass spectrometry, *Food Chem.*, 2012, , 2171.

6 D. Hurtaud-Pessel; T. Jagadeshwar-Reddy; E. Verdon, Development of a new screening
method for the detection of antibiotic residues in muscle tissues using liquid chromatography
and high resolution mass spectrometry with a LC-LTQ-Orbitrap instrument, *Food Addit. Contam. Part A*, 2011, 28, 1340.

363 7 W. Baran; E. Adamek; J. Ziemiańska; A. Sobczak, Effects of the presence of sulfonamides
364 in the environment and their influence on human health, *J. Hazard. Mater.*, 2011, 196, 1.

365 8 R. S. Gruchalla, 10. Drug allergy, J. Allergy Clin. Immunol., 2003, 111, S548.

General Science Scien

10 H. Yu; Y. Tao; D. Chen; Y. Wang; L. Huang; D. Peng; M. Dai; Z. Liu; X. Wang; Z.
Yuan, Development of a high performance liquid chromatography method and a liquid
chromatography-tandem mass spectrometry method with the pressurized liquid extraction for
the quantification and confirmation of sulfonamides in the foods of animal origin, J. *Chromatogr. B*, 2011, 879, 2653.

374 11 C. Chiaochan; U. Koesukwiwat; S. Yudthavorasit; N. Leepipatpiboon, Efficient
375 hydrophilic interaction liquid chromatography-tandem mass spectrometry for the multiclass
376 analysis of veterinary drugs in chicken muscle, Anal. Chim. Acta, 2010, 682, 117.

377 12 P. A. Martos; F. Jayasundara; J. Dolbeer; W. Jin; L. Spilsbury; M. Mitchell; C. Varilla; B.
378 Shurmer, Multiclass, multiresidue drug analysis, including aminoglycosides, in animal tissue

Analytical Methods

using liquid chromatography coupled to tandem mass spectrometry, J. Agric. Food Chem.,
2010, 58, 5932.

13 H. Li; H. Sun; J. Zhang; K. Pang Highly, Sensitive and simultaneous determination of
sixteen sulphonamide antibiotics, four acetyled metabolites and trimethoprim in meat by
rapid resolution liquid chromatography-tandem mass spectrometry, *Food Control*, 2013, 31,
359.

14 L. Kantiani; M. Farré; J. M. G. i. Freixiedas; D. Barceló, Development and validation of a
pressurised liquid extraction liquid chromatography–electrospray–tandem mass spectrometry
method for β-lactams and sulfonamides in animal feed, J. Chromatogr. A, 2010, 1217, 4247.

15 M. McDonald; C. Mannion; P. Rafter, A confirmatory method for the simultaneous
extraction, separation, identification and quantification of Tetracycline, Sulphonamide,
Trimethoprim and Dapsone residues in muscle by ultra-high-performance liquid
chromatography-tandem mass spectrometry according to Commission Decision
2002/657/EC, J. Chromatogr. A, 2009, 1216, 8110.

16 R. P. Lopes; R. C. Reyes; R. Romero-González; A. G. Frenich; J. L. M. Vidal,
Development and validation of a multiclass method for the determination of veterinary drug
residues in chicken by ultra high performance liquid chromatography-tandem mass
spectrometry, *Talanta*, 2012, **89**, 201.

398 17 I.-S. Jeong; B.-M. Kwak; J.-H. Ahn; S.-H. Jeong, Determination of pesticide residues in
399 milk using a QuEChERS-based method developed by response surface methodology, *Food*400 *Chem.*, 2012, 133, 473.

401 18 G. Stubbings; T. Bigwood, The development and validation of a multiclass liquid
402 chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of
403 veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap,
404 Effective, Rugged and Safe) approach, *Anal. Chim. Acta*, 2009, **637**, 68.

405 19 M. Villar-Pulido; B. Gilbert-López; J. F. García-Reyes; N. R. Martos; A. Molina-Díaz,
406 Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast
407 liquid chromatography time-of-flight mass spectrometry, *Talanta*, 2011, **85**, 1419.

20 R. P. Lopes; R. C. Reyes; R. Romero-González; J. L. M. Vidal; A. G. Frenich,
Multiresidue determination of veterinary drugs in aquaculture fish samples by ultra high
performance liquid chromatography coupled to tandem mass spectrometry, *J. Chromatogr. B*,
2012, 895–896, 39.

412 21 H. Abdallah; C. Arnaudguilhem; F. Jaber; R. Lobinski, Multiresidue analysis of 22
413 sulfonamides and their metabolites in animal tissues using quick, easy, cheap, effective,
414 rugged, and safe extraction and high resolution mass spectrometry (hybrid linear ion trap415 Orbitrap), J. Chromatogr. A., 2014, 61-72, 1355.

416 22 Commission Decision 2002/657/EEC. Implementing Council Directive 96/ 23/EC
417 concerning the performance of analytical methods and the interpretation of results, *Off. J.*418 *Eur. Commun.*, 2002, L 221, 8.

23 R. J. B. Peters; Y. J. C. Bolck; P. Rutgers; A. A. M. Stolker; M. W. F. Nielen, Multiresidue screening of veterinary drugs in egg, fish and meat using high-resolution liquid
chromatography accurate mass time-of-flight mass spectrometry, *J. Chromatogr. A*, 2009,
1216, 8206.

423 24 E.Verdon; D. Hurtaud-Pessel; P. Sanders, Evaluation of the limit of performance of an
424 analytical method based on a statistical calculation of its critical concentrations according to
425 ISO standard 11843: Application to routine control of banned veterinary drug residues in
426 food according to European Decision 657/2002/EC, *Accred. Qual. Assur.*, 2006, 11, 58.

Analytical Methods

Table 1:SAs retention time (RT) and MS/MS parameters.

Analyte	RT(min)	Quantification transition - m/z (collision energy - V)	Cone voltage (V)	Confirmation transition - m/z (collision energy - V)	Ion ratio [*] (%)		
SGN	1.9	214.9 > 156 (10)	60	214.9 > 108 (20)	55.1		
SAA	4.94	215 > 156 (5)	60	214.9 > 107.9 (15)	58.9		
SD	8.8	251.2 > 92 (25)	60	251.2 > 108 (20)	92.5		
SIM	9.8	279.1 > 124 (20)	60	279.1 > 186 (15)	48.0		
STZ	12.9	256 > 156 (10)	60	256 > 108 (20)	85.0		
SP	13.8	250.2 > 156(10)	80	250.2 > 184.1 (15)	55.0		
SM	15.3	265 > 156 (10)	60	265 > 172 (10)	84.4		
SME	17.8	281 > 155.9 (15)	60	281 > 215.1(15)	28.8		
SMZ	18	279 > 186 (15)	60	279 > 124(15)	79.9		
SMT	18	271 > 155.9 (10)	60	271 > 107.9 (25)	62.5		
Da	18.1	249 > 108 (20)	120	249 > 156(10)	80.7		
SMP	18.3	281.6 > 108 (25)	60	281.6 > 126.5 (20)	65.2		
SCP	18.5	285 > 156 (10)	100	285 > 107.9 (25)	71.2		
SMX	18.7	254.1 > 108 (25)	100	254.1 > 156 (10)	79.5		
SMM	18.8	281 > 155.9(15)	60	281 > 215(15)	65.4		
SDO	18.8	311.2 > 156 (15)	60	311.2 > 107.9 (25)	73.4		
SIX	18.9	268.2 > 156(10)	60	268.2 > 112.9(10)	94.6		
SB	19.17	277.2 > 156 (5)	60	277.2 > 108 (20)	65.0		
SCL	19.4	285 > 155.7(10)	60	285 > 130 (25)	24.2		
SNZ	19.3	315.5 > 92 (35)	60	315.5 > 156(30)	77.4		
SDM	19.4	311.2 > 156(20)	60	311.2 > 107.9 (30)	58.7		
SQX	19.5	301.1 > 156 (15)	60	301.1 > 108 (25)	94.1		
SNT	20.1	336.1 > 133.9 (25)	120	336.1 > 156 (5)	76.6		
SMX-D4	18.6	258.1 > 96 (25)	70	258.1 > 160(10)	62.5		

15 | Page

Analytical Methods Accepted Manuscript

2
2
3
4
5
6
6
7
8
0
9
10
11
40
12
13
14
15
10
16
17
18
10
19
20
21
21
22
23
24
24
25
26
27
21
28
29
20
30
31
32
33
33
34
35
36
00
37
38
30
40
40
41
42
40
43
44
45
40
46
47
48
-10

434 435

10

1

432 433

Table 2: Extraction recovery, A	<i>4R (%) and validation</i>	parameters of analysis of	of SAs in beef muscle usin	g QuEChERS-LC-MSMS
			./ ./	

SAs	AR ⁽¹⁾ %	Accuracy	$R^{2(3)}$	RSD	RSD	LOD ⁽⁶⁾	$LOQ^{(7)}$	$CC_{\alpha}^{(8)}$	$CC_{\beta}^{(9)}$
		$A^{(2)}(\%)$		r ⁽⁴⁾ %	R ⁽⁵⁾ %	$(\mu g.kg^{-1})$	$(\mu g.kg^{-1})$	(µg.kg ⁻¹)	$(\mu g.kg^{-1})$
SGN	53	111	0.995	11.7	34.3	1.7	5.8	109	118
SAA	70	105	0.996	4.7	18.4	11.7	39.2	106	113
SD	84	88	0.996	2.6	7.5	6.5	21.8	103	106
SIM	70	95	0.997	2.9	12.7	14.4	48.0	103	106
STZ	73	100	0.996	4.3	9.4	13.7	45.8	102	104
SP	81	99	0.998	2.3	2.4	14.2	47.5	103	106
SM	83	95	0.998	3.8	4.7	13.4	44.7	103	105
SME	82	92	0.997	2.5	8.7	14.5	48.4	103	107
SMZ	82	96	0.997	2.5	6.3	5.5	18.5	103	105
SMT	70	101	0.993	4.3	16.7	10.8	35.9	106	112
Da	54	97	0.992	8.7	9	0.5	1.8	0.5	0.6
SMP	75	98	0.998	3.9	7.1	10.6	35.3	103	105.6
SCP	75	99	0.999	4.1	5.8	5.1	17.0	105.5	111
SMX	81	97	0.999	2.5	4.9	2.4	8	102	105
SMM	78	98	0.999	2.6	9.5	5.3	17.6	102	104
SDO	84	91	0.997	2.6	6.2	10.4	34.8	101	103
SIX	77	100	0.998	2.3	4.0	12	40	103	106
SB	64	104	0.995	2.8	6.3	8.7	29.2	105	111
SCL	65	98	0.998	5.2	9.9	11.8	39.2	105	109
SNZ	73	94	0.997	5.6	6.9	7.1	24	105	110
SDM	70	99	0.998	6.6	7.6	13.4	44.6	102	104
SOX	60	96	0.997	9.6	11.7	15	49.7	105	111
SNT	42	71	0.960	17	47.8	-	-	103.5	107

⁽¹⁾Absolute recovery (*AR*); ⁽²⁾ Accuracy (*A*); ⁽³⁾ Squared regression coefficient (*R*²); ⁽⁴⁾ Relative standard deviation of intra-day precision (RSD r); ⁽⁵⁾ Relative standard deviation of inter-day precision (RSD R); ⁽⁶⁾ Limit of detection (LOD); ⁽⁷⁾ Limit of quantification (LOQ); ⁽⁸⁾ Decision limit (CC_q); ⁽⁹⁾ Detection capability (CC_β).

Analytical Methods

436 Table 3: Results for the analyses of CRM (pig kidney) using QuEChERS extraction method,

LC-MSMS and Orbitrap-MS

SDO SMZ SP	63.4 68.7	MS/MS Orbitrap MS/MS Orbitrap	62 73 44	-0.10 0.68 -1.63
SMZ SP	68.7	Orbitrap MS/MS Orbitrap	73 44	0.68 -1.63
SMZ SP	68.7	MS/MS Orbitran	44	-1.63
SP		Orbitron		
SP		Orbinap	-	-
~	120	MS/MS	106	-0.53
		Orbitrap	98	-0.81

Analytical Methods Accepted Manuscript

2 3 4 5 6 8

Table 4: Concentration of SAs in positive analysed samples

Sample	Sample	SDM		SMZ		SD		SQX	
number	type	Concentration (µg.kg ⁻¹)	Ion Ratio %	Concentration (µg.kg ⁻¹)	Ion Ratio %	Concentration $(\mu g.kg^{-1})$	Ion Ratio %	Concentration $(\mu g.kg^{-1})$	Ion Ratio %
S4	BM	MS/MS 70.4	58.1	-	-	-	-	-	-
		Orbitrap 62.5							
S5	BM	MS/MS 63.0	58.2	LOD <c<loq< td=""><td>95.4</td><td>-</td><td></td><td>-</td><td>-</td></c<loq<>	95.4	-		-	-
		Orbitrap 59.1							
S6	PM	MS/MS 53.0	55.7	-	-	-	-	-	-
		Orbitrap 50.5							
S10	SK	-	-	LOD <c<loq< td=""><td>83.5</td><td>-</td><td>-</td><td>-</td><td>-</td></c<loq<>	83.5	-	-	-	-
S12	BM	-	-	LOD <c<loq< td=""><td>90.9</td><td>LOD<c<loq< td=""><td>98.8</td><td>-</td><td>-</td></c<loq<></td></c<loq<>	90.9	LOD <c<loq< td=""><td>98.8</td><td>-</td><td>-</td></c<loq<>	98.8	-	-
S16	SM	-	-	LOD <c<loq< td=""><td>89.6</td><td>-</td><td>-</td><td>-</td><td>-</td></c<loq<>	89.6	-	-	-	-
S17	SL	-	-	LOD <c<loq< td=""><td>78.8</td><td>-</td><td>-</td><td>-</td><td>-</td></c<loq<>	78.8	-	-	-	-
S18	SM	-	-	25.6	79.5	-	-	-	-
S19	SK	-	-	LOD <c<loq< td=""><td>78.65</td><td>-</td><td>-</td><td>-</td><td>-</td></c<loq<>	78.65	-	-	-	-
S20	SL	-	-	MS/MS 70.2	80.77	-	-	-	-
				Orbitrap 66					
S21	SM	-	-	LOD <c<loq< td=""><td>85.55</td><td>-</td><td>-</td><td>-</td><td>-</td></c<loq<>	85.55	-	-	-	-
S22	SK	-	-	23.2	80.6	-	-	-	-
S25	SK	-	-	LOD <c<loq< td=""><td>89.0</td><td>-</td><td>-</td><td>-</td><td>-</td></c<loq<>	89.0	-	-	-	-
S27	BL	-	-	LOD <c<loq< td=""><td>81.03</td><td>-</td><td>-</td><td>-</td><td>-</td></c<loq<>	81.03	-	-	-	-
S30	CL	-	-	LOD <c<loq< td=""><td>66.5</td><td>-</td><td>-</td><td>LOD<c<loq< td=""><td>90.2</td></c<loq<></td></c<loq<>	66.5	-	-	LOD <c<loq< td=""><td>90.2</td></c<loq<>	90.2
S33	PL	-	-	-	-	-	-	LOD <c<loq< td=""><td>95.3</td></c<loq<>	95.3
S35	РК	-	-	-	-	-	-	LOD <c<loq< td=""><td>96.35</td></c<loq<>	96.35

Analytical Methods

456 Fig.1: Structures of SAs antibiotics.

20 | Page

Page 21 of 24

Analytical Methods

461
462 *Fig.3: Total Ion Counts (TIC) of a beef muscle spiked with 23 sulphonamides at the fixed*463 *levels: 100 μg.kg⁻¹ and 5 μg.kg⁻¹ for SAs and dapsone, respectively. a) SGN, b) SAA, c) SD,*464 *d) SIM, e) SMZ, f) STZ, g) SP, h) SM, i) SME, j) SMP, k) SMM, l) SMT, m) Da, n) SCP, o)*465 *SCL, p) SMX, q) SDO, r) SDM, s) SIX, t) SB, u) SNZ, v) SQX, w) SNT and x) SMX-d4.*

Appendix A

Analytical Methods Accepted Manuscript

22 | Page

471 Appendix B

Analytical Methods Accepted Manuscript

492 Fig. C1: Correlation graph of concentrations ($\mu g.kg^{-1}$) determined of studied compounds 493 with triple quadrupole mass spectrometry (QqQ) and Orbitrap analyzers in meat samples.