Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

2		
3		
4	1	Silica-Based Surface Molecularly Imprinting for Recognition and
5		
6	2	Separation of Lysozyme
7	2	Separation of Lysozyme
8		
9	3	
10		
11	4	Cenjin Zhang", Yuzhi Wang"*, Yigang Zhou "*, Junxia Guo", Yanjin Liu"
12	5	
13	6	
14	0	
15	7	^a State Key Laboratory of Chemo/Biosensing and Chemometrics College of
16	1	suite Rey Eutonatory of Chemo, Diosensing and Chemometres, Conege of
17		
18	8	Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R.
19		
20	0	China
21)	ennia
27		
22	10	^b Department of Microbiology, College of Basic Medicine, Central South
20		
25	11	University Chanasha 410092 DD China
26	11	University, Changsha, 410065, F.K. China
20		
28	12	
20		
20	10	
21	13	Corresponding author: Professor Yuzhi Wang; Associate professor Yigang Zhou
20		
22	14	State Key Laboratory of Chemo/Biosensing and Chemometrics
24		
34 25		
30	15	College of Chemistry and Chemical Engineering
30		
3/	16	Hunan University
38	10	
39		
40	17	Changsha 410082
41		
42	18	P R China
43	10	
44		
40	19	Phone: +86-731-88821903
46		
4/	20	Fax: +86-731-88821848
48	20	$1 \mathrm{dx}.$ $100-751-000210+0$
49		
50	21	E-mail: <u>wyzss@hnu.edu</u> .cn
51		
52	22	
53	22	
54		
55	23	Abbreviations: APTES, 3-aminopropyltriethoxysilane; BSA, bovine serum albumin; BHb,
56		
57	24	he in the FT ID for in the form if the test of
58	24	dovine nemogiodin; FI-IK, tourier transform infrared spectroscopy; Lyz, lysozyme; MIP,
59		
60		1

Analytical Methods Accepted Manuscript

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
20	
20 21	
∠ı 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
40	
40 17	
41 10	
40 70	
79 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

25	molecularly imprinted polymer; NIP, non-imprinted polymer; OVA, ovalbumin; PB, phosphate
26	buffer solution; SDS, sodium dodecyl sulfate; TEM, transmission electron microscope; TEOS,
27	tetraethoxysilane; TG, thermogravimetric analysis;
28	
29	Key Words: Surface molecular imprinting / Silica-based / Sol-gel /Lysozyme/ Recognition
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47	Abstract
4/	Austraci

48	A highly selective surface molecular imprinting inorganic polymer composed of
49	tetraethoxysilane and 3-aminopropyltriethoxysilane has been prepared by a sol-gel process on silica
50	submicroparticles in aqueous solution under simple and mild conditions. Lysozyme (Lyz, pI 11,
51	MW 14.4 kDa) is used as the template protein. Product polymers were characterized by FT-IR, TEM,
52	and TG techniques to verify the successful synthesis of the MIP on the surface of silica
53	submicroparticles. The adsorption behavior of MIP was evaluated by adsorption capacity, imprint
54	factor and adsorption model. It was found that both MIP and NIP could adsorb template protein
55	quickly and easily owing to the low mass transfer resistance of thin shell and their adsorption
56	equilibrium could be reached in 5h. Compared with NIP, MIP showed stronger adsorption capacity
57	for template protein Lyz under all experimental conditions. The mechanism for static adsorption of
58	Lyz onto MIP was found to follow Langmuir adsorption model which was further used to calculate
59	the maximum adsorption capacity Q_{max} and gave a result of 90.33 mg/g in theory. The MIP
60	adsorbent could be reuse twice without significant loss in adsorption capacity. MIP indicated
61	excellent recognition and binding affinity toward Lyz, whose selectivity factor β for Lyz relative to
62	reference proteins bovine serum albumin (BSA, pI 4.9, MW 69.0 kDa), bovine hemoglobin (BHb, pI
63	6.9, MW 65.0kDa) and ovalbumin (OVA, pI 4.7, MW 43.0kDa) were 2.36, 2.22, and 2.24,
64	respectively. It was shown that the shape memory and the size effect were the major factors for the
65	recognition. This imprinted inorganic polymer was used to specifically adsorb the Lyz from the
66	protein mixture, which demonstrated its potential selectivity.

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

69 Introduction

Molecular imprinting is a technique for preparing recognition sites with predetermined selectivity which are tailor-made in situ by copolymerization of functional monomers and cross linkers in the presence of template molecule ^[1–2]. After removal of the template molecule from the polymer network, specific recognition sites that are complementary to the template in terms of their size, shape, and functionality are exposed^[3]. Because of its excellent advantages like specific recognition, high stability, low cost and its reusability, MIP material has been successfully applied to the fields of biosensors^[4-5], solid-phase extraction ^[6-8], separation^[9-10], catalysis ^[11-12], and drug delivery^[13]over the past decades. Despite the attractive features of MIP material with specificity, it has been largely limited to small molecules. The imprinting of biological macromolecules and proteins still remains to be a challenge.due to their incompatibility of these targets with organic solvents that are typically used for imprinting.

Protein molecularly imprinted technique is a method for separation which use the protein as template to prepare the molecularly imprinted polymers (MIP). The MIP has a spatial structure complementary with template, so it can specifically recognize the target protein. Because protein has characteristics of large molecular size, the high flexibility of conformation, the complex surface structures, there are still many challenges to imprint protein ^[14]. Therefore, it is necessary to study deeply about the preparation of protein imprinted polymers. The protein imprinted polymers can be used as cell scaffold material, antibodies and enzymes, which can substitute for natural biological structure ^[15-17]. For the above reason the protein MIPs have a widely application in biomedical field.

However, due to the thick polymeric network, the MIPs prepared by the conventional bulky

92	polymerization technique had some disadvantages especially for protein imprinting, such as poor
93	site accessibility to the target molecules and low rebinding capacity ^[18-19] . The protein template
94	molecules were entrapped deeply in the matrices, the elution was difficult, the diffusion barrier for
95	the template molecules was higher, the rate of mass transfer was lower, and the template
96	molecules were not easy to bind with recognition sites ^[20-21] . These drawbacks can be effectively
97	avoided by surface molecular imprinting approach, which provides an alternative way for
98	improving mass transfer, increasing affinity binding and decreasing high diffusion barrier of the
99	template by fixing MIP on a support substrate $^{[22]}$. For surface molecular printing, TiO_2 $^{[23]}$, Fe ₂ O ₃
100	^[24] , and carbonaceous materials ^[25] had already been used as solid support materials. However,
101	SiO_2 was the most commonly used solid support materials reported by numerous studies ^[26-30] .
102	In this work, a highly selective surface molecular imprinting polymer for Lyz was
103	synthesized on the support of silica submicroparticles by a sol-gel process which could create the
104	uniform and small sizes of the particles and offer high surface area for the regeneration of template.
105	APTES and TEOS were chosen as functional monomer and cross linker, respectively. The MIP
106	was characterized by FT-IR, TEM, TG techniques. Imprinting efficiency of MIP was investigated
107	by static adsorption tests. The resulting imprinted polymer (MIP) showed better template affinity
108	than the corresponding non-imprinted polymer (NIP). The selectivity of the obtained polymer was
109	evaluated over competitive compounds, and the results demonstrated that the MIP was capable of
110	selective recognition of Lyz.

Analytical Methods Accepted Manuscript

111 Compared with the conventional method, most of the recognition sites generated for surface 112 imprinting would be on the thin outer shell layer, with a greatly increased accessibility and 113 effectiveness. Moreover submicron structured MIPs have a small dimension with extremely high

Analytical Methods Accepted Manuscript

Analytical Methods

surface-to-volume ratio, so that most of template molecules are situated at the surface or in the proximity of the material's surface. Obviously, submicro-sized surface imprinting MIPs are expected to improve the binding capacity, binding kinetics and accessibility of the recognition sites, especially for protein molecular imprinting in which the mass transfer limitation may be a more pronounced problem. This surface molecular imprinting polymer was shown to be promising for regeneration and can be potentially employed as a generally applicable methodology for protein imprinting. **Experimental sections** Instrumentation A UV-2450 UV-vis spectrophotometer (Shimadzu, Japan) was used to determine the absorbance of protein. FTIR spectra were recorded on a Spectrum One FTIR spectrometer (Perkin Elmer, U.S.). Thermal gravimetry (TG) curves of samples were acquired by STA409 thermal gravimetric analyzer (Netzsch, Germany). Virtis freeze drier (YiKang Experimental Equipment

128 Co. Ltd, Beijing, China) was employed to get the freeze-dried polymers. After being dried, the

129 samples were imaged under a JEOL JEM-3010 transmission electron microscopy.

131 Chemicals and reagents

3-aminopropyltriethoxysilane (APTES) was supplied by Aladdin chemistry Co., Ltd.
(Shanghai, China). Tetraethoxysilane (TEOS) was bought from Shanghai Titan chemistry Co., Ltd.
(Shanghai, China). Acetic acid, anhydrous ethanol, ammonium hydroxide, lysozyme (Lyz, pI 11, MW 14.4 kDa), bovine serum albumin (BSA, MW 69kDa, pI 4.9), bovine hemoglobin (BHb, MW

Analytical Methods

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
20
20
27
28
29
30
31
22
32
33
34
35
36
37
20
30
39
40
41
42
43
44
7 - 7 /5
40
46
47
48
49
50
51
51
5Z
53
54
55
56
57
50
00
59
60

136 65kDa, pI 6.9), ovalbumin (OVA, pI 4.7, MW 43.0kDa) were all purchased from Guoyao 137 chemical reagents company Co., Ltd. (China). Phosphate buffer solution (pH 7.0, 10 mM) was 138 used as the working medium. All chemicals used were of analytical grade and used directly 139 without further purification. Ultrapure water (18.25M Ω cm⁻¹) used throughout the experiment was 140 obtained from the laboratory purification system.

141

142 **Preparation of Silica Submicroparticles**

143 Silica submicroparticles were synthesized by the hydrolysis of TEOS with ammonium hydroxide following a procedure described by Stober et al [31]. In this experiment, 4.5 mL of TEOS 144 145 was resolved in a mixture containing total 48.9 mL of aqueous ammonia (25% concentrated 146 ammonia in water), 9 mL of H2O and 37.6 mL of anhydrous ethanol. The system was stirred at 147 room temperature for 5 h, resulting in the formation of white silica colloidal suspension. The silica 148 submicroparticles were centrifugally separated from the suspension and washed with anhydrous 149 ethanol several times until eluent became neutral. Finally, the SiO₂ submicroparticles were dried 150 under vacuum overnight.

Analytical Methods Accepted Manuscript

151

152 **Preparation of Imprinted and Non-imprinted Polymers**

The surface molecular imprinting inorganic polymers were synthesized by a sol-gel process on silica submicroparticles polymerized with APTES and TEOS in aqueous solution. At first, 400 mg silica submicroparticles were dispersed in mixture solution containing 20 mL of ethanol and 20 mL of phosphate buffer solution (pH 7.0, 10 mM) by ultrasonic vibration for 10 minutes. Then, 0.1 g of template protein Lyz and 0.62 mL of APTES were added into the suspension under

Analytical Methods Accepted Manuscript

158	stirring for 2 h to obtain the completely self-assembled composites on silica submicroparticles.
159	Finally, 1.24 mL of TEOS and 1 mL of HAc (1.0 mol L-1) were added to the mixture suspension
160	at room temperature under stirring for 18h to obtain particles with a high cross-linking structure.
161	After reaction the obtained polymer was first washed with SDS-HAc (10% w/v: 10% v/v) to
162	remove the template molecules for several times until no Lyz could be detected by a UV-vis
163	spectrophotometer at 278 nm and then washed with ultrapure water to remove SDS. The product
164	polymer was dried at 60 °C for 12 h under vacuum. The non-imprinted polymer (NIP) was
165	prepared and treated by the same conditions without the addition of template protein Lyz. The
166	synthesis of MIP was shown in Fig 1. For comparison, several polymers with different
167	cross-linking degrees were prepared by adjusting the reactant ratio of the volume of TEOS and
168	APTES which were summarized in table 1.

170 Characterization of polymers

The MIP and NIP were characterized by FT-IR spectra and TEM. FT-IR spectra (4000-400 cm-1) in KBr were recorded using a Spectrum One FTIR spectrometer (Perkin Elmer, U.S.). The morphologies of the polymers were determined by a JEOL JEM-3010 transmission electron microscopy. The polymers were coated with a thin layer of gold under vacuum and photographed by the TEM. The average particle sizes of the particles were determined on the TEM images based on a weighted-averages method. Thermal gravimetry (TG) curves of polymers were acquired by using a thermoanalysis instrument under dynamic nitrogen atmosphere at a heating rate of 10 °C min-1.

179 Determination of Equilibrium Swelling Ratio

Analytical Methods

The freeze-dried silica-based polymers and silica submicroparticles were prepared by virtis freeze drier after frozen totally in refrigerator. The freeze-dried polymers with specific weight were immersed in phosphate buffer solution (pH 7.0, 10 mM) at room temperature overnight. After equilibrium, the polymers were taken out and isolated by centrifugation at 12 000 rpm for 30 min. Measurement of the polymers swollen weight (M_s) was made after the supernatant was removed. Subsequently, the polymers were dried at room temperature in vacuum box and weighed again to obtain the dry weight (M_d).The Swelling Ratio (SR) was defined by the following formula: $SR = \frac{M_{\rm s} - M_d}{M_d}$ (1)Where M_d and M_s Represent the weight of the dry and swollen samples respectively. Static adsorption experiments The freeze-dried imprinted and non-imprinted polymers (10.0 mg) were incubated in 5.0 mL of a series of different concentrations of Lyz solution for 24 hours. All the binding experiments were conducted by the incubator shaker (200 r/min, 25°C). After adsorption equilibrium, samples were centrifuged with a centrifuge at 8000 rpm for 8 min. The concentration of Lyz in the supernatant was detected by an UV-2450 UV-vis spectrophotometer (Shimadzu, Japan) at the wavelength of 278 nm used phosphate buffer solution (pH 7.0, 10 mM) as solvent under room temperature.

Analytical Methods Accepted Manuscript

198 The amount of adsorbed protein was evaluated from the following formula:

199
$$Q = \frac{(C_0 - C)V}{M}$$
 (2)

200 Where Q is the mass of protein adsorbed onto a unit amount of dry polymer (mg/g), C₀ and C are the

201 initial and equilibrium concentrations of protein solutions respectively (mg /mL), V is the initial

202 volume of the solutions (mL), and M is the mass of dry polymer (g).

Analytical Methods Accepted Manuscript

203 The imprinting factor α was defined by following formula: $\alpha = Q_{MIP}/Q_{NIP}$ (3) Where Q_{MIP} and Q_{NIP} are tested adsorption capacities for MIP and NIP towards a template protein. All of the measurements were carried out in triplicate, and the average values were chosen. **Results and discussion** Synthesis of Silica Submicroparticles and Polymers Highly schematic representation of the preparation process for Lyz imprinted silica-based polymers was shown in Fig. 1, which involved the following several steps: first, preparation of silica submicroparticles; second, template protein prepolymerized with APTES on silica submicroparticles; third, polymerization after addition of TEOS and HAc; finally removal of template. APTES was chosen as the functional monomer, HAc (1.0 mol L-1) and TEOS were used as a catalyst and cross linking agent, respectively. In this work, SDS-HAc (10%w/v: 10%v/v) is selected as eluent to remove the Lyz from MIPs and the eluate was detected by UV-vis spectrophotometer at the wavelength of 278 nm for the quantitative analysis of Lyz eluted. The result validated that 51.03% of Lyz was successfully washed away from MIPs. The result confirms the efficient removal of the template for the MIPs. After the template molecules were removed, a great number of tailor-made cavities for Lyz were left on the surface of silica submicroparticles. The uniform and small sizes of the production obtained would offer high surface area for further recognition of template protein. To further determine the structure of the silica-based MIP, FT-IR spectra of SiO_2 particles (a), NIP (b) and MIP(c), were compared in Fig. 2. The wide and strong adsorption band around 3441

Analytical Methods

3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
22
33
34
35
36
37
38
39
40
11
41
42
43
44
45
46
47
48
10
+3 50
50
51
52
53
54
55
56
57
57
30 50
59
60

244

224	cm-1 could be ascribed to stretching vibrations of O-H. The observed features near 470 cm-1 and
225	1070 cm-1 were the vibration peak and the anti-vibration peak of Si-O-Si, respectively. A
226	characteristic feature of MIP and NIP compared with silica submicroparticles were the special N-H
227	band around 1558 and 1417 cm-1 from –NH2 group and the C–H band around 2924 cm–1 and 2852
228	cm-1 from -CH2 group. This FT-IR spectrum indicated that the APTES have been successfully
229	grafted onto the surface of silica submicroparticles after imprinting.
230	A series of polymers with varied degrees of cross-linking were prepared according to the Table
231	1. The adsorption capacities of the imprinted and non-imprinted polymers used different amounts of
232	TEOS as cross-linker were tested. The results indicated that the polymers MIP_2 employed 1.24 mL
233	of TEOS as cross-linker proved to have relatively better adsorption capacities for Lyz. The
234	recognition sites may be wrapped in the internal and the protein may be not easy to be eluted by
235	washing with a high cross-linking degree. Besides, polymers with a relatively low cross-linking
236	degree may have a variable three-dimensional structure which is unfavorable for rebinding.
237	Therefore, the MIP_2 with best adsorption capacity were selected in the following experiments.
238	
239	Characterization of the Imprinted Polymers by TEM and TG
240	In order to investigate the network structure, the images of SiO ₂ , MIP and NIP observed by
241	TEM were shown in Fig. 3. From the results of the TEM pictures, uniform regular spherical
242	particle structure ranging from 0.42 to 0.52 um in size could be obviously observed in all of
243	particles, which verified the successful formation of desired material shape and morphology. It

significant difference. This meant the modified polymer layer were very thin which could facilitate

could be clearly observed that the average diameters among the SiO2, MIP and NIP had no

Analytical Methods Accepted Manuscript

2
3
4
5
6
0
7
8
9
10
10
11
12
13
1/
45
15
16
17
18
10
19
20
21
22
22
23
24
25
26
27
21
28
29
30
31
00
32
33
34
35
26
30
37
38
39
10
40
41
42
43
44
15
40
46
47
48
40
49
50
51
52
~
52
53
53 54
53 54 55
53 54 55 56
53 54 55 56 57
53 54 55 56 57
53 54 55 56 57 58
53 54 55 56 57 58 59

1

246 mass transfer and recognition in both elution process and rebinding process.

247	On the basis of the different thermal stability between the silica submicroparticles and the
248	polymers, TGA analysis was used to further study the relative composition of the silica core and the
249	polymers shell. As shown in Fig.4, when the temperature was changed from room temperature to
250	1000°C, the weight loss of silica was slight and approximately 10.0%, while the decrease of solvent
251	or water in weight was 6.0% at 200 $^{\circ}$ C, and the other decrease in weight was 4.0% at 200 - 700 $^{\circ}$ C
252	(Fig. 4a). For silica @MIP, the weight loss was 25.0% at 700°C, while the decrease of solvent or
253	water in weight was about 12.0% at 200°C which was two times compared with that of silica
254	possibly due to the existing of imprinted cavity absorbing more water, and the other decrease in
255	weight was about 13.0% for the decomposition of imprinted polymer coatings at 200 – $700^{\circ}C$ (Fig.
256	4c). If the mass retention of silica at 700° C is used as the reference, there exists near 15.0 wt%
257	difference in the weight retentions at 700 °C between silica and silica @MIP. It indicated that the
258	method applied for MIP coating in this work was excellently effective. The grafting yield of MIP
259	coating to silica was 15.0 wt%. In addition, the weight loss trend of silica @NIP (Fig. 4b) was
260	similar to silica @MIP and gave a result of 21.5%. Such distinction was due to the existence of
261	floccules-like imprinting coating on the surface of silica submicroparticles during the imprinting
262	process.

263

264 Determination of Equilibrium Swelling Ratio

The swelling ratio values of the SiO_2 particles, silica-based MIPs and NIPs were investigate by immersion in PB overnight until swollen equilibrium, which were determined based on the amount of water uptake. It was found that the SR value for NIPs was 1.96, which was lower than that

Analytical Methods

2
3
4
5
6
7
2 2
0
9
10
11
12
13
14
15
16
17
18
10
19
2U
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
-ד <i>ו</i> 19
+0 40
49
50
51
52
53
54
55
56
57
51
20
59

60

obtained with MIPs, where the SR value was 2.71. It is reasonable that the SR value for SiO₂ particles is the least only 1.03. Such results could possibly be due to the formation of binding cavities on the surface of the MIPs, which enhanced water penetration and higher water uptake. Higher SR value for MIP could lead to lower mass transfer resistance, which is important for loading and release of the template in binding and extracting process respectively.

273

274 Adsorption Kinetics

275 In the evaluation for adsorption kinetics, the adsorption capacities of the imprinted and 276 non-imprinted polymers were tested as a function of time. The experiments were performed 10 mg 277 of MIP or NIP in 5.0 mL of 0.8 mg/mL initial Lyz concentration on the shaker (200 r/min, 25°C) for 278 incubation. The kinetics curves were shown in Fig.5. From the Fig.5, we can see that the adsorption 279 capacities of the polymers for Lyz increased as time goes by. The absorbance of MIP for Lyz had a 280 rapid increase in 2 h, and then slowed down with the time extension, finally reached equilibrium 281 after 5 h. This might be explained that Lyz was easy to reach the surface imprinting sites on the 282 Lyz-imprinted polymers at the starting. With the saturation of the sites, Lyz began to diffuse onto the 283 surface of Lyz-imprinted polymers nonspecifically. Obviously, the imprinted polymers adsorbed 284 more template protein compared to the non-imprinted polymers under the same conditions. This 285 result also confirmed the fact that recognition sites with the specific shape and the orientation of 286 functional groups successfully formed in the imprinted polymers network during the imprinting 287 process. The relatively higher adsorption capacity of the MIP compared with NIP could be attributed 288 to the hydrogen bonding interactions between functional groups of MIP and template protein, such 289 as amide group, amino group, and hydroxyl group. In addition, MIP needed longer time than NIP to

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

290 get equilibrium because it contained the deep caves left by template molecules.

292 Adsorption Isotherms

To investigate the binding capacity for Lyz of both MIP and NIP, the adsorption isotherms were tested in the range of 0.2-1.1 mg/mL initial concentration of Lyz. The adsorption experiments were accomplished as the previous procedures. The effect of the initial Lyz concentrations on the adsorption capacities of the imprinted and the non-imprinted polymers prepared by the same conditions were investigated under room temperature and the results were showed in Fig. 6. As the figure showed, the equilibrium adsorption capacities of the MIP and NIP rose with the increase of the initial Lyz concentrations from 0.2 to 0.8 mg/mL. Then the curve became flat and reached thermodynamic equilibrium in the concentration region of above 0.8 mg/mL. Taking into account that Lyz was insoluble in water with high concentration, the concentration of 0.8 mg/mL was chosen as the optimal condition for the following experiments. It also found that the MIP had comparatively higher Lyz adsorption capacities than the NIP in all the tested Lyz solutions, and the imprinting factor α reached 2.53. In our study, the high adsorption capacity for Lysozyme may be explained by the formation of specific imprinting sites with complementary size and shape in MIP to hold and fix the Lysozyme molecular around MIP. The remaining silanol groups on the surface of the silica cores might play a important role on enrichment of the templates Lysozyme from the prepolymerization solution before polymerization and co-operation with the functional and cross-linking monomers to create the imprinting sites while polymerization process. Additionally, the advantages of the micro-sized MIP with big specific surface area and surface energy also attributed to enhance the adsorption capacity for 311 Lysozyme. However, as for NIPs, the non-specific adsorption has dominant effect for lacking of

Analytical Methods

312	recognition sites. Therefore, the binding amount of Lyz is much lower. In addition, the MIP could be
313	reused twice without weakening the binding capacity significantly.
314	The adsorption experiment data of these polymers could be further processed according to
315	Langmuir adsorption equation to estimate the binding parameters which was proposed by Irving
316	Langmuir ^[32] . This equation was well known for its preferably use at saturation conditions and more
317	homogeneous adsorbents such as the molecularly imprinted materials ^[33-34] . The equation was listed as
318	following:
319	$C_{e'}Q = C_{e'}Q_{max} + 1/(KQ_{max}) \tag{4}$
320	Where C_e is the adsorption equilibrium concentration for Lyz, Q is the theoretical maximum
321	adsorption capacity for polymers, Q_{max} is the saturated adsorption after adsorption equilibrium, and
322	K is the Langmuir adsorption equilibrium constant. A highly linearized plot of C_e/Q versus C_e was
323	made. The Langmuir equation fits well for Lyz adsorption on MIP within the concentration range
324	studied (correlation coefficient, $r^2 = 0.99882$). The corresponding K and Qmax was 17.41 mL/mg
325	and 90.33 mg/g which were obtained from the slope and intercept of Langmuir equation simulated
326	curve. The result evidenced a relatively high adsorption affinity of our synthesized MIP for Lyz.
327	
328	Selectivity of the Polymers
329	In this experiment, BHb, BSA, OVA were selected as reference proteins with a test
330	concentration of 0.8 mg/mL to study the selectivity of MIP for Lyz. This choice was based on the
331	fact that reference proteins had a various shape, isoelectric point and molecular weight compared to
332	the template Lyz. The adsorption capacities results of the MIP and NIP for different proteins were

333 illustrated in Fig. 7. As shown in Fig. 7, MIP displayed a highest adsorption capacity for Lyz among

Analytical Methods Accepted Manuscript

334	the four test protein substrates, indicating the high adsorption selectivity for Lyz. Moreover, a
335	comparison of the adsorption of the MIP and NIP for each protein substrate suggested that the MIP
336	hardly showed an imprinting effect for BHb, BSA, OVA as both MIP and NIP nearly had the same
337	adsorption capacity for them.
338	The selectivity factor β was used to evaluate the specific selectivity and defined by following
339	formula:
340	$\beta = \alpha_{\rm Lyz} / \alpha_{\rm RP} \tag{5}$
341	Where α_{Lyz} and α_{RP} were tested imprinting factor of polymer for template protein Lyz and particular
342	reference proteins. The values of imprinting factor α and selectivity factor β for Lyz, BHb, BSA and
343	OVA were easily obtained by simple calculations and presented in Table 2. It was observed that α
344	values of MIP for Lyz relative to BHb, OVA and BSA were much higher, which meant that the
345	imprinted polymer possessed pronounced adsorption selectivity for the template Lyz as compared with
346	other reference proteins. In addition, the β values for BHb, BSA and OVA were far more than 1.0,
347	which again indicated the MIP had higher adsorption selectivity than that of the NIP. The preferred
348	adsorption for the template Lyz might be owing to the existence of memory recognition sites
349	formed in MIP during imprinting process, which were perfectly complementary fit with the template
350	Lyz both in shape and size. So the different spatial orientation of reference proteins did not match the
351	imprinted cavities and its access to the binding sites might be limited by the steric hindrance of
352	polymer chains, thus the adsorption capacity is relatively low and mainly comes from physical
353	adsorption associated with nonspecific interactions.
354	
355	

356	Concl	lusions

357	In our research, a new kind of surface molecular imprinting polymer for template protein Lyz
358	used APTES as functional monomer and TEOS as cross-linker had been successfully synthesized
359	based on supporting matrices silica submicroparticles. The optimal binding conditions were
360	investigated and gave a result of adsorption equilibrium time 5 h and initial protein concentrations
361	0.8 mg/mL with maximum experimental adsorption capacities of 84.13 mg/g and 33.19 mg/g for
362	MIP and NIP respectively. Batch binding experiments demonstrated product material offered fast
363	adsorption kinetic rate and MIP had significantly higher adsorption affinity for the template Lyz
364	compared with NIP in all cases. The equilibrium adsorption isotherms of Lyz on MIP could be well
365	fitted by the Langmuir adsorption model. At the same time, the MIP for Lyz exhibited good
366	selectivity over reference proteins with all separation factors larger than 2 by direct adsorption of the
367	single reference protein. The results of all the experiments suggested that specific recognition sites
368	which were sterically complementary to the template molecules Lyz were formed in the process of
369	the imprinting step, which was an essential favorable factor during the binding process. In addition,
370	the MIP could be reused twice without weakening the binding capacity significantly. All the
371	abovementioned properties such as easy preparation, fast mass transfer rate, satisfied adsorption
372	capacity, easy separation and specific recognition capability to the template protein Lyz made this
373	method and MIP material a promising prospect for the application in the field of rapid protein
374	separation and enrichment for the near future.
375	
376	
377	

Analytical Methods Accepted Manuscript

2
3
4
5
5
6
7
8
Q
10
10
11
12
13
11
14
15
16
17
18
10
19
20
21
22
22
20
24
25
26
27
20
20
29
30
31
32
32
33
34
35
36
27
37
38
39
40
<u>1</u>
10
42
43
44
45
16
40
47
48
49
50
50
51
52
53
54
55
55
56
57
58
50
00
nu

1

378 Acknowledgements

- 379 The authors greatly appreciate the financial supports by the National Natural Science
- Foundation of China (No. 21175040; No. 21375035; No.J1210040) and the 380
- 381 Foundation for Innovative Research Groups of NSFC (Grant 21221003).

382

383 References

- 384 1 G. Vlatakis, L. I. Andersson, R. Müller and K. Mosbach, Nature, 1993, 361, 645-647.
- 385 2 G. Wulff, Chem. Rev., 2002, 102, 1–27.
- 3 N. Masque', R. M. Marce', F. Borrull, P. A. G. Cormack and D. C. Sherrington, Anal. Chem., 386
- 387 2000, 72, 4122–4126.
- 388 4 B.-W. Wu, Z.-H. Wang, D.-X. Zhao and X.-Q. Lu, *Talanta*, 2012, **101**, 374-381.
- 389 5 Z.-H. Wang, H. Li, J. Chen, Z.-H. Xue, B.-W. Wu and X.-Q. Lu, *Talanta*, 2011, 85, 1672–1679.
- 390 6 J. Li, T.-B. Liu, D.-L. Xiao, P. Dramou, W.-Y. Zou and H. He, Chinese J. Anal. Chem., 2012, 40, 391 1461-1468.

- 392 7 C. Baggiani, L. Anfossi and C. Giovannol, Anal. Chim. Acta, 2007, 59, 29-39.
- 393 8 F.-H. Lin, X.-J. Huang, D.-X. Yuan and S.-Y. Nong, Chinese J. Anal. Chem., 2012, 40, 243–248.
- 394 9 T.-H. Jiang, L.-X. Zhao, B.-L. Chu, Q.-Z. Feng, W. Yan and J.-M. Lin, Talanta, 2009, 78, 395 442-447.
- 396 10 Y.-L. Hu, Y.-W. Li, R.-J. Liu, W. Tan and G.-K. Li, *Talanta*, 2011, 84, 462–470.
- 397 11 M. Resmini, Anal. Bioanal. Chem., 2012, 402, 3021-3026.
- 398 12 X.-T. Shen, L.-H. Zhu, G.-X. Liu, H.-Q. Tang, S.-S. Liu and W.-Y. Li, New J. Chem., 2009, 33, 399 2278-2285.
- 400 13 J. Z. Hilt and M. E. Byrne, Adv. Drug Delivery Rev., 2004, 56, 1599–1620.
- 401 14 C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J.
- 402 O'Mahony and M. J. Whitcombe, J. Mol. Recognit., 2006, 19, 106–180.
- 403 15 S. M. Reddy, Q. T. Phan and H. El-Sharif, *Biomacromolecules*, 2012, 13, 3959-3965.
- 404 16 M. E. Brown and D. A. Puleo, Chem. Eng. J., 2008, 137, 97-101.
- 405 17 J. Gao, H. Tian and Y. Wang, *Biomaterials*, 2012, **33**, 3344-3352.
- 406 18 Y. Jin, M. Jiang, Y. Shi, Y. Lin, K. Peng and B. Dai, Anal. Chim. Acta, 2008, 612, 105–113.

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

19 QZ. Feng, LX. Zhao, W. Yan, JM. Lin and ZX. Zheng, J. Hazard. Mater., 2009, 167,
282–288.
20 CY. Huang, MJ. Syu, YS. Chang, CH. Chang, TC. Chou and BD. Liu, Biosens.
<i>Bioelectron.</i> , 2007, 22 , 1694–1699.
21 J. L. Urraca, M. C. Moreno-Bondi, G. Orellana, B. Sellergren and A. Hall, J. Anal. Chem., 2007,
79 , 4915–4923.
22 BJ. Gao, J. Wang, FQ. An and Q. Liu, Polymer, 2008, 49, 1230-1238.
23 XT. Shen, LH. Zhu, GX. Liu, HW. Yu and HQ. Tang, Environ. Sci. Technol., 2008, 42,
1687–1692.
24 YL. Hu, RJ. Liu, Y. Zhang and GK. Li, Talanta, 2009, 79, 576-582.
25 Y. Li, X. Li, CK. Dong, JY. Qi and XJ. Han, Carbon, 2010, 48, 3427–3433.
26 DM. Gao, ZP. Zhang, MH. Wu, CG. Xie, GJ. Guan and DP. Wang, J. Am. Chem. Soc.,
2007, 129 , 7859–7866.
 27 HY. He, GQ. Fu, Y. Wang, ZH. Chai, YZ. Jing and ZL. Chen, <i>Biosens. Bioelectron.</i>, 2010, 76, 760–765. 28 MJ. Meng, ZP. Wang, LL. Ma, M. zhang, J. Wang, XH. Dai and YS. Yan, <i>Ind. Eng. Chem. Res.</i>, 2012, 51, 14915-14924.
29 J. E. Lofgreen and G. A. Ozin, Chem. Soc. Rev., 2014, 43, 911-933.
30 T. Shiomi, M. Matsui, F. Mizukami and K. Sakaguchi, Biomaterials, 2005, 26, 5564-5571.
31 W. Stöber, A. Finker and E. J. Bohn, J. Colloid Interface Sci., 1968, 26, 62-69.
32 I. Langmuir, J. Am. Chem. Soc., 1916, 38, 2221-2295.
33 J. Aburto, A. Mendez-Orozco and S. L. Borgne, Chem. Eng. Process, 2004, 43, 1587-1595.
34 R. J. Umpleby, S. C. Baxter, Y. Chen, R. N. Shah and K. D. Shimizu, Anal. Chem., 2001, 73,
4584-4591.
10

1 2		
3		
4 5		
6 7		
8 9		
10 11		
12		
14		
15 16		
17 18		
19 20		
21 22		
23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
37 38		
39 40		
41 42		
43 44		
45 46		
47 49		
40 49		
50 51		
52 53		
54 55		
56 57		
58 50		
59 60		

442	Table captions
443	Table 1 Preparation different degrees of cross-link polymers
444	Table 2 Values of imprinting factor α and selectivity factor β for Lyz, BHb, BSA and OVA
445	
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	
482	
483	
484	

Page 21 of 30

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

	Polymers	SiO ₂ (g)	Lyz (g)	APTES(mL)	TEOS(mL)	HAc (mL)	Ethanol (mL)	PB(mL)
	MIP ₁	0.400	0.100	0.620	0.620	1.000	20	20
	MIP ₂	0.400	0.100	0.620	1.240	1.000	20	20
	MIP ₃	0.400	0.100	0.620	1.860	1.000	20	20
	NIP ₁	0.400		0.620	0.620	1.000	20	20
	NIP ₂	0.400		0.620	1.240	1.000	20	20
	NIP ₃	0.400		0.620	1.860	1.000	20	20
486	Table 1 prep	paration dif	ferent degre	es of cross-link P	olymers			
487								
488								
489								
490 491								
492								
493								
494								
495								
496								
497								
498								
499 500								
500								
502								
503								
504								
505								
506								
507 508								
508								
510								
511								
512								
513								
514								

	Protein	Lyz	BHb	BSA	OVA
	Imprinting factor α	2.53	1.14	1.07	1.13
	Selectivity factor β		2.22	2.36	2.24
	Table 2 Values of im	printing factor α	and selectivity fact	tor β for Lyz, BHb,	BSA and OVA
3					
1					
+ -					
,					
,)					
)					
2					
)					
t .					
2					
3					
4 5					
5 6					
7					
′ 8					
9					
0					
1					
52					
			22		

1		
2	552	Figure contions
4	555	rigure captions
5 6	554	Figure 1.Schematic representation of the molecular imprinting procedures.
7 8	555	Figure 2.FT-IR spectra of SiO_2 (a), NIP (b) and MIP(c).
9 10 11	556	Figure 3.TEM images of SiO_2 (a), MIP (b) and NIP(c).
12 13	557	Figure 4.TGA Curves of SiO ₂ (a), NIP (b) and MIP(c).
14 15 16	558	Figure 5.Binding kinetics curve of the Lyz on MIP and NIP.
17 18	559	Figure 6.Adsorption isotherms of the Lyz on MIP and NIP.
19 20 21	560	Figure 7.Selective adsorption between reference proteins and Lyz on MIP and NIP.
22 23	561	
24	562	
25 26	563	
27	564	
28	565	
29	566	
30	567	
31	507	
33	568	
34		
35	569	
36		
37	570	
38	- / -	
40	571	
41	571	
42	570	
43	512	
44		
45 46		
47		
48		
49		
50		
51		
52		
54		
55		
56		
57		
58		
59		
00		23

8

657 Figure 7.Selective adsorption between reference proteins and Lyz on MIP and NIP (mean±s;

658 n=3).