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Graphical Abstract 

A novel method of improving classification precision, Accuracy Influence Analysis 

(AIA), is proposed to combined with Support Vector Machines (SVM) for selecting 

informative variables of Laser-induced Breakdown Spectroscopy (LIBS) spectra. 

Based on Model Population Analysis (MPA), AIA could reveal informative variables 

which have statistically significant influence on the prediction accuracy of SVM 

sub-models. Support Vector Machine is then employed to build more robust model 

and classify nine types of round steel based on the selected spectral variables. In this 

way, the classification performance of SVM is further improved and the computation 

time is reduced greatly. It is demonstrated that AIA is a good alternative for variable 

selection of high-dimensional LIBS dataset. 
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Abstract 

A novel method of improving classification precision, Accuracy Influence Analysis (AIA), is 

proposed to combined with Support Vector Machines (SVM) for selecting informative variables of 

Laser-induced Breakdown Spectroscopy (LIBS) spectra. Based on Model Population Analysis (MPA), 

AIA could reveal informative variables which have statistically significant influence on the prediction 

accuracy of SVM sub-models. Support Vector Machine is then employed to build more robust model 

and classify nine types of round steel based on the selected spectral variables. In this way, the 

classification performance of SVM is further improved and the computation time is reduced greatly. It 

is demonstrated that AIA is a good alternative for variable selection of high-dimensional LIBS dataset. 

Keywords: Accuracy Influence Analysis; LIBS; SVM; informative variables  

 

1. Introduction 

 Laser-induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopy used for 

qualitative and quantitative analyses of solid, liquid, and gaseous materials.
1,2 

There are many 

advantages of the LIBS-technique, such as no sample preparation, minimum destruction to sample, and 

allowing for in situ and real-time analysis.
3-10 

LIBS has been successfully used to analyze biological 

tissues,
11-13 

archeological samples,
14-16 

geological materials,
17,18 

polymers,
19-21 

pharmaceuticals
22,23

 and 

metallic materials.
24-27 

In the metallurgy industry, LIBS has been extensively applied for industrial 

process control, characterization of hot and molten metal, on-line measurement of coating thickness 

and composition, analysis of slag, and mostly focused on quantitative determination of elements. R. 

Fantoni et al. had given a review of methodologies for laboratory LIBS semi-quantitative and 

quantitative analysis. Moreover, Z. Wang et al. had established a new approach of PLS method 

combined with a physical principle based on dominant factor which had been applied to quantitative 
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measurements for LIBS.
28,29 

In addition, based on the intensities and ratios of elemental emission lines 

of the whole spectrum, LIBS could be applicable for qualitative analysis, such as identification and 

discrimination of the different types of steel and recycling of metallic scrap. We investigate the 

application of LIBS and chemometrics techniques for classification of different types of round steels 

based on statistical learning theory ( SLT ).  

LIBS has been used for identification and classification in combine with different chemometrics 

methods such as Principal Component Analysis (PCA), Soft Independent Modeling of Class Analogy 

(SIMCA), Artificial Neural Networks (ANN) and Support Vector Machines (SVM).
30-32 

Traditional 

approaches are often univariate, thus the results of classification are not precise enough. To compare 

with them, multivariate statistical methods were used to select informative variables from the whole 

spectrum and evaluate interactions among variables. However, it is worth noting that the majority of 

the variables in the whole spectrum are unrelated to the elemental composition, and thus do not 

necessarily contribute significantly to the qualitative and quantitative analyses. Furthermore, the 

redundant variables are more likely to incorporate spurious correlations and noises, and hamper the 

accuracy and precision of analysis result seriously. In addition, for the high dimensionality of the LIBS 

dataset, the computing time will greatly extend if the whole spectrum is used as the input variable .  

For all of the reasons above, it is necessary to introduce appropriate feature extraction procedures 

to eliminate the influence of excess variables or spectrum regions during LIBS analysis. Traditional 

methods manually selected emission intensity peaks according to characteristic elements of the 

samples as analyzed variables. However, it requires a large amount of experiments datasets, and as a 

result it is time consuming; moreover, additional chemical relationships among variables are not 

evaluated. What’s more, it will become extremely difficult to acquire the detailed constituent elements 

of the samples. 

 Recently, H. D. Li et al. had developed a new variable selection method, Margin Influence 

Analysis (MIA), to work with Support Vector Machines specifically.
33,34

 MIA, based on Model 

Population Analysis (MPA), could select variables which have statistically significant influence on the 

margin by using Mann-Whitney U test.
 
Using two publicly available cancerous microarray data sets, it 

is demonstrated that MIA could typically select a small number of margin-influencing genes and 

further achieves outstanding performance. In the present work, Accuracy Influence Analysis(AIA), an 
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improved variable selection method based on MPA, is presented to identify informative LIBS spectral 

variables by statistically analyzing the prediction accuracy. Support Vector Machine is then employed 

to obtain a classification model based on the selected spectral variables. It is different from traditional 

methods that informative variables extracted by AIA are actual spectral bands, they are helpful for 

spectral analysis. The results prove AIA is a variable, competitive and robust selection method, which 

obviously improve the prediction ability of SVM model based on high-dimensional LIBS spectrum. 

2. Experimental Methods 

2.1. Materials 

Nine common types of round steel from steel market were analyzed: 20#(Φ20×900mm), 

20Cr(Φ20×900mm), 20CrMnTi(Φ30×900mm), 20CrMo(Φ20×900mm), 20CrNiMo(Φ20×900mm), 

35#(Φ20×900mm), 35CrMo(Φ20×900mm), 40Cr(Φ20×900mm), 42CrMo(Φ25×900mm) (XINING 

SPECIAL STEEL CO., LTD.). A 6 mm-height steel column was cut separately from three different 

regions of each type of sample. The two cross sections of every steel column should be measured 

because of heterogeneous composition. 

2.2. Experimental Setup 

The LIBS data presented in this study were acquired by the Nd: YAG laser (LOTIS, TII2131, 

Belarus) operating at 1064 nm and producing 61 mJ (4.3 GW/cm
2
) energy with a repetition rate of 10 

Hz, which was focused onto the surface of samples with a 5 cm focal length lens. The LIBS spectra 

were recorded using an echelle spectrometer (ARYELLE-UV-VIS, LTB150, German), which provided 

a Constant Spectral Resolution (CSR) of 6000 over a wavelength range 220-800 nm displayable in a 

single spectrum. An Electron-Multiplying CCD camera (UV enhanced, 1004 x 1002 Pixels, USA), 

coupled with the spectrometer was used for detection of the dispersed light. The overall linear 

dispersion of the spectrometer camera system ranges from 37 pm (at 220 nm) to 133pm/pixel (at 800 

nm). A mechanical chopper was used in front of the entrance slit to prevent the CCD from detecting 

the early plasma continuum. All spectra were acquired after a 1.5µs delay from the laser pulse. 

2.3. Data Acquisition 

For each surface of every sample from one class, 50 locations are randomly selected for 

measuring. A measured spectrum was collected as an accumulation of 20 laser shots in per location in 
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purpose of improving the signal-to-noise ratio. In order to reduce the influence from sample 

heterogeneity and other fluctuations, every 5 measured spectra at different locations were averaged 

into an analytical spectrum. Then the other eight classes of samples were taken in the same way. As a 

result, a total of 540 analytical spectra were acquired from 9 classes of round steel (6 surfaces per 

classes, 10 average spectra per surface). Additionally, in order to prevent any spurious effects on our 

classification models, chemometrics analysis is performed without the application of any additional 

preprocessing methods. 

The broadband LIBS spectrum consists of 29888 intensity channels ranging from 220.433 to 

796.352 nm. If each channel was used as an input variable, it is needlessly and the computation cost 

can be very large. In order to facilitate the calculation, the entire spectrum is divided into 977 segments 

(30 wavelength channels per segment, insufficient padded with 0). Therefore, in this work, one 

informative variable contains 30 wavelength points. 

The MATLAB (version 2007a, MathWorks) software equipped with the LIBSVM Toolbox was used for 

all computations reported in this study. 

3. Statistical Analysis 

3.1. Support Vector Machine 

Support Vector Machine (SVM), based on statistical learning theory, is a promising kernel-based 

method for data mining and pattern recognition. The main idea for SVM classification is to construct a 

separating hyperplane that splits the data into two separate regions and maximizes the margin between 

the closest points in each separate region. The data points closer to the hyperplane are called the 

support vectors. Different from the traditional machinelearning methods which are based on empirical 

risk minimization, the learning discipline of SVM is to minimize the structural risk, and thus the better 

generalization ability is guaranteed. It also has special advantage in solving small sample, non-linear 

and high dimension mode recognition. An overview of the methods can be found in monographs of 

Shawe-Taylor and Cristianini or Hastieet al.
35-37

 

SVM is originally designed for binary classification. Thus the multi-class problem can be 

transformed to the combination of several two-class problems. The most commonly used 

implementations for SVM multi-class classification are “one-against-all” and “one-against-one”.
38-40 

In 

this work, a modified combination model strategy that combines “one-against-all” and 

“one-against-one” is applied to construct multi-class SVM model to identify the steel materials. The 
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combination model includes two stages: fuzzy classification and fine classification. For the fuzzy 

classification, suppose that a total of k  classes of round steels should be discriminated, the class 

memberships are stored in a matrix by binary coding, where the columns and rows are equal to the 

number of classes and spectrum, respectively. Each column in this matrix consists of ones (“1”) for the 

corresponding class; otherwise it consists of zeroes (“0”). Then membership matrix and all training 

spectrum are used to constructs k  SVM binary classifiers. The i th SVM classifier is trained with all 

of the spectrum data in the i th class with positive labels, and all other data with negative labels. The 

test spectrum is put into all classifiers for discriminating and the prediction result is also a 1 × k  vector 

by binary coding. If its prediction vector has only one column consists of “1”, the test spectrum is 

considered belong to the class corresponding to the “1” and whole prediction processes end early. 

Otherwise, all the classes corresponding to the “1” are considered as candidate classes. Specially, 

when there is no one “1” in prediction vector, all i  classes are also considered as candidate classes. 

Then the test spectrum would be finely classified again by SVM again based on one-against-one model 

which fully considers the class-to-class variability. Suppose that there are m candidate classes, thus the 

membership matrix becomes a vector contains m kinds of class identifier. The training spectra in 

candidate classes and membership vector are used to construct 2/)1-(mm  classifiers where each one 

is trained with data from two classes. Then the test spectrum is discriminated by all classifiers and the 

prediction result is decided by the following voting strategy (called “Max Wins”).
41

 If the classifier 

( i th class and j th class) predicts the spectrum belong to the i th class, then the vote for the i th class 

is added by one. Otherwise, the j th is increased by one. In the end, the spectrum we predict belongs to 

the class with the largest vote. If the number of the classes with the largest vote is two or more, the test 

spectrum is predicted again by “Max Wins” strategy involving the largest vote classes and this step 

loop runs until two consecutive identical results are obtained. If the final result is still not unique, the 

test spectrum is considered as “unclassified”. The introduction of “unclassified” is based on the 

consideration of component discrepancies existing within different regions of same type steel in the 

application for steel materials identification. The spectrum from some measurement locations may be 

unable to obtain enough composition information which will lead to be ambiguously classified. These 

confused data should be identified to avoid misclassification. 

3.2. Margin Influence Analysis for Variable Selection Based on MPA 
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Like the Margin Influence Analysis（MIA）, the AIA is also applied by implementing the Model 

Population Analysis (MPA). Briefly, a standard MPA is described by the following steps:  

(1) Obtain N sub-data sets by Monte Carlo sampling (MCS), where N is the number of MCS 

(2) Construct a sub-model for each sub-dataset. 

(3) Statistically analyze the interesting outputs of all the sub-models. 

However, the main interesting output of AIA is the prediction accuracy of SVM sub-models instead 

of the margins.
31, 32, 42-44

 

3.2.1. Monte Carlo Sampling 

In each Monte Carlo Sampling, Q variables are randomly picked out from whole spectral 

variables without any replacement, thus a sub-dataset can be obtained. Repeat this procedure N times, 

and we can get N sub-datasets. 

3.2.2. Constructing SVM Sub-model 

The each sub-dataset is randomly split into training subset and test subset. The training subset is 

used to build the SVM sub-model based on the aforementioned combination model and then the test 

subset is predicted by the SVM sub-model. Finally, we get N sub-models and correspond to 

prediction accuracy. 

3.2.3. Statistical Analysis by the Mann-Whitney U test 

The computing procedure is illustrated by the case of the i th variable. For the N times of 

samplings, the prediction accuracy of SVM sub-modes which include the i th variable are subsumed 

into Group A and others are subsumed into Group B. The mean values of Group A and Group B are 

denoted by MEANi,A and MEANi,B, respectively. And DMEANi =MEANi,A－MEANi,B. If DMEANi > 

0, the i th variable is treated as a candidate of informative variables that increases the predictive 

performance of the sub-model. Otherwise, the i th variable is treated as the uninformative variable that 

reduce the predictive performance and removes from the variable space. 

Next, the Mann-Whitney U test
45 

is applied to check whether each variable in candidates of 

informative variables could significantly increase the predictive performance. Only the regions with 
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p value are smaller than the predefined threshold (0.01 in this work), can they be defined as identified 

informative variables. 

4. Result and Discussion 

In order to avoid over fitting, the spectra dataset should be split into training and test sets. 

Informative variables were selected only from the training sets, and the test sets were used to test the 

effectiveness of informative variables. Taking into account a realistic scenario, steel materials have the 

characteristic of local uniform composition and overall uneven composition, if entire spectra are 

randomly split into training sets and test sets, the local similar spectra will be overfitted to model and 

lead to less unrealistically high predictive accuracy. Therefore, the spectra from one surface in total 

were conducted as analysis object. Thus, the spectra of 4 randomly selected surfaces from each class 

are training sets (360 spectra, 40 spectra per class) and the remaining spectra compose the test sets 

(180 spectra, 20 spectra per class). The penalizing factorC and the polynomial parameter d were 

optimized by performing a grid search over the range of 10
-5

 to 10
5
 (C ) and 1 to 10 (d ), respectively. 

In the final, 1=C , 1=d  were selected as the optimal value. Fig. 1 presents the representative spectra 

of nine round steel classes measured on the LIBS system. It was observed that there are lots of 

uninformative regions and background spectrum in the range of approximately 220–796 nm, 

discriminating the nine types of round steel on the basis of LIBS measurements is not straightforward. 

Owing to the complexity of the spectra, the use of the AIA is required. When the program of AIA was 

run, informative variables could be obtained. Fig. 2 presents that the spectrum only contains 

informative variables. 

“Here Fig. 1” 

“Here Fig. 2” 

As discussed in Section 2, before implementing Monte Carlo Sampling(MCS), three parameters 

are determined: N -the number of MCS; S -the number of spectra selected in each sampling; Q  -the 

number of variables selected in each sampling. In order to get as many variables combinations as 

possible, parameter N should be large enough. But considering the computational cost, we choose 

5000=N  in the present work. S  should be 1/2-2/3 as large as the total number of spectra. 
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Then parameter Q  is set to 5, 10, 30, 50, 100, 150, 200, respectively, to investigate the influence 

on the SVM results of the number of variable selection for the model. 

“Here Fig. 3A” 

“Here Fig. 3B” 

In Figure 3, two types of variables lead to different accuracy distribution. Plot A: informative 

variable (the 303th region, 30=Q , Plot A). Plot B: uninformative variable (the 544th region, 30=Q , 

Plot B). The red bars represent the accuracy distribution of models including a given variable, while 

the blue bars represent the accuracy distribution of models without the given variable. 

A typical informative variable (the 303th region, 30=Q , Plot A) and an uninformative variable 

(the 544th region, 30=Q , Plot B) are illustrated in Figure 2. In Plot A, it is clear that the accuracy 

distribution of models including the 303th region is significantly right-shifted ( p =4.28×10
-21

). This 

means that this region can improve the classification performance if it is included. By contrast, for the 

544th region, the accuracy distribution is unchanged while the 544th region is included. Thus, this 

region can be considered as uninformative variable and should be removed from the model. 

We note that the results of AIA could not be exactly reproduced due to the embedded Monte Carlo 

strategy. Therefore, we investigated the variation of the classification accuracy of the informative 

spectra model by running AIA on the same data 20 times. The average prediction accuracy and the 

standard deviations are shown in Figure 4. Table 1 lists more details and computation time of the 

informative spectra models by AIA. 

“Here Fig. 4” 

Figure 4 shows the average prediction accuracy and the standard deviations of running the AIA 

program 20 times. The highest average prediction accuracy and the least standard deviation were 

obtained when 50=Q . 

“Here Table 1” 

As shown in Figure 4, the average prediction accuracy first increases until it reaches the 

maximum and then, as more variables are selected, the average prediction accuracy decreases 
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gradually. By contrast, the standard deviation shows an opposite trend of variation against the average 

prediction accuracy. We note that the value of Q  greatly affect the sensitivity and robustness of AIA. 

Insufficient sampled variables in sampling cannot provide the requisite information and results in poor 

discrimination between classes, while excessive sampled variables affect the selection of informative 

variable and even worsen the classification performance. It is clear that the highest average prediction 

accuracy (approached 100%) can be obtained while 50 variables are included, and the standard 

deviation affords no significant change. Implementing Monte Carlo sampling, contribution of target 

variable to classification model was comprehensively considered by combining target variable and 

other different variables. By eliminating the redundant (uninformative) regions of the spectrum, the 

separation between classes is enhanced and the classification model, based solely on the informative 

features, becomes more sensitive for distinguishing classes with similar constituent elements.  

On the whole, it might be concluded that AIA is a good alternative for informative variable 

selection and the AIA-based SVM classifier is a promising predicted tool for steel materials 

discrimination. 

5. Conclusion 

In summary, AIA, a new statistical variable selection algorithms, has been applied to obtain 

informative variable of the LIBS spectrum. The AIA works similarly to MIA, but it can identify 

informative variables by statistically analyzing the distribution of the prediction accuracy instead of 

the margins, which has shown better generalization ability. Implementing Monte Carlo sampling, 

contribution of target variable to classification model was comprehensively considered by combining 

target variable and other different variables. Support vector machine is then employed to classify nine 

types of round steel based on the selected spectral variables. It is demonstrated that AIA is a 

competitive and robust variable selection method that obviously improve the prediction ability of SVM 

model based on high-dimensional LIBS spectrum. Furthermore, compared with the whole spectra 

model, the informative spectra model can shorten the computation time remarkably, which makes the 

LIBS-SVM technique suitable for in-field fast and real-time on-line analysis. 

 

Acknowledgements 

This work was financially supported by the National Special Fund for the Development of Major 

Scientific Instruments and Equipment (No. 2011YQ030113) of China, National Natural Science 

Page 11 of 20 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



Foundation of China (No. 21375105). 

 

Reference 

1 D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Wiley, 2006. 

2 A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy, Cambridge University Press, 

2006. 

3 D. W. Hahn and N. Omenetto, Applied Spectroscopy, 2010, 64, 335A–366A . 

4 D. W. Hahn and N. Omenetto, Applied Spectroscopy, 2012, 66, 347–419 . 

5 F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin and J. J. Laserna, Analytical Chemistry, 2013, 85, 640–669 . 

6 E. G. Snyder, C. A. Munson, J. L. Gottfried, F. C. De Lucia Jr, B. Gullett and A. Miziolek, Applied Optics, 2008, 47, 

G80–G87. 

7 F. C. De Lucia Jr, R. S. Harmon, K. L. McNesby, R. J. Winkel Jr and A. W. Miziolek, Applied Optics, 2003, 42, 

6148–6152. 

8 J. B. Sirven, B. Sallé, P. Mauchien, J. L. Lacour, S. Maurice and G. Manhès, Journal of Analytical Atomic Spectrometry, 

2007, 22, 1471–1480. 

9 S. Palanco and J. J. Laserna, Journal of Analytical Atomic Spectrometry, 2000, 15, 1321–1327. 

10 R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Moench, L. Peter and V. Sturm, Spectrochimica Acta Part B-Atomic 

Spectroscopy, 2001, 56, 637–649. 

11 J. D. Hybl, G. A. Lithgow and S. G. Buckley, Applied Spectroscopy, 2003, 57, 1207-1215. 

12 A. C. Samuels, F. C. De Lucia Jr, K. L. McNesby and A. W. Miziolek, Applied Optics, 2003, 42, 6205-6209. 

13 P. B. Dixon and D. W. Hahn, Analytical Chemistry, 2005, 77, 631-638. 

14 A. Giakoumaki, K. Melessanaki and D. Anglos, Analytical and Bioanalytical Chemistry, 2007, 387, 749-760. 

15 A. Brysbaert, K. Melessanaki and D. Anglos, Journal of Archaeological Science, 2006, 33, 1095-1104. 

Page 12 of 20Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



16 A. Ramil, A . J. López and A. Yáñez, Applied Physics A, 2008, 92, 197-202. 

17 S. Béatrice, A. C. David, M. Sylvestre, C. W. Roger and F. Pascal, Spectrochimica Acta Part B-Atomic Spectroscopy, 

2005, 60, 805-815. 

18 R. D. Harris, D. A. Cremers, C. Khoo and K. Benelli, 36th Annual Lunar and Planetary Science Conference, in League 

City, Texas, abstract, 2005, 1796, 14-18. 

19 R. J. Lasheras , C. Bello-Gálvez and J. Anzano, Polymer testing, 2010, 29, 1057-1064. 

20 J. Juraj, H. Johannes, D. P. Johannes and V. Pavel, Spectrochimica Acta Part B-Atomic Spectroscopy, 2009, 64, 

1128-1134. 

21 R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J.D. Pedarnig and J. Heitz, Spectrochimica Acta Part B-Atomic 

Spectroscopy, 2010, 65, 935-942. 

22 C. S-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B Trivedi, A. C. Samuels and A. P. Snyder, 

Applied Spectroscopy, 2014, 68, 226-231. 

23 N. Lewen, Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 653-661. 

24 M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas and G. Wilsch, Spectrochimica Acta Part B-Atomic Spectroscopy, 2009, 64, 

1098-1104. 

25 D. Bulajic, G. Cristoforetti, M. Corsi, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, S. Green, D. Bates, 

A. Steiger, J. Fonseca, J. Martins, J. McKay, B. Tozer, D. Wells, R. Wells and M.A. Harith, Spectrochimica Acta Part 

B-Atomic Spectroscopy, 2002, 57, 1181-1192. 

26 R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter and V. Sturm, Spectrochimica Acta Part B-Atomic 

Spectroscopy, 2001, 56, 637-649. 

27 V. Sturm, L. Peter and R. Noll, Applied Spectroscopy, 2000, 54, 1275-1278. 

28 R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic and V. Spizzichino, Spectrochimica Acta Part B-Atomic 

Spectroscopy, 2008, 63, 1097-1108. 

29 Z. Wang, J. Feng, L. Z. Li, W. D. Ni and Z. Li, Journal of Analytical Atomic Spectrometry, 2011, 26, 2289-2299. 

Page 13 of 20 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



30 J-B Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier and I. L. Hecho, Analytical and 

Bioanalytical Chemistry, 2006, 385, 256-62. 

31 S. Schröder, S. G. Pavlov, I. Rauschenbach, E. K. Jessberger and H. W. Hübers, ICARUS, 2013, 223, 61-73. 

32 C. W. Hsu and C. J. Lin, Neural Networks, IEEE Transactions on, 2002, 13, 415-425. 

33 H. D. Li, Y. Z. Liang, Q. S. Xu, D. S. Cao, B. B. Tan, B. C. Deng and C. C. Lin, IEEE/ACM Transactions on 

Computational Biology and Bioinformatics (TCBB), 2011, 8, 1633-1641. 

34 H. D. Li, M. M. Zeng, B. B. Tan, Y. Z. Liang, Q. S Xu and D. S. Cao, Metabolomics, 2010, 6, 353-361. 

35 N. Cristianini and J. Shawe-Taylor, Cambridge university press, 2000. 

36 J. Shawe-Taylor and N. Cristianini, Cambridge university press, 2004. 

37 T. Hastie, S. Rosset, R. Tibshirani and J. Zhu, Journal of Machine Learning Research, 2004, 5, 1391-1415. 

38 C. W. Hsu and C. J. Lin, IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13, 415-425. 

39 M. N. Nguyen and J. C. Rajapakse, Genome informatics. International Conference on Genome Informatics, 2003, 14, 

218-227 

40 C. Tan, T. Wu and X. Qin, ASIAN JOURNAL OF CHEMISTRY, 2013, 25, 3668-3672 

41 J. H. Friedman, Technical Report, Department of Statistics, Stanford University, 1996. 

42 M. H. Xie, F. F. Deng, X. Y. Zhang, Y. L. Tian, P. Z. Li and H. L. Zhai, Chemometrics and Intelligent Laboratory 

Systems, 2014,132, 124-132. 

43 J. H. Huang, J. Yan, Q. H. Wu, M. D. Ferro, L. Z. Yi, H. M. Lu, Q. S. Xu and Y. Z. Liang, Talanta, 2013, 117, 549-555. 

44 H. D. Li, Y. Z. Liang, D. S. Cao and Q. S. Xu, Trends in Analytical Chemistry, 2012, 38, 154-162. 

45 B. Rosner and D. Grove, Statistics in Medicine, 1999, 18, 1387-1400. 

 

 

 

Page 14 of 20Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



 

 

 

 

 

 

 

Captions 

 

 

Fig. 1 The spectra of 20# round steel measured on the LIBS system. 

Page 15 of 20 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



 

 

Fig. 2 The spectrum only contains informative variables of 20# round steel. 
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Fig. 3(A) Accuracy distribution of informative variable (the 303th region).  

a. Without a given variable; b. With a given variable. 
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Fig. 3(B) Accuracy distribution of uninformative variable (the 544th region). 

a. Without a given variable; b. With a given variable. 
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Fig. 4 The average prediction accuracy and the standard deviations of running AIA program 20 times. 

 

Table 1 The result details and computation time of the informative spectra models by AIA. 

Q Average prediction 

accuracy 

NO. of informative 

variables 

Training time(s)  

(360 spectra) 

Testing time(s) 

(180 spectra) 

5 0.9366 132 2.0774 1.3163 

10 0.9583 94 0.1912 0.6260 

30 0.9747 52 0.6032 0.2200 

50 0.9802 35 0.4048 0.1520 

100 0.9711 26 0.3238 0.2260 
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150 0.9547 22 0.2808 0.1850 

200 0.9233 18 0.2580 0.2155 

Whole spectra 0.9278 997 14.86 21.65 
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