Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

1	Electrochemical Preparation of Poly(aniline-co-m-aminobenzoic) – Ionic Liquid
2	Composite Coating for the Head-space Solid Phase Microextraction and Analysis
3	of Aryl halides
4	Youhong Ai ^{1,2} , Faqiong Zhao ¹ , Baizhao Zeng ¹
5	¹ Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of
6	Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan
7	430072, P R China.
8	² College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062,
9	P R China.
10	
11	Abstract: In this work, a novel poly(aniline-co- <i>m</i> -aminobenzoic acid) - ionic liquid
12	composite coating was presented for the head-space solid phase microextraction
13	(HS-SPME) of aryl halides (i.e. chlorobenzene, brombenzol, 1,4-dichlorobenzene,
14	4-bromotoluene, 1,2,4-trichlorobenzene). This coating was prepared on a platinum
15	wire by electrochemical deposition in an aqueous solution containing 0.1 mol L^{-1}
16	aniline, 0.1 mol L^{-1} <i>m</i> -aminobenzoic acid, 0.02 mol L^{-1} 1- butyl-3-methylimidazolium
17	tetrafluoroborate and 1.0 mol L ⁻¹ HNO ₃ . It showed high mechanical stability, thermal
18	stability (up to 320 °C) and durability (repetitively used for more than 120 times).
19	When it was applied to the HS-SPME and gas chromatographic detection of the aryl
20	halides, it presented high repeatability and sensitivity. Under the optimized conditions
21	(i.e. extraction temperature: 30 °C; extraction time: 30 min; stirring rate: 600 rpm;
22	NaCl concentration: 0.35 g mL ⁻¹), the linear detection ranges were 0.2–100 μ g L ⁻¹

Analytical Methods Accepted Manuscript

2 3
3
4
-
3 4 5 6
6
7
8
õ
9
10
11
12
12
13
14
15
16
17
10
18
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 99
21
∠ I 00
22
23
24
25
20
26
27
28
20
29
30
31
22
32
33
34
35
36
50
37
38
39
40
41
42
43
44
45
46
47
48
40
49
50
51
52
52
53
54
55
56
57
58
59
60
nu

1

23	with correlation coefficients above 0.9922; the detection limits were 0.01–0.05 μ g L ⁻¹
24	(S/N=3). The relative standard deviations (RSD) of chromatographic peak areas were
25	smaller than 5.3% for five successive measurements with single fiber, and the fiber to
26	fiber RSD was 2.4–9.5% (n=3) for different aryl halides (50 μ g L ⁻¹). This method
27	was successfully applied to the determination of real samples (i.e. moth ball) and the
28	recoveries for standard added were 85.7 % to 121%.

29

30 Keywords: Electrochemical polymerization; Solid-phase microextraction; Ionic
31 liquid; Aminobenzoic acid; Aryl halides; Polyaniline

32

33 **1. Introduction**

34 Solid-phase microextraction (SPME) was invented by Pawliszyn and co-workers two 35 decades ago [1,2]. It is a fast, solvent free, inexpensive and sensitive sample pretreatment technique. For SPME the choice of suitable fiber is very important [3]. 36 At present commercial SPME fibers generally have some drawbacks such as low 37 38 thermal and chemical stability, high cost and/or short lifetime. Hence their application 39 is limited to some extent [4]. To overcome these weaknesses, various approaches have 40 been developed for the production of new SPME fibers [5,6]. Electrochemical method 41 has advantages of simpleness and easy control, and is considered a good way for the 42 preparation of SPME fibers [7-8]. This method was attempted by Wu and Pawliszyn et al a decade ago, and polypyrrole and polyaniline (PANI) SPME coatings were 43 44 constructed by using electrochemical method [9-13]. Afterwards, in order to improve

Analytical Methods

45	the performance of single polymer-based coatings, composite coatings were
46	fabricated. For example, Kalaee et al. reported a nano-structured coating based on the
47	copolymer of aniline and <i>m</i> -amino benzoic acid for the analysis of fatty acids in
48	zooplanktons [14]. It showed higher thermal and mechanical stability compared with
49	common polyaniline coating, resulting from the bonding of some functional groups.
50	Xu et al. fabricated a poly(p-phenylenediamine-co-aniline) composite coating on a
51	stainless steel wire for the head-space SPME (HS-SPME) of some derivatives of
52	benzene, it displayed better performance than the polyaniline coated stainless steel
53	wire due to its improved porous structure and adsorption ability [15]. Obviously,
54	compared with the single polymer-based coatings, composite coatings showed higher
55	stability and extraction efficiency.

Ionic liquids (ILs), composed of organic cations and organic or inorganic anions [16], often present high conductivity, negligible vapor pressure, high thermal stability and high solvency. These unique properties make them very useful in sample preparation [17-20]. ILs were also used in SPME [21-23]. Liu et al. [24] reported the preparation of IL-coated fiber for the first time. The performance of the fiber was comparable with the commercial polydimethylsiloxane (PDMS) fiber, but the IL coating was disposable. To resolve this problem Anderson and coworkers replaced IL with polymeric ionic liquids (PILs) in preparing SPME fibers [25-27], thus the coatings could be used for repeated extraction. In addition, Cheng Sun et al. and Wang et al. [28, 29] fabricated nano-structure polyaniline-IL composite coatings by electrochemical method for the HS-SPME of organochlorine pesticides and benzene

Analytical Methods Accepted Manuscript

67 derivatives. They showed good extraction property and extreme low detection limits.

However, no electrochemical copolymer–IL composite coating has been reportedhitherto.

In this paper a novel poly(aniline-co-*m*-aminobenzoic acid) —IL composite coating (PANI-PmAB-IL) was prepared by cyclic voltammetry in a nitric acid aqueous solution containing aniline, *m*-aminobenzoic acid and hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmin]BF₄). The resulting fiber showed the merits of copolymer and IL. When it was used for the HS-SPME of aryl halides, it presented good performance.

77 2. Experimental

78 2.1. Reagents

Chlorobenzene (CB), bromobenzene (BB), 1,4-dichlorobenzene (1,4-DCB), 4-bromotoluene (4-BT) and 1,2,4-trichlorobenzene (1,2,4-TCB) were purchased from the Reagent Factory of Shanghai (China), and their stock solutions (1 mg mL⁻¹) were prepared with methanol. Aniline came from Aladdin Chemistry Co. (Shanghai, China) and was distilled before use. Aminobenzoic acids (i.e. *m*-aminobenzoic acid and *p*-aminobenzoic acid) and other chemicals used were of analytical or reagent grade. The samples (i.e. moth ball) were obtained from a local supermarket.

2.2. Apparatus

88 A CHI 600D electrochemical workstation (Shanghai Chenhua Instruments Co., Ltd)

89	was employed for preparing PANI-PmAB-IL fibers. A conventional three-electrode
90	system was used, including a Pt wire (2 cm×280 μm O.D.) as working electrode, a Pt
91	counter electrode (2.5 cm×0.1 cm O.D.) and a saturated calomel electrode (SCE) as
92	reference electrode. A SP-6890 gas chromatography instrument with a flame
93	ionization detection (FID) system (Shandong Lunan Ruihong Chemical Instrument
94	Co., Tengzhou, China) was utilized to separate and detect the analytes extracted. Its
95	inlet was operated under the splitless mode and the flow rate of carrier gas (i.e.
96	nitrogen gas) was 2.4 mL min ⁻¹ . The Rtx-1 capillary column (30 m \times 0.25 mm I.D.)
97	had 0.25 μ m film thickness (RESTEK, USA). The instrumental temperature program
98	used for this procedure was as follows: initial oven temperature was 50 °C (held for 4
99	min), increased to 110 °C at rate of 10 °C min ⁻¹ , increased to 120 °C at rate of 2 °C
100	min ⁻¹ , then increased to 150 °C at rate of 10 °C min ⁻¹ , and the temperature was held
101	for 3 min. The injector temperature and detector temperature were set at 250 °C. The
102	scanning electron microscopy images were obtained using a Quanta-200 SEM
103	instrument (FEI, The Netherlands).

Analytical Methods Accepted Manuscript

105 2.3. Preparation of PANI-PmAB-IL composite film coated Pt wire

Prior to electrochemical deposition, the platinum wires were cleaned by ultrasonication in nitric acid solution and distilled water each for 15 min. Then the electrode system was immersed in nitric acid electrolyte containing 0.1 mol L^{-1} aniline, 0.1 mol L^{-1} *m*-AB and 0.02 mol L^{-1} [Bmin]BF₄. The potential scan was cycled between -0.2 V and 1.0 V for 75 times at 50 mV s⁻¹. After electrodeposition the

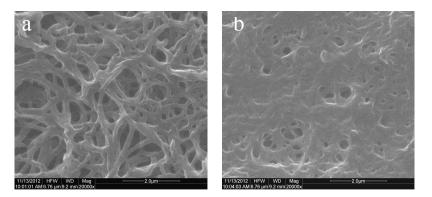
Analytical Methods Accepted Manuscript

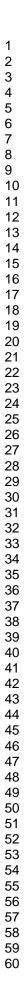
2
3
4
5
6
7
0
8
9
10
11
12
13
14
15
16
17
18
2 3 4 5 6 7 8 9 10 11 21 31 41 51 61 71 81 92 21 22 32 42 56 72 82 93 31 32 33 43 53 63 73 83 90 41
20
∠∪ 21
∠ I 20
22
23
24
25
26
27
28
29
30
31
32
33
24
34 25
30
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

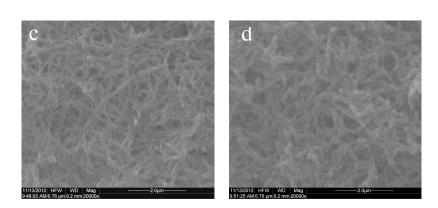
1

111	obtained composite film coated Pt wire was washed with deionized water and
112	subsequently was kept in a desiccator for 24 h at room temperature. Then it was aged
113	in an electric furnace under nitrogen atmosphere for 50 min at 90 °C and for 120 min
114	at 300 °C respectively. When the fiber was cool it was fixed on a home-made device
115	for SPME with epoxy resin. According to the microscope measurement result, the
116	thickness of the coating was about 40 μ m. For comparison,
117	polyaniline-poly(<i>p</i> -aminobenzoic acid)–[Bmin]BF ₄ (PANI-PpAB-IL),
118	polyaniline-poly(m-aminobenzoic acid) (PANI-PmAB) and PANI coatings were
119	prepared under similar conditions. The thickness of these coatings was about 40 μ m.

120


121 **2.4. HS-SPME procedure**


A 10 mL water and proper aryl halides (200 µg L⁻¹) solution were transferred into a 122 123 15 mL glass vial with PTFE-silicon septum. After adding appropriate sodium 124 chloride and a magnetic stirring bar, the vial was tightly sealed with an aluminum cap. 125 Then the vial was placed on a magnetism mixer with a water bath. When the water temperature reached the fixed value (i.e. 30 °C), the PANI-PmAB-IL fiber was 126 127 exposed to the headspace over the stirred solution for 30 min. Then the fiber was 128 withdrawn into the needle, removed from the sample vial and immediately introduced into the GC injector port for thermal desorption of 3 min. 129


- 131 **3. Results and discussion**
- 132 **3.1. Characterization of PANI-PmAB-IL fiber**

3.1.1. Surface structure

The SEM images of PANI-PmAB-IL, PANI-PpAB-IL, PANI-PmAB and PANI coatings were shown in Fig. 1. They all presented netlike structure, but the PANI-PmAB-IL coating presented thicker polymer fiber and larger mesh. This was related to the effect of IL on the polymerization process as it could be adsorbed on the polymer fiber. When IL was absent, the obtained PANI-PmAB coating was more compact and the mesh was smaller. In addition, the PANI-PmAB-IL coating was more smooth than the PANI-PmAB coating, which could be ascribed to the masking action of thin IL film on the fiber. As large mesh benefitted mass transfer and IL could enhance extraction capacity, the PANI-PmAB-IL coating should be suitable for SPME, although its specific surface was likely smaller than that of PANI-PmAB [30]. As could be seen, the structure of PANI and PANI-PpAB-IL coatings was not so good as that of PANI-PmAB-IL and PANI-PmAB. Accordingly, the PANI-PmAB-IL coating was selected.

149 Fig. 1. SEM images of PANI-PmAB-IL coating (a), PANI-PpAB-IL coating (b),

150 PANI-PmAB coating (c) and PANI coating (d).

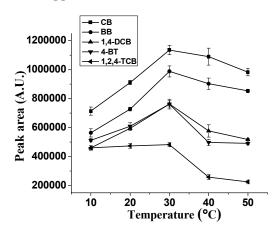
151

148

152 **3.1.2. Thermal stability**

153 In order to investigate the thermal stability of the PANI-PmAB-IL fiber, it was 154 inserted into the injection port of a gas chromatograph and the blank chromatogram 155 was recorded at different desorption temperatures. As a result, when the desorption 156 temperature was lower than 320 °C the chromatogram was almost a straight line, 157 meaning that the fiber was stable under 320 °C (Fig. S1). But when the temperature was increased further small peaks appeared due to the partly decomposition of 158 159 PANI-PmAB-IL. However, the recommended operating temperature for PANI fibers 160 was lower than 250 °C [13]. This indicated that the PANI-PmAB-IL fiber had wider 161 applied temperature range than PANI fiber.

162


163 **3.2. Optimization of extraction and desorption conditions**

For the analysis of aryl halides, several factors that may influence the extraction efficiency were optimized, including extraction time, stirring speed, extraction

166 temperature and ionic strength. The working solutions contained 0.2 μ g mL⁻¹ aryl 167 halides and all measurements were replicated for three times.

3.2.1. Extraction temperature

Extraction temperature is an important parameter for HS-SPME. The influence of extraction temperature on the extraction efficiency of PANI-PmAB-IL fiber was shown in Fig. 2. It was clear, the extraction efficiency increased with the solution temperature rising up to 30 °C, then it decreased slowly for different analytes. In general, temperature can affect the transfer rate of analytes from solution to headspace and the distribution ratio of analytes in coating phase. Here the temperature of 30 °C was thought to be a balance point between adsorption amount and adsorption rate. Because the extraction temperature was close to the room temperature, it was convenient for the practical application of the fiber.

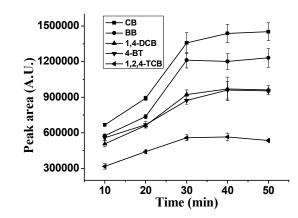


Fig. 2. Effect of extraction temperature on extraction efficiency of the fiber. Extraction time: 30 min; stirring speed: 600 rpm; NaCl concentration: 0.35 g mL⁻¹; desorption temperature: 250 °C; desorption time: 3 min; concentration of aryl halides: 0.2 µg mL⁻¹ (for CB, BB, 1,4-DCB, 4-BT and 1,2,4-TCB).

3.2.2. Extraction time

The influence of extraction time on the extraction efficiency was shown in Fig. 3. In the time range (i.e. 10–50 min) studied, the extraction efficiency increased with extending time until it was up to 30 min, then it kept almost unchanged for different aryl halides, indicating that the five aryl halides reached extraction equilibrium under the condition. Obviously, the extraction was quite quick, probably due to the rapid mass transfer of the analytes in the PANI-PmAB-IL coating.

192 Fig. 3. Effect of extraction time on the extraction efficiency of the PANI-PmAB-IL

193 fiber. Other conditions as in Fig. 2.

3.2.3. Stirring speed

Agitating solution can enhance extraction efficiency and reduce extraction time, thus it is always adopted. In this case, the extraction efficiency increased with stirring speed changing from 0 to 600 rpm (Fig. S2). Although the extraction efficiency probably increased further with stirring speed rising, considering the influence of splashed solution on the fiber at higher stirring speed, the stirring rate was set at 600 rpm in the following experiments.

203	3.2.4. Ionic strength
204	To explore the influence of ionic strength, NaCl was added to the solution. As shown
205	in Fig. S3, the addition of NaCl made the extraction efficiency increase for all
206	analytes even if NaCl concentration was up to 0.35 g mL ⁻¹ . As 0.35g mL ⁻¹ was the
207	concentration of saturated NaCl solution, in the experiments saturated NaCl solution
208	was used.
209	
210	3. 3. Method evaluation
211	Under the optimized conditions, the analytical parameters were determined and the
212	results were listed in Table 1. For different aryl halides, the limit of detection (LOD)
213	was 0.01–0.05 $\mu g \ L^{-1}$ based on the signal/noise rate of 3. The GC peak areas were
214	linear to the concentration of aryl halides over two magnitudes, with correlation
215	coefficients above 0.9922. The relative standard deviation (RSD) was below 5.3% for
216	five repetitive extractions of solutions containing 50 $\mu g \ L^{-1}$ aryl halides by using a
217	fiber, and the fiber-to-fiber RSD was 2.4% to 9.5% for different aryl halides. This

using a s. This indicated that the novel composite coating not only had high sensitivity, but also had good repeatability and reproducibility. Compared with some fibers reported (e.g. titania sol-gel coated anodized aluminum fiber) for the HS-SPME of aryl halides [31, 32], it showed more satisfactory analytical parameters.

Table 1

Analytical parameters for aryl halides measured with PANI-PmAB-IL fiber based

1
2
3
4
5
6
7
γ Q
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
$^{-}23456789111234567890112345678901122222456789033333333333345678901123456789012223456789012333456789001222224567789001223345678900122222222222220012233456789000000000000000000000000000000000000$
24 25
25
26
27
28
29
30
31
22
3Z
33
34
35
36
37
38
30
40
40 41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
56
57
58
59
~~

60

1

_	Analytes	LOD (µg L ⁻¹)	Linear range (µg L ⁻¹)	Correlation . coefficient	RSD (%)	
					One fiber (n=5)	Fiber to fiber (n=3)
	CB	0.05	0.2 - 50	0.9968	3.2	6.2
	BB	0.05	0.2-100	0.9947	5.3	9.5
	1,4-DCB	0.03	0.2 - 50	0.9948	2.4	7.1
	4 - BT	0.03	0.2 -100	0.9922	1.9	2.4
_	1,2,4 - TCB	0.01	0.4 - 100	0.9923	2.7	5.6

HS-SPME-GC-FID method.

225

226 **3.4. Extraction capability**

The extraction capability of the PANI-PmAB-IL fiber was compared with that of PANI fiber, and the result was shown in Fig. 4. The novel fiber had much higher extraction efficiency than PANI fiber. This should be ascribed to the porous nanostructure and strong adsorption of PANI-PmAB-IL coating. Furthermore, the entrapped [Bmin]BF₄ was an excellent extractant for aryl halides. Therefore, it must contribute to the enhancement of extraction efficiency.

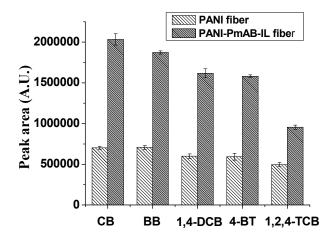
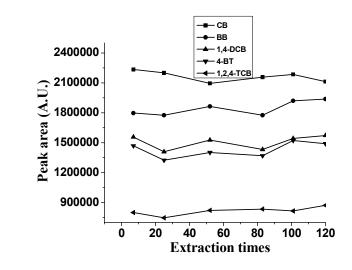


Fig. 4. Comparison of the extraction efficiency of PANI-PmAB-IL fiber (coating
thickness 40 μm) and PANI fiber (coating thickness 40 μm) for aryl halides.
Extraction time: 30 min; extraction temperature: 30 °C; stirring speed: 600 rpm; NaCl

Analytical Methods

237	concentration: 0.35 g mL ^{-1} ; desorption temperature: 250 °C; desorption time: 3 min;
238	concentration of aryl halides: 0.2 $\mu g\ mL^{-1}$ (for CB, BB, 1,4-DCB, 4-BT and
239	1,2,4-TCB).
240	
241	The comparison of the extraction efficiency of PANI-PmAB-IL fiber,
242	PANI-PpAB-IL fiber and PANI-PmAB fiber was shown in Fig. S4. They all
243	presented high extraction efficiency, but the PANI-PmAB-IL fiber was better.
244	
245	3.5. Extraction selectivity
246	Five phenolic compounds and five ester compounds were extracted with a the PANI-
247	PmAB-IL fiber to test its selectivity (Fig. 5). As a result, the fiber also showed high
248	extraction efficiency for the polar and nonpolar compounds. Therefore, it could be
249	used for the SPME of different volatile compounds.
250	$H_{1200000}$
251	Fig. 5. Extraction efficiency of the PANI-PmAB-IL fiber for different compounds.


253 2,6-dimethylphenol, 2,4-dimethylphenol; ester compounds (from 6 to 10): dimethyl

Phenolic compounds (from 1 to 5): 2-chlorophenol, 2-methylphenol, 3-methylphenol,

254 phthalate, diethyl phthalate, methyl anthranilate, ethyl-o-aminobenzoate, methyl 255 Laurate. The concentration of analytes: $0.2 \ \mu g \ mL^{-1}$; other conditions as in Fig. 4.

3.6. Lifetime of the coating

The lifetime or durability of a fiber is crucial for practical application. For most commercial SPME fibers, the extraction efficiency declined with extraction times increasing because the coating was prone to being damaged by high temperature and organic solvent, etc [33]. Here the lifetime of PANI-PmAB-IL fiber was examined. As a result (Fig. 6), after it undergone 120-time adsorption/desorption, the extraction efficiency almost did not decrease, considering the unavoidable variation of measure conditions. Moreover, it the fiber also had high mechanical strength.

266 Fig. 6. Variation of extraction efficiency with extraction time of the PANI-PmAB-IL

267 fiber. Other conditions as in Fig. 4.

3.7. Chemical stability

270 To test the chemical stability of the fiber it was soaked in distilled water, methylene

Analytical Methods

2
З
5
4
5
6
-
1
8
õ
9
10
11
10
12
13
14
15
15
16
17
10
10
19
20
24
21
22
23
24
24
25
26
27
21
28
29
20
30
31
32
02
33
34
35
00
36
37
2 3 4 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 16 17 8 19 20 1 22 33 4 25 26 27 28 29 30 1 32 33 34 35 36 37 38 9 0
00
39
40
41
42
43
44
45
46
47
48
49
50
52
53
55
56
57
58
59

chloride, 1 M H_2SO_4 acid and 1 M NaOH solution for 4 hours, respectively. Then it the fiber was washed with distilled water and dried under a lamp for extraction application. Results showed that the extraction efficiency of the fiber kept almost unchanged (Fig. S5), meaning that the coating had good chemical stability.

275

276 **3.8. Applications**

The proposed method was applied to the determination of aryl halides in three moth ball samples. The moth ball sample (0.01 g) was added into a 10 mL saturated NaCl aqueous solution and then was detected under the optimized conditions. The results were shown in Table 2. In a sample solution 1.4-dichlorobenzene was detected and its concentration was c.a. 29.3 ng mL⁻¹. According to the detected result the content of 1,4-DCB was calculated to be 29 mg/g. The recoveries for standards added varied from 85.7% to 121%. Analytical Methods Accepted Manuscript

284

285 **Table 2**

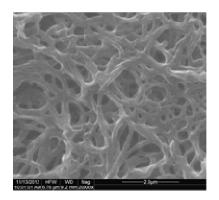
286 Analytical results of moth ball samples determined with HS-SPME-GC-FID using

	Mo	th ball samp	oles	Recovery for standard added $(\%)^{b}$			
Analytes	1 (ng mL ⁻¹)	2 (ng mL ⁻¹)	3 (ng mL ⁻¹)	Sample 1	Sample 2	Sample 3	
CB	nd ^a	nd	nd	117.2±3.8 ^c	85.7±4.6	97.3±10.5	
BB	nd	nd	nd	108.2 ± 3.5	96.5±4.5	100.5±9.3	
1,4 - DCB	29.3	nd	nd	121.2±8.4	104.2±7.8	100.3±8.1	

287 PANI-mAB-IL fiber (n=3).

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

	4-BT	nd	nd	nd	113.8±7.2	107.2±3.	98.1±7.2	
	1,2,4 - TCB	nd	nd	nd	97.4±5.6	119.4±3.2	106.0±3.9	
	^a nd: not detect	ed;						
	^b the concentra	tion of ary	l halides ac	lded: 50 n	$g mL^{-1}$.			
	^c mean values±	standard d	eviations					
	4. Conclusion							
	In this pape	er, a nov	vel PANI	-PmAB-I	L SPME fil	ber was fa	bricated by	
	electrodepositi	on method	. The comp	posite coa	ting presented	porous struct	ure with high	
	adsorption capa	acity. It als	so had high	thermal s	stability (up to	320 °C) and 1	ong lifetime	
When it was used for the HS-SPME of aryl halides, followed by gas chromatographic								
detection, satisfactory analytical parameters were obtained. The novel fiber could also								
	be used for the	extraction	of other co	ompounds	5.			
	References							
[1] R. G. Belardi and J. Pawliszyn, Water Pollut. Res. J. Can., 1989, 24, 179-191.								
	[2] C. L. Arthu	r, and J. Pa	awliszyn, A	nal. Chen	n., 1990, 62 , 2	145-2148.		
[3]A. Ghassempour, N. Mashkouri Naja, A. Mehdinia, S. S. Hosseiny Davarani, M.								
Fallahi and M. Nakhshab, J. Chromatogr., A, 2005, 1078, 120-127.								
[4] J. S. Camara, J. C. Marques, R. M.Perestrelo, F. Rodrigues, L. Oliveira, P.								
	Andrade and M. Caldeira, J. Chromatogr., A, 2007, 1150, 198-207.							
	[5] M. Giannetto, A. Secchi and F. Bianchi, J. Chromatogr., A, 2009, 1216,							
	3725-3730.							


 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

309	[6] M. Trojanowicz, Microchim. Acta, 2003, 143, 75-91.
310	[7] G. Zotti, S. Cattarin and N. Comisso, J. Electroanal. Chem., 1988, 239, 387-396.
311	[8] A. Mohammadi, Y.Yamini and N. Alizadeh, J. Chromatogr., A, 2005, 1063, 1-8.
312	[9] J. C. Wu and J. Pawliszyn, J. Chromatogr., A, 2001, 909, 37-52.
313	[10] J. C. Wu and J. Pawliszyn, Anal. Chim. Acta, 2004, 520, 257-264.
314	[11]M. Mousavi, E. Noroozian, A. Jalali-Heravi and A.Mollahosseini, Anal. Chim.
315	Acta, 2007, 581 , 71-77.
316	[12] X. Li, M. Zhong and J. M. Chen, J. Sep. Sci., 2008, 31 , 2839-2845.
317	[13] H. Bagheri, E. Babanezhad and A. Es-Haghi, J. Chromatogr., A, 2007, 1152,
318	168-174.
319	[14] A. Mehdinia, M. Asiabi, A. Jabbari and M.Kalaee, J. Chromatogr., A, 2010, 1217,
320	7642-7647.
321	[15] R. Xu, F. Q. Zhao and B. Z. Zeng, <i>Talanta</i> , 2012, 98, 265-271.
322	[16] K. R. Seddon, A. Stark and M. J. Torres, Pure Appl. Chem., 2000, 72, 2275-2287.
323	[17] J. F. Liu, G. B. Jiang, Y. G. Chi, Y. Q. Cai, Q. X. Zhou and J. T. Hu, Anal.
324	<i>Chem.</i> , 2003, 75 , 5870-5876.
325	[18] X. Han and D. W. Armstrong, Acc. Chem. Res., 2007, 40, 1079-1086.
326	[19] C. F. Poole and S. K. Poole, J. Chromatogr., A, 2010, 1217 , 2268-2286.
327	[20] E. Aguilera-Herrador, R. Lucena, S. Cardenas and M. Valcarcel, Trends Anal.
328	<i>Chem.</i> , 2010, 29 , 602-616.
329	[21] Y. N. Hsieh, P. C. Huang, I. W. Sun, T. J. Whang, C. Y. Hsu, H. H. Huang and C.
330	H. Kuei, Anal. Chim. Acta, 2006, 557, 321-328.

- 331 [22] F. Zhao, Y. J. Meng and J. L. Anderson, J. Chromatogr., A, 2008, 1208, 1-9.
- 332 [23] Q. C. Zhao, J. C. Wajert and J. L. Anderson, Anal. Chem., 2010, 82, 707-713.
- 333 [24] J. F. Liu, N. Li, G. B. Jiang, J. M. Li, J. A. Jonsson and M. J. Wen, J.
- 334 *Chromatogr.*, *A*, 2005, **1066**, 27-32.
- 335 [25] L. Pang and J. F. Liu, J. Chromatogr., A, 2012, 1230, 8-14.
- 336 [26] T. D. Ho, A. J. Canestraro and J. L. Anderson, *Anal. Chim. Acta*, 2011, 695,
 337 18-43.
- 338 [27] C. P. Mehnert, R. A. Cook, N. C. Dispenziere and M. Afeworki, J. Am. Chem.
- *Soc.*, 2002, **124**, 12932-12933.
- 340 [28] Z. Q. Gao, W. C. Li, B. Z. Liu, F. Liang, H. He, S. G. Yang and C. Sun, J.
- 341 *Chromatogr.*, *A*, 2011, **1218**, 6285-6291.
- 342 [29] F. Q. Zhao, M. L. Wang, Y.Y. Ma and B. Z. Zeng, J. Chromatogr., A, 2011,
- **1218**, 387-391.
- 344 [30] D. H. Wang, J. Xing, J. G. Peng and C. Y. Wu, J. Chromatogr., A, 2003, 1005,
- 345 1-12.
- 346 [31] K. Farhadi, R. Tahmasebi and R. Maleki, *Talanta*, 2009,77, 1285-1289.
- 347 [32] M. P. Abdullah and S. S.Chian, *Sains Malaysiana*, 2011, **40**, 1255-1261.
- 348 [33] M. de Fatima Alpendurada, J. Chromatogr., A, 2000, 889, 3-14.
- 349

Graphical Abstract

Electrodeposited poly(aniline-co- *m*-aminobenzoic acid) - ionic liquid composite coating presents porous mesh structure, and shows high extraction efficiency for aryl halides.