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Abstract 

We demonstrate nonaqueous labeling and separation of the full range of short to long saturated fatty acids 

(C2 to C30) for the first time on a microfluidic device. A new fluorescent dye, Pacific Blue hydrazide, 

labels the carboxylic acid in a two-step, one-pot reaction to enable detection via laser-induced 

fluorescence at 405 nm excitation. Limits of detection for C10 to C30 acids range from 0.9 to 5.7 µM. 

Fatty acids were successfully quantified in a sediment sample from the ‘Snake Pit’ hydrothermal system 

of the Mid-Atlantic Ridge, demonstrating the potential of this method to help characterize microbial 

communities through targeted biomarker analysis. Such a technique could also be utilized to differentiate 

between abiotic and biotic compounds in the search for life beyond Earth. 

 

[Main Text] 

Fatty acids are found in the cell membranes of all three kingdoms of life on Earth,
1
 and normally 

account for 5-10% of microbial biomass.
2
 As fatty acids also have high biological specialty, these 

amphiphilic molecules are often employed as biomarkers.
3
 For example, n-3 polyunsaturated C20 and 

C22 fatty acids are typically algal-derived,
4
 whereas bacterial signatures include n-7 monounsaturated 

C16 and C18 fatty acids.
5
 Total fatty acid concentrations can also be used as biomass indicators.

6
 

Long chain fatty acids (C14-C30) have been found in Cretaceous sedimentary rocks and meteorites.
7
 

Fatty acids have also been used to identify and quantify certain microbial groups in hydrothermal systems 
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on the sea floor.
8
 Importantly, the size fraction distribution and relative abundance of fatty acids provides 

a highly diagnostic, nearly unambiguous means for differentiating between abiotically produced organics 

(e.g., meteorites) and those produced by biological processes (e.g., microbes).
9
 Sensitive detection and 

quantitation of fatty acids on a small, portable system would therefore be useful for both microbial 

biomass monitoring in extreme environments on Earth, as well as in situ discrimination between abiotic 

and biotic compounds on potentially habitable worlds beyond Earth. 

Microchip capillary electrophoresis (µCE) is a liquid-based separation technique that operates with 

high performance, reagent economy and speed.
10

 When coupled to laser-induced fluorescence (LIF) 

detection, separated species can be identified and quantified with high sensitivity (nM to pM). 

Microfluidic devices can also be readily automated for remote in situ analysis.
11

  

Short chain (C1-C8) carboxylic acids have been detected using µCE-LIF with the Mars Organic 

Analyzer Microchip Capillary Electrophoresis System in aqueous conditions.
12

 However, fatty acids with 

chain lengths longer than C12 are not soluble in aqueous solution.
13

 As a result, a variety of protocols 

utilizing nonaqueous solvents have been reported.
14

 Although most of these nonaqueous capillary 

electrophoresis (NACE) techniques describe separations with excellent resolution, they are restricted to 

silica capillaries and also are not capable of separating both short and long chain species. 

We recently developed a protocol for the separation and detection of both short and long chain (C1-

C18) aliphatic amines using nonaqueous microchip capillary electrophoresis with laser-induced 

fluorescence detection (µNACE-LIF).
15

 We have employed a similar strategy here, and optimized 

conditions to expand the range of aliphatic chain lengths accessible by this technique. 

A new derivative of 3-carboxy-6,8-difluoro-7-hydroxycoumarin (Pacific Blue
TM

) with a hydrazide 

functionality (PB-NH2), was synthesized by Invitrogen (Life Technologies, Inc.) specifically for this work 

(Scheme 1). Fatty acids are first activated by the O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyl-

uronium hexafluoro-phosphate (HCTU) coupling agent in basic conditions to form an ester (Scheme 2); 

the active ester then reacts with PB-NH2 in a one-pot synthesis to form the hydrazide amide (PB-labeled 

acid). 
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The µCE-LIF system used for this study was designed for temperature-controlled µNACE analyses 

and has been described elsewhere.
15

 Briefly, a 405-nm laser beam (16.0 mW) passes through excitation 

and dichroic filters to enter a 20X microscope objective, which focuses the beam ~2 mm above the 

objective. The microfluidic chip is placed on a custom temperature-controlled stage with the center of the 

channel at the focal point. Laser-induced fluorescence is directed though an emission filter and focused 

onto a photomultiplier tube (PMT). The PMT signal is processed using a data acquisition card and a 

laptop computer running LabVIEW, which also controls a high-voltage sequencer (LabSmith) during 

µNACE injection and separation. 

The microfluidic chip (Micralyne, Inc.) is composed of low-fluorescence Schott Borofloat glass and 

contains two channels (8.0 mm and 85.0 mm) that intersect perpendicularly to form a 4-port simple cross 

with two arms of equal length (4.0 mm) and a separation channel 80.0 mm in length. The microchannel 

cross-section is semicircular with a width of 50 µm and depth of 20 µm. Prior to each analysis, the 

microchannel was preconditioned with 0.1 M HCl (aq), deionized water (resistivity 18.2 MΩ) and ethanol. 

The microchannel was filled with separation buffer, and an aliquot of sample pipetted into the sample 

well. Injection potentials were 2 kV from the sample (negative) to the waste well (positive), with bias 

applied to the other two wells (-0.4 and -0.8 kV) to pinch the injection plug for 30 s. Separations were 

performed at 20 °C at a potential of 6 kV along the separation channel. Data fitting was performed with 

PeakFit (Seasolve Software, Inc., v4.12). 

Labeling of fatty acids was performed in dimethylformamide (DMF) using 1 mM PB-NH2 and 2 mM 

HCTU with 50 mM diisopropylethylamine (DIEA). It should be noted that labeling with lower 

concentrations of dye and coupling agent resulted in suboptimal results (see Supporting Information). 

After 1-3 h, the labeled acids were diluted into separation buffer in ethanol and analyzed using µNACE. 

As the PB-labeled fatty acids are very similar in structure and charge to the analogous PB-labeled 

amines,
15

 the same background electrolytes (ammonium acetate and acetic acid) were used. The 

concentrations were optimized for separation of both short and long chain fatty acids (C2-C30). With 100 
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mM ammonium acetate and 1.0 M acetic acid in ethanol, fatty acids differing by 2 methyl units are 

baseline resolved (Fig. 1).  Peak efficiencies are on average 228,000 plates/meter (see Supporting 

Information). 

Limits of detection were determined for saturated fatty acids labeled over a concentration range of 0.4-

120 µM in DMF and diluted 1:4 into the ethanol-based separation buffer. With the exception of palmitic 

(C16) acid, the detection limits for all fatty acids of length C10 to C30 were 0.9-5.7 µM (0.3-2.2 ppb) in 

the original, undiluted DMF solution (Table 1). Palmitic acid could not be quantified by this method due 

to the presence of a contaminant peak at the same migration time in all blanks and controls. 

Though fatty acids shorter than C10 were effectively separated, limits of detection were not 

determined for these species due to the presence of interference peaks, most likely fluorescent by-

products of the synthesis of the novel dye. We are currently working to further purify the dye and remove 

such contaminants. However, we note that other aqueous-based microfluidic protocols already exist for 

the detection of C1-C9 fatty acids.
12

 

Our reported detection limits are comparable to similar CE-based methods using indirect 

absorbance
14c,16

 and capacitively coupled contactless conductivity detection.
14h

 Though capillary-based 

techniques using laser-induced fluorescence have reported LODs in the 10
-9

 to 10
-10

 M range,
14f,17

 these 

methods were not able to separate the full range of C2-C30 fatty acids, and could not be incorporated onto 

a small, portable microfluidic device. One reported technique
18

 was able to separate fatty acids up to C15 

on a microfluidic device with LODs in the 10
-10

 M range, though we stress that separation and 

quantification of fatty acids up to C30 is vital if such a technique were to be used for biomarker analysis. 

To demonstrate the efficacy of our technique, we analyzed a sample from the ‘Snake Pit’ hydrothermal 

field (23°22’N) along the Mid-Atlantic Ridge. The Snake Pit vent field is at a depth of ~3600 m (Fig. 2) 

and has abundant microbial life and macrofauna.
19

 The sample was collected on 12 August 2003 by K. P. 

Hand from the MIR 2 Russian submersible, which was deployed from the research 

vessel Academic Keldysh. Samples were stored frozen (-20 °C) prior to use. Fatty acids were extracted 

via a protocol adapted from Grima et al.,
20

 which was modified to eliminate the unnecessary methylation 
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step (see Supporting Information). The extract was resolubilized in 100 µL of DMF containing 1 mM PB-

NH2 and 2 mM HCTU with 50 mM diisopropylethylamine (DIEA). After 2 hrs, the solution was diluted 

1:4 into separation buffer (100 mM ammonium acetate and 1.0 M acetic acid in ethanol) and analyzed 

using µNACE-LIF. 

Several long chain fatty acids were detected and quantified in the Snake Pit hydrothermal sediment 

sample, including C12, C18, C20 and C22 fatty acids (Fig. 3). This is consistent with another study, 

which detected C12 to C22 fatty acids in an active hydrothermal chimney in the Mid-Atlantic Ridge.
21

 As 

this sample analysis was a proof-of-concept and not a quantitative study, we report fatty acid amounts 

assuming 100% extraction efficiency and therefore these values represent lower bounds for the amount of 

material present. 

The composition and distribution of fatty acids can be used to understand phylogenetic and taxonomic 

classifications in an ecosystem.
22

 For example, bacteria contain characteristic lipid fatty acids in the C12-

C19 range,
23

 and even-numbered straight-chain fatty acids are signatures of gram-negative bacteria.
24

 

Further, C20 and C22 fatty acids are biomarkers for phototrophic microplankton.
5
 We can therefore 

attribute the C12 and C18 fatty acids to gram-negative bacteria, and the C20 and C22 fatty acids to 

photosynthetic microplankton, most likely ingested by other organisms in the photic zone and later 

deposited on the ocean floor. 

 

Conclusions 

Fatty acids (C2-C30) were successfully labeled with a newly derivatized fluorescent dye and separated 

on a microfluidic device in nonaqueous conditions. Labeling was effected in a two-step, one-pot synthesis 

in DMF. Separations in ethanol allowed for resolution of both short and long chain fatty acids, with those 

differing by two methyl units baseline resolved. To our knowledge, this is the first separation of fatty 

acids up to C30 on a microfluidic device. Though contamination from species in the dye hampered 

detection of certain fatty acids, this work represents an important proof-of-concept in the use of this novel 

dye to analyze fatty acids in a complex sample. 
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The non-statistical distribution of the fatty acids measured in the Mid-Atlantic Ridge sediment 

suggests a biogenic source for this material; such information could help determine a biotic/abiotic origin 

for fatty acids or other organics detected beyond Earth. Future work will involve protocol development to 

distinguish between saturated, monounsaturated and polyunsaturated fatty acids. We also aim to adapt the 

fatty acid extraction protocol to a microfluidic platform, enabling fully automated sample processing and 

analysis. 
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Schemes 

 

 

 

 

Scheme 1. Pacific Blue hydrazide (PB-NH2), a new dye. 

 

 

 

 

 

 

Scheme 2. Two-step, one-pot reaction to form the Pacific Blue labeled fatty acid in DMF. 
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Figures 

 

 

 

 

Figure 1. Separation of C2 to C30 fatty acids (2 µM C2-C26, 5 µM C28-C30) in ethanol using µNACE-

LIF. Inset: Long-chain fatty acids. 
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Figure 2. (A) The Snake Pit hydrothermal vent field as seen from the MIR 2 submersible. Active vents 

can be seen at the top of the structure. The sample site was at the base. (B) Sample collection at the base 

of the mound. Solid rocks were collected with the manipulator and sediments were collected with a water 

vacuum connected to a sample chamber. Photos by K. P. Hand. 
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Figure 3. Fatty acids present in a sample from the Snake Pit hydrothermal vent system. (A) Separation of 

the sediment extract using µNACE yields several long chain fatty acids (starred acids were also present in 

a procedural blank). (B) Fatty acids are reported in µg per g of sediment prior to extraction. 
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Tables 

 

Table 1. Limits of detection for fatty acids using µNACE with LIF in 100 mM ammonium acetate and 1.0 

M acetic acid in ethanol. 

Fatty Acid LOD (µM) LOD (ppb) 

C10 1.45 ± 0.71 0.32 ± 0.16 

C12 1.26 ± 0.28 0.32 ± 0.07 

C14 5.67 ± 0.53 1.64 ± 0.15 

C16 85.9 ± 18.9* 27.9 ± 6.1* 

C18 1.57 ± 0.06 0.57 ± 0.02 

C20 2.11 ± 0.32 0.84 ± 0.13 

C22 1.57 ± 0.28 0.68 ± 0.12 

C24 1.11 ± 0.34 0.52 ± 0.16 

C26 0.92 ± 0.06 0.46 ± 0.03 

C28 3.77 ± 0.50 2.03 ± 0.27 

C30 3.79 ± 1.02 2.18 ± 0.58 

* Due to contamination in the dye, we report a limit of quantitation instead of detection for palmitic (C16) 

acid. 
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