Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Page 1 of 29

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

1	Ionic liquid dispersive liquid-liquid microextraction combining high performance
2	liquid chromatography for determination of tetracycline drugs in egg
3	Jiao Song ¹ , Zhen Hong Zhang ² , Ying Qun Zhang ³ , Cheng Feng ³ , Geng Nan Wang ¹ and
4	Jian Ping Wang ¹ *
5	¹ College of Veterinary Medicine, Agricultural University of Hebei, Baoding Hebei, China.
6	071000
7	² College of Animal Science and Technology, Agricultural University of Hebei, Baoding
8	Hebei, China. 071000
9	³ College of Science, Agricultural University of Hebei, Baoding Hebei, China. 071000
10	*Corresponding author. E-mail: <u>chinawangjp@hotmail.com</u> (Jian Ping Wang)
11	
12	Ionic liquids are used more and more as a class of novel extraction solvents to extract
13	various compounds from simple and complex samples. The objective of this study was to
14	develop an ionic liquid-based dispersive liquid-liquid microextraction procedure combining
15	with high performance liquid chromatography for determination of tetracycline drugs in
16	egg. Ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate was proven to show
17	the best performance among four tested ionic liquids. Several parameters possible
18	influencing the extraction efficiency (ionic liquid and its volume, disperser solvent and its
19	volume, extraction and centrifuge time, pH and salt addition) were investigated and
20	optimized. Under the optimal conditions, this method showed different enrichment factors
21	(12-44 folds) for four tetracycline drugs (tetracycline, oxytetracycline, doxycycline and
22	chlortetracycline). The limits of detection for the four analytes in egg were in the range of
23	2.0-12 ng g^{-1} and the recoveries from the standards fortified blank egg were in the range of

58.6%-95.3% with coefficients of variation lower than 6.2%. Therefore, this method can be

used as a simple and sensitive tool to determine the residues of the four tetracycline drugs

Analytical Methods Accepted Manuscript

2	
З	
4	
4	
5	
6	
7	
2	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
20	
30	
\sim	
31	
31 32	
31 32 33	
31 32 33	
31 32 33 34	
31 32 33 34 35	
31 32 33 34 35 36	
31 32 33 34 35 36 37	
31 32 33 34 35 36 37	
31 32 33 34 35 36 37 38	
31 32 33 34 35 36 37 38 39	
31 32 33 34 35 36 37 38 39 40	
31 32 33 34 35 36 37 38 39 40	
31 32 33 34 35 36 37 38 39 40 41	
31 32 33 34 35 36 37 38 39 40 41 42	
31 32 33 34 35 36 37 38 39 40 41 42 43	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	
31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48	
31 32 33 35 36 37 39 40 42 43 45 46 47 48 49	
31 32 33 35 36 37 39 40 42 43 45 46 47 48 950	
31 32 33 35 36 37 38 40 41 42 43 45 46 47 49 50 51	
31 32 33 35 36 37 38 40 42 43 45 46 47 49 51 52	
31 32 33 35 36 37 38 39 41 42 43 45 46 47 49 51 52 52	
31 32 33 35 36 37 38 39 41 42 43 45 46 48 49 51 52 3	
31 32 33 35 36 37 39 41 42 44 45 46 47 49 51 52 53 53	
31 32 33 33 35 36 37 39 41 42 44 45 46 47 49 51 52 53 55 55	
31 32 33 33 35 36 37 39 41 423 445 46 47 49 515 52 54 55 55 55	
31 32 33 33 35 36 37 39 41 423 445 46 47 490 512 535 556 556 556	
31 32 33 33 35 37 39 41 42 44 44 46 47 49 51 52 53 55 57	
31 32 33 33 35 37 39 41 42 44 44 46 48 49 51 52 54 55 57 58	

60

1

1

2

3

4

in egg.

Analytical Methods

1	1. Introduction
-	

Tetracyclines (TCs) are a class of broad antibacterial drugs that are widely used to treat various bacterial induced diseases in animals, and tetracycline (TC), oxytetracycline (OTC), doxycycline (DC) and chlortetracycline (CTC) are four commonly used TCs in China. However, the wide use of TCs in farm animals may produce their residues in animal derived foods that can cause allergic reactions to the consumers ¹ and accelerate the spreading of antimicrobial resistance.^{2, 3} For protection of consumer health, the Ministry of Agriculture of China has established different maximum residue levels (MRLs) for TCs in different animal derived foods, e.g. 100 ng mL⁻¹ for TC, OTC and CTC in milk; 200 ng g⁻¹ for TC, OTC and CTC in egg. Because DC has been banned for use in milk cows and laying hens in China, there is no MRL level for DC. Therefore, it is very important to monitor the residues of TCs in animal derived foods. By now, many methods, such as high performance liquid chromatography (HPLC),⁴⁻⁹ liquid chromatography mass spectrometry ^{5, 10-13} and immunoassay, ¹⁴ have been reported to determine the residual TCs in animal derived foods. In these methods, the first thing was to extract TCs from the samples, and the commonly used extraction methods were liquid-liquid extraction (LLE) and solid phase extraction (SPE).^{4-11, 13, 14} Furthermore, molecularly imprinted polymer (MIP) was also used as the extraction method.¹² However, these sample preparation methods all had their respective disadvantages. As a conventional extraction method, LLE is tedious and time consuming, and requires large volume of organic solvents. SPE is also a conventional extraction method that is simple and rapid, but the SPE column is easily interfered by the sample matrices. MIP is a special SPE method that is prepared for a specific analyte, so it is a kind of differential extraction method.

2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
21	
24	
25	
26	
27	
28	
29	
20	
24	
31	
32	
33	
34	
35	
36	
20	
31	
38	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
50	
50	
21	
52	
53	
54	
55	
56	
50	
57	
28	
59	
60	

1

1 In a previous report, a novel extraction method, dispersive liquid-liquid microextraction (DLLME), was developed.¹⁵ In this method, the extraction solvent and the dispersive 2 3 solvent were rapidly injected into an aqueous sample to form a cloudy solution. During this 4 process, the analytes in the aqueous sample were rapidly transferred into the fine droplets 5 of the extraction solvent. Then the cloudy mixture was separated by centrifugation, and the 6 analytes enriched in the extraction solvent (sediment) were determined by chromatography or spectrometry method. DLLME method has the advantages of rapidity, low cost, simple, 7 8 high recovery and high enrichment factor, so this technique has been used to extract organic pollutants and metal ions in environmental samples.¹⁵⁻¹⁷ 9 10 Ionic liquids (ILs) are a class of melting salts that are composed of organic cations and organic or inorganic anions. ILs have been used in organic synthesis and catalysis for their 11 12 advantages of low vapor pressure, viscosity and the miscibility with water and other 13 organic solvents. In the last few years, ILs were used more and more as the extraction solvents to extract and concentrate various organic compounds and metal ions.¹⁸⁻²⁵ In a 14 15 previous report, an IL based dispersive liquid-liquid microextraction method (IL-DLLME) 16 was developed for extraction of polycyclic aromatic hydrocarbons, and the results were very satisfactory.²⁶ Thereafter, many ILs based liquid-liquid microextraction (LLME) 17 18 methods were developed for extraction of metal ions, pesticides, organic pollutants and pharmaceuticals from water samples ²⁷⁻³² and various complex samples.³³⁻³⁶ These methods 19 included IL-DLLME, ^{29-31, 33-35} temperature controlled IL-DLLME, ^{27, 28} ultrasound-assisted 20 IL-DLLME³² and IL based homogenous LLME.³⁶ Results showed that these ILs based 21 LLME methods all achieved satisfactory results with high sensitivities and high enrichment 22 23 effects, but IL-DLLME was simpler and rapider than others.

Page 5 of 29

Analytical Methods

1
2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
<u>זר</u> ⊿२
11
 15
40
40
4/
48
49
50
51
52
53
54
55
56
57
58
59
60
00

22

2.2. HPLC equipments and conditions

1	However, the report in which IL-DLLME technique was used to extract veterinary drugs
2	from animal derived foods is rare, and there has been no paper reporting the use of this
3	method for extraction of TCs from animal derived foods so far. In the present study, an IL-
4	DLLME method was developed to extract and enrich four TCs (TC, OTC, DC, and CTC)
5	from egg, and some important parameters related with the extraction method were
6	optimized. Then the IL-DLLME method coupled with HPLC was used to determine the
7	residues of the four TCs in egg.
8	2. Experimental
9	2.1. Reagents and chemicals
10	The standards of tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and
11	doxycycline (DC) were purchased from Sigma (St. Louis, MO, USA). Three ionic liquids
12	1-butyl-3-methylimidazolium hexafluorophosphate ($[C_4MIM][PF_6]$), 1-hexyl-3-
13	methylimidazolium hexafluorophosphate ($[C_6MIM][PF_6]$) and 1-octyl-3-
14	methylimidazolium hexafluorophosphate ($[C_8MIM][PF_6]$) were purchased from Acros
15	Organics (Morris Plains, NJ, USA). Liquid chromatographic grade acetonitrile was
16	purchased from Dikma (Richmond Hill, USA). Other chemical reagents were all analytical
17	grade or better from Beijing Chemical Company (Beijing, China). Standard stock solutions
18	of these TCs were prepared with acetonitrile (10.0 μ g mL ⁻¹) and their working solutions
19	with series concentrations were diluted from the stock solutions with the HPLC mobile
20	phase described below. All the standard solutions were stored at 4 $^{\circ}$ C to be stable for 6
21	weeks.

Analytical Methods Accepted Manuscrip

~ つ		
ں م		
4		
5		
6		
7		
8		
9		
1	ი	
1	1	
1	ו ר	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
ว	ñ	
∠ ^	1	
2 ~	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	פ	
2 2	0	
~	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
2	7	
ა ი	0	
3	ð	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
т Л	с Р	
4	0 7	
4	1	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	⊿	
J F	Ŧ	
о г	с С	
5	6	
5	7	
5	8	
5	9	

60

1 2

1	HPLC system was consisted of a Waters 1525 liquid chromatography, a Waters 2998
2	DAD detector and a C18 column (150×4.6 mm, 5 μ m) (Waters, USA). The mobile phase
3	was consisted of (A) acetonitrile and (B) $0.01 \text{ mol } L^{-1}$ trifluoroacetic acid (pH 3.0) with
4	binary gradient elution at a flow rate of 1.0 mL min ⁻¹ . The gradient elution started with 10%
5	(A), linearly increased to 20% (A) in 5.0 min and further linearly increased to 30% (A) in
6	7.0 min, then linearly decreased to 20% (A) in 3.0 min, brought back to 10% (A) in 5.0 min
7	and maintained for 2.0 min with a total running time of 22 min. The injection volume was
8	$20 \ \mu L$ and the detection wavelength was $350 \ nm$. HPLC qualitative analysis was performed
9	by comparing the retention times of chromatogram peaks of the samples with those of the
10	standards. Quantification was calculated according the chromatogram peak area of each
11	analyte.

12 **2.3. Synthesis of new ionic liquid**

About 5 mL of 1-methyl imidazole was added into a round-bottom flask, and 8.1 mL of 14 1-bromo-3-methyl-2-butene was added dropwise into the above flask under stirring within 15 1 hour. Then the mixture was stirred for 4 hours under the protection of nitrogen. After the 16 reaction was stopped, the mixture was washed with 5 mL of ethyl acetate for several times 17 until the refractive index of ethyl acetate was not changed any more. Then the mixture was 18 evaporated on a rotary evaporator at 40 °C for 1 hour to remove the excess ethyl acetate.

About 10.4 g of the intermediate product and 10.0 g of KPF₆ were dissolved in 20 mL of water to be stirred for 1 hour at room temperature, and then the mixture was laid until the mixture was separated to two phases. The supernatant phase was discarded and the lower phase was washed with water until bromide ion was not detected by using of AgNO₃ test solution. Finally, the product was concentrated on a rotary evaporator at 50 $^{\circ}$ for 2 hours

Analytical Methods

to obtain the new IL 1-isopentene-3-methylimidazolium hexafluorophosphate
 ([IMIM][PF₆]) (¹H NMR (CDCl₃, 600 MHz) δ: 1.67 (s, 6H, CH₃), 3.62 (s, 3H, CH₃), 4.35
 (d, *J* =4.8 Hz,2H, CH₂), 5.21 (t, *J* = 4.8 Hz,1H, C=CH), 6.92~7.45 (m, 3H); IR(KBr):
 3280~3310, 3075, 2900, 2870, 1650, 1560, 1435, 1415, 1180 cm⁻¹).

2.4. Sample preparation

Some eggs obtained from the controlled farms were used as the blank samples. About 2.0 g of homogenized egg sample, 5 mL of acetonitrile and 1 mL of 0.01 mol L^{-1} trifluoroacetic acid (pH 3.0) were added into a 20 mL polypropylene centrifuge tube to be stirred vigorously on a vortex mixer for 3 min. Then the tube was centrifuged at 10,000 rpm for 5 min. The supernatant phase was collected and evaporated to about 1 mL on a rotary evaporator at 40 °C, and the left solution was diluted to 5.0 mL with water and filtered with a 0.22 µm Millipore filter prior to IL-DLLME procedure. The IL-DLLME procedure was performed as follows. Briefly, the obtained 5 mL aqueous solution was put into a 10 mL conical flask, and the pH of the solution was adjusted to about 3.0 by using 1.0 mol L^{-1} formic acid. Then 400 μ L of acetonitrile containing 50 μ L of IL was guickly injected into the solution. The flask was shaken immediately for 30 s, laid for 60 s, and centrifuged at 4000 rpm for 5 min. Then the IL phase was settled down to the bottom of the conical flask. The upper aqueous phase was removed with a syringe, and 20 μ L of the settled IL was injected into HPLC system for analysis. In the present study, the newly synthesized IL ($[IMIM][PF_6]$) and three commercial ILs

In the present study, the newly synthesized IL ([IMIM][PF₆]) and three commercial ILs ([C₄MIM][PF₆], [C₆MIM][PF₆] and [C₈MIM][PF₆]) were used to optimize the best IL. During the experiments, the solutions of the four TCs prepared with blank extracts (50 ng mL⁻¹) were used to evaluate the enrichment efficiency of the IL-DLLME procedure.

1	Enrichment factor (EF) was calculated as following: $EF = C_{IL}/C_0$, where C_{IL} is the analyte
2	concentration in the settled IL phase after IL-DLLME and C_0 is 50 ng mL ⁻¹ .
3	2.5. Real egg samples
4	Thirty unknown eggs purchased from the local supermarkets of China were analyzed by
5	the developed IL-DLLME-HPLC method.
6	3. Results and discussion
7	3.1. Isolation of TCs from egg
8	In many previous IL-DLLME methods, the analytes were usually extracted from water
9	samples directly. ²⁶⁻³² In several other reports, the analytes in different complex samples
10	were firstly transferred into an aqueous phase, and the aqueous extracts were then treated
11	by using IL-DLLME ³³⁻³⁵ or IL based homogeneous LLME. ³⁶ Therefore, the first thing for
12	development of an IL-DLLME method for the residual TCs in egg was to transfer the
13	analytes from egg into an aqueous phase. In the previous reports for determination of TCs
14	in animal derived samples, different acidic aqueous solvents (oxalate buffer, citrate buffer
15	or EDTA-Mcllvaine buffer; pH range of 3.0-4.5) were usually used as the extraction
16	solvents. ^{4-14, 37} However, the different salt ions in those buffers possibly influenced the
17	extraction efficiency of the subsequent IL-DLLME method. Therefore, 5 mL of acetonitrile
18	and 1 mL of trifluoroacetic acid (0.01 mol L ⁻¹ , pH 3.0) were used to transfer TCs from egg
19	into a liquid phase in the present study, i.e. the mixed extraction solvent was in acidic
20	condition and free of salt ion. Then acetonitrile was evaporated and the left solution was
21	diluted to 5.0 mL with water, i.e. the residual TCs in egg were transferred into an aqueous
22	phase prior to IL-DLLME procedure.

Page 9 of 29

Analytical Methods

In order to obtain the maximum extraction efficiency, some important parameters possible influencing the enrichment performance were investigated by using a series of experiments. In this study, the enrichment factors (EFs) for the four TCs were used to evaluate the best condition of each parameter.

3.2.1. Selection of ionic liquid

The development of an IL-DLLME procedure requires a suitable IL. In the previous reports, imidazolium-ILs containing $[PF_n]^{n-}$ and hydrophobic alkyl side chain were usually used as the extraction solvents, $^{26-36}$ and the commonly used ILs were [C₆MIM][PF₆] and $[C_8MIM][PF_6]$ due to their high hydrophobicity.^{26-29, 31-35} The original objective of the present study was to synthesize a new hydrophobic IL and develop an IL-DLLME procedure for TCs. During the experiments, the newly synthesized IL ([IMIM][PF₆]) and other three ILs ($[C_4MIM][PF_6]$, $[C_6MIM][PF_6]$ and $[C_8MIM][PF_6]$) were used to optimize the best IL.

As shown in Fig. 1, $[C_6MIM][PF_6]$ showed no enrichment effect for CTC, and $[C_8MIM][PF_6]$ showed no enrichment effect for OTC. $[C_4MIM][PF_6]$ and the newly synthesized [IMIM][PF₆] showed enrichment effects for the four TCs, and the EFs for the four TCs when using $[C_4MIM][PF_6]$ were higher than that when using $[IMIM][PF_6]$. This meant that $[C_4MIM][PF_6]$ showed the best performance among the four ILs in this study. In a previous report, when $[C_4MIM][PF_6]$ was used in a DLLME procedure, the cloudy solution was not formed and the settled ionic liquid was not obtained because of its high water solubility, 33 so [C₄MIM][PF₆] showed the worst performance in many previous reports.^{26-29, 31, 32, 34, 35} In those reports, the aqueous solutions were all at neutral condition when performing the IL-DLLME, but it was found during our experiments that only if the

Analytical Methods Accepted Manuscript

aqueous solution was in a medium acidic condition (pH 3.0-5.0) could the four TCs be
transferred into the IL phase (see section of 3.2.6). Maybe the medium acidic condition
helped [C₄MIM][PF₆] to extract the four TCs but interfered with other ILs' extraction for
the four TCs. However, the actual reason was unknown and remained to be studied. In the
present study, [C₄MIM][PF₆] was used for the subsequent experiments.

3.2.2. Selection of disperser solvent

For development of an IL-DLLME method, the disperser solvent is very important, because it must have the appropriate miscibility in both IL phase and aqueous phase to form a cloudy solution. In the previous ILs based LLME methods, methanol and acetonitrile were usually used as the disperser solvents.²⁶⁻³⁶ In the present study, four organic solvents (methanol, ethanol, acetone and acetonitrile) were used to optimize the best disperser solvent. When using ethanol as the disperser solvent, the mixture was not separated to two phases after centrifugation, i.e. the settled IL phase was not obtained, so ethanol was eliminated. As shown in Fig. 2, when using methanol, acetonitrile and acetone as the disperser solvents, the IL-DLLME method showed enrichment effects for the four TCs, but the EFs when using acetonitrile were higher than that when using acetone and methanol. Therefore, acetonitrile was selected as the optimal disperser solvent for the subsequent experiments.

3.2.3. Selection of volume of IL

In an IL-DLLME procedure, the IL volume is a critical factor for obtaining high enrichment efficiency and high volume of sedimented IL phase. When small volume of IL is used, it is difficult to operate; when IL volume reaches a certain level, the enrichment performance will turn bad because the analyte concentration in the sedimented IL phase

Analytical Methods

will decrease with the increase of IL volume. Therefore, a previous report showed that within a certain limit the larger the volume of IL was used, the more amount of IL was sedimented down and the larger enrichment performance was obtained.²⁶ In the previous ILs based LLME methods, the ILs volumes ranged from 35 µL to 150 µL.²⁶⁻³⁶ In the present study, the EFs for the four TCs were determined by using 0.5 mL acetonitrile containing different volumes of $[C_4MIM][PF_6]$ (30, 40, 50, 60, and 70 µL). The curves of the EFs versus the IL volumes are shown in Fig. 3. As shown in Fig. 3, the EFs of the four TCs increased slowly when the IL volume increased from 30 μ L to 50 μ L, and then decreased when the IL volume reached 60 μ L. Therefore, the use of 50 μ L [C₄MIM][PF₆] was selected as the optimal IL volume.

3.2.4. Selection of volume of disperser solvent

A previous report showed the organic solvent could help enhance the extraction of the analyte due to reduction of the adsorption of the analyte onto the tube wall.²⁵ Moreover, the volume of dispersive solvent directly affected the formation of cloudy solution and the dispersion degree of IL in aqueous phase, consequently influenced the volume of the sedimented IL phase and the enrichment performance.²⁹ In the present study, various volumes of acetonitrile (0.3, 0.4, 0.5, 0.6, 0.7, 1.0 mL) containing 50 µL [C₄MIM][PF₆] were tested. The curves of the EFs versus the acetonitrile volumes are shown in Fig. 4. As shown in Fig. 4, the EFs of the four TCs increased firstly and then decreased with the increasing of acetonitrile volume from 0.3 to 1.0 mL. At low volume (0.3 mL), the cloudy dispersion system was not well formed, leading to low volume of sedimented IL phase that was difficult to operate. When acetonitrile volume increased from 0.4 to 0.7 mL, the EFs of the four TCs decreased constantly. When acetonitrile volume increased to 1.0 mL, no IL

Page 12 of 29

Analytical Methods Accepted Manuscript

Analytical Methods

1	phase was settled down at the bottom of the conical flask after centrifugation. Therefore,
2	the use of 0.4 mL acetonitrile was selected as the optimal disperser solvent volume.
3	3.2.5. Selection of extraction and centrifugal time
4	Extraction time is the interval between the formation of cloudy solution and before
5	centrifugation. To evaluate the optimum extraction time, the IL-DLLME procedure was
6	carried out at different time intervals. As shown in Fig. 5, the EFs of the four TCs reached
7	balance when the extraction time reached 30 seconds, and longer extraction time did not
8	affect the extraction efficiency any more. To ensure the maximum extraction efficiency, the
9	cloudy solution was laid for 60 seconds before centrifugation in this study.
10	Centrifugation plays an important role in separation of the IL phase from the aqueous
11	phase, and during this process the IL phase is settled down to the bottom of the conical
12	flask. In order to evaluate the influence of centrifugal time, the cloudy solutions were
13	centrifuged for 3, 5, 8, 10, and 15 min respectively at 4000 rpm. As shown in Fig. 6, the
14	EFs of the four TCs increased with the increasing of centrifugal time from 3 to 5 min.
15	When it exceeded 5 min, the EFs had no further increase. Therefore, 5 min was selected as
16	the optimal centrifugal time.
17	3.2.6. pH
10	

The extraction efficiency for an organic compound can be changed by adjusting the pH of the aqueous solution, because the existing form of the analyte is dependent on it.³⁰ In the previous reports, different acidic buffers (pH 3.0-4.5) were usually used to extract the residues of TCs from animal derived samples because of the polar nature of TCs.^{4-14, 37} In the present study, it was also found that only if the aqueous extraction solution was in a medium acidic condition could TCs be transferred into IL phase. During the experiments,

Page 13 of 29

Analytical Methods

the pH values of the sample extraction solutions were adjusted to 3.0-7.0 by adding appropriate volume of 1.0 mol L^{-1} formic acid before IL-DLLME. As shown in Fig. 7, the EFs of the four TCs decreased slowly when pH value increased from 3.0 to 5.0, and decreased to zero when pH value reached 6.0. This maybe was because of the chemical properties of TCs. TCs are a class of amphoteric compounds that have several dissociation constants: the acidic hydroxyl group at 3-position, pKa 2.8-3.3; the dimethylamino group at 4-position, pKa 7.3-8.3; the hydroxyl group at 12-position, pKa 9.3-10.2.³⁷ When the pH values increased from 3.0 to 7.0, the solubility of TCs in aqueous phase decreased, so the amount of TCs transferred into the IL phase also decreased; thus the EFs for the four TCs decreased. Therefore, pH 3.0 was selected as the optimal pH condition in the present study. 3.2.7. Salt addition

Ionic strength has dual influences on the extraction efficiency of IL. The increase of ionic strengthen can decrease the solubility of IL in aqueous phase to improve the extraction performance, but the occurrence of ion exchange procedure can enhance the solubility of IL in aqueous phase and decrease the extraction performance. In many previous IL-DLLME methods, salt addition was not used because the extraction efficiency decreased with the increase of the salt concentration.²⁶⁻³² However, there was a reverse report in which 15% NaCl was added to improve the enrichment effect due to salting out effect.³⁶ In the present study, various amount of NaCl (0, 1%, 2%, 5%, 10%, 15%, w/v) were added into the TCs fortified blank extracts prior to IL-DLLME procedure. As shown in Fig. 8, the EFs of the four TCs decreased rapidly with the increasing of NaCl concentration from 0 to 15%, so salt addition was not used in this study.

3.3. Analytical features of the IL-DLLME-HPLC method

Analytical Methods Accepted Manuscript

2
3
4
5
0
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
23
24
27
20
26
27
28
29
30
31
20
32
33
34
35
36
37
38
20
39
40
41
42
43
44
15
40
46
47
48
49
50
51
52
52
23
54
55
56
57
58
50
29
60

1

1	This is the first study reporting the extraction of TCs residues in egg by using IL-
2	DLLME procedure followed by determination with HPLC method. The chromatograms of
3	the four TCs standards before and after IL-DLLME procedure are shown in Fig. 9. Under
4	the optimal IL-DLLME conditions, the EFs for OTC, TC, CTC and DC were 12, 29, 38 and
5	44 respectively. The determination parameters of the IL-DLLME-HPLC method for the
6	four TCs are shown in Table 1. It was found that there was good linear relationship over the
7	concentration range of 5-1000 ng mL ⁻¹ for these TCs with the correlation coefficients (r^2)
8	higher than 0.9992. The relative standard deviations (RSD) based on the peak areas of
9	replicate injections were in the range of 2.65%-3.50%. The limits of detection (LODs,
10	defined as signal/noise of 3) for the four TCs in egg were in the range of 2.0-12 ng g^{-1} , and
11	the limits of quantification (LOQs, defined as signal/noise of 10) were in the range of 5.0-
12	20 ng g^{-1} . In the previous instrumental methods for the residues of TCs in egg, the limits of
13	detection ranged from 20 to 125 ng g ⁻¹ , ^{4, 10, 11} so the IL-DLLME-HPLC method developed
14	in this study was more sensitive than those methods. Then the four TCs were fortified into
15	blank egg samples respectively to evaluate the method recovery. Intra- and inter-day
16	recoveries were in the range of 58.6%-95.3% with coefficients of variation (CV) lower than
17	6.2% (Table 2). The chromatograms of blank egg and the TCs fortified blank egg are
18	shown in Fig. 9.

19 **3.4. Analysis of real samples**

For evaluation of the detect capability of the method, the 30 unknown eggs were determined by using the IL-DLLME-HPLC method. Among these eggs, 4 eggs contained the residue of TC, but the residue levels were far lower than its MRL level.

23 **4. Conclusion**

Analytical Methods

As a class of new extraction solvents, ionic liquids have been widely used to extract many organic compounds and metal ions from environmental samples and complex samples. This study first reported the use of $[C_4MIM][PF_6]$ for development of a dispersion liquid-liquid microextraction procedure combining HPLC method for determination of tetracycline drugs in egg. Results showed the method achieved high extraction efficiency, enrichment performance and sensitivity, though the performance of $[C_4MIM][PF_6]$ was different from some previous reports. From the analysis of fortified blank egg and unknown egg samples, the developed method could be used as a rapid, sensitive and accurate method to monitor the residues of the four tetracycline drugs in egg. Acknowledgements The authors are grateful for the financial support of Hebei National Scientific Foundation (C2012204004).

References E. Michalova, P. Novotna and J. Schlegelova, Vet. Med. Czech., 2004, 49, 79-100. (1)(2)I. Chopra and M. Roberts, Mol. Biol. Rev., 200, 165, 232-260. M. Roesch, V. Perreten, M.G. Doherr, W. Schaeren, M. Schallibaum and J.W. Blum, (3)J. Dairy Sci., 2006, 89, 989-997. G. Zurhelle, E. Muller-Seitz and M. Petz, J. Chromatogr. B., 739 (2000) 191-203. (4)N. Furusawa, Talanta, 2003, 59, 155-159. (5) A.L. Cinquina, F. Longo, G. Anastasi, L. Giannetti and R. Cozzani, J. Chromatogr. (6) A., 2003, **987**, 227-233. K.I. Nikolaidou, V.F. Samanidou and I.N. Papadoyannis, J. Liq. Chromatogr. R. T., (7)2008, 31, 3032.-3054 B.F. Spisso, A.L. de Oliveira e Jesus, M.A. Gon calves de Araújo Júnior and M.A. (8) Monteiro, Anal. Chim. Acta., 2007, 581, 108-117. S. Sczesny, H. Nau and G. Hamscher, J. Agric. Food Chem., 2003, 51, 697-703. (9) (10) G. Alfredsson, C. Branzell, K. Granelli and A. Lundstrom, Anal. Chim. Acta, 2005, , 47-51. (11) T. Jing, X.D. Gao, P. Wang, Y. Wang, Y.F. Lin, X.Z. Hu, Q.L. Hao, Y.K. Zhou and S.R. Mei, Anal. Bioanal. Chem., 2009, 393, 2009-2018. (12) H.M. Al-Mazeedi, A.B. Abbas, H.F. Alomirah, W.Y. Al-Jouhar, S.A. Al-Mufty, M.M. Ezzelregal and A. Al-Owaish, Food Addit. Contam. A., 2010, 27, 291-301. (13) F. Zhao, X. Zhang and Y. Gan, J. Chromatogr. A, 2004, 1055, 109-114. (14) N. Pastor-Navarro, Á. Maquieira and R. Puchades, Anal. Bioanal. Chem., 2009, 395, 907-920.

Analytical Methods

1	(15) M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J.
2	Chromatogr. A., 2006, 1116 , 1-9.
3	(16) S. Berijani, Y. Assadi, M. Anbia, M.R. Milani Hosseini and E. Aghaee, J.
4	Chromatogr. A., 2006, 1123 , 1-9.
5	(17) M.A. Farajzadeh, M. Bahram and J.A. Jonsson, Anal. Chim. Acta, 2007, 591, 69-79.
6	(18) N. Shokoufi, F. Shemirani and Y. Assadi, Anal. Chim. Acta, 2007, 597, 349-356.
7	(19) J.G. Huddleston and R.D. Rogers, Chem. Commun., 1998, 16, 1765-1766.
8	(20) A.G. Fadeev and M.M. Meagher, <i>Chem. Commun.</i> , 2001, 3 , 295-296.
9	(21) L.C. Branco, J.G. Crespo and C.A.M. Afonso, Angew. Chem. Int. Ed., 2002, 41,
10	2771-2773.
11	(22) Y. Fan, M. Chen, C. Shentu, F. El-Sepai, K. Wang, Y. Zhu and M. Ye, Anal. Chimi.
12	Acta., 2009, 650 , 65-69.
13	(23) L. Vidal, A. Chisvert, A. Canals and A. Salvador, J. Chromatogr. A, 2007, 1174, 95-
14	103.
15	(24) L. Vial, E. Psillakis, C.E. Domini, N. Granie, F. Marken and A. Canals, Anal. Chim.
16	Acta, 2007, 584 , 189-195.
17	(25) C.L. Ye, Q. X. Zhou and X.M. Wang, Anal. Chim. Acta, 2006, 572, 165-171.
18	(26) J.F. Liu, G.B. Jiang, Y.G. Chi, Y.Q. Cai, Q.X. Zhou and J.T. Hu, Anal. Chem., 2003,
19	75 , 5870-5876.
20	(27) Q.X. Zhou, H.H. Bai, G.H. Xie and J.P. Xiao, J. Chromatogr. A, 2008, 1188 , 148-153.
21	(28) Q.X. Zhou, Y.Y. Gao, J.P. Xiao and G.H. Xie, Anal. Methods, 2011, 3 , 653-658.
22	(29) M. Baghdadi and F. Shemirani, Anal. Chim. Acta, 2008, 613, 56-63.
23	(30) L. He, X. Luo, X. Jiang and L. Qu, J. Chromatogr. A., 2010, 1217 , 5013-5020.

Analytical Methods Accepted Manuscript

- (31) L. He, X. Luo, H. Xie, C. Wang, X. Jiang and K. Lu. *Anal. Chim. Acta.*, 2009, 655,
 52-59.
- 3 (32) Q. Zhou, X. Zhang and J. Xiao, J. Chromatogr. A., 2009, 1216, 4361-4365.
- 4 (33) M. Lidia, R. Pérez, J. Hern ández-Borges, M. Asensio-Ramos and M. Á. Rodr guez-
- 5 Delgado, J. Chromatogr. A, 2009, **1216**, 7336-7345.
- 6 (34) P. Yang, H. Ren, Z. Wei, X. Liu and S.X. Jiang, Sci China Chem 2012, 55, 277-284.
- 7 (35) R. Khani and F. Shemirani, *Food Anal. Methods*, 2013, **6**, 386-394.
- 8 (36) S. Gao, H. Jin, J. You, Y. Ding, N. Zhang, Y. Wang, R. Ren, R. Zhang and H. Zhang,
- 9 J. Chromatogr. A, 2011, **1218**, 7254-7263.
- 10 (37) V. F. Samanidou, K. I. Nikolaidou and I. N. Papadoyannis, *Sep. Purif. Rev.*, 2007, 36,
 11 1-69.

1
2
3
4
5
6
7
י פ
0
9
10
11
12
13
14
15
16
17
18
19
20
20 24
21
22
23
24
25
26
27
28
29
20
21
20
32
33
34
35
36
37
38
39
40
<u>4</u> 0 Δ1
יד ⊿ר∕
42 40
43
44
45
46
47
48
49
50
51
52
52
55
54 5-
55
56
57
58
59

Table 1. Determination parameters of the IL-DLLME-HPLC method for the four TCs.

Analyte	Linearity range (ng mL ⁻¹)	r ²	RSD (%)	LOD (ng mL ⁻¹)	LOQ (ng mL ⁻¹)	Enrichment factor
OTC	20-1000	0.9992	3.16	12	20	12
	(50-2000) ^a	(0.9999)	(1.70)	(30)	(50)	
TC	10-1000	0.9997	2.65	4.0	10	29
	(50-2000)	(0.9998)	(1.24)	(30)	(50)	
CTC	10-1000	0.9993	3.50	6.0	10	38
	(100-2000)	(0.9996)	(1.15)	(50)	(100)	
DC	5-1000	0.9997	2.68	2.0	5.0	44
	(100-2000)	(0.9999)	(1.80)	(60)	(100)	

^a The results in parentheses were obtained from direct HPLC method (without IL-DLLME).

Analytical Methods Accepted Manuscript

A	Added	Intra-da	ıy	Inter-day	
Analyte	$(ng g^{-1})$	Recovery (%)	CV (%)	Recovery (%)	CV (%)
TO	20	62.5	5.3	58.6	6.2
TC	200	60.8	6.1	64.9	5.8
0770	20	82.1	4.2	84.6	4.8
010	200	75.3	3.4	81.0	4.2
~~~~~	20	77.5	5.1	82.3	4.9
CIC	200	73.2	3.6	76.9	5.7
	20	95.3	2.6	92.5	3.6
DC	200	94.6	2.8	91.3	3.2

#### Page 21 of 29

#### **Analytical Methods**

- 1 Fig. 1. Effect of ionic liquid on enrichment factors of the four TCs (blank extracts, 5.0 mL;
  - 2 pH, 4.0; ionic liquid volume, 60 µL; disperser solvent (acetonitrile), 0.5 mL; extraction



1 Fig. 2. Effect of disperser solvent on enrichment factors of the four TCs (blank extracts, 5.0

2 mL; pH, 4.0;  $[C_4MIM][PF_6]$ , 60 µL; disperser solvent, 0.5 mL; extraction time, 1 min;

3 centrifugal time, 5 min).



3 min).



**Analytical Methods Accepted Manuscript** 

2 5.0 mL; pH, 4.0;  $[C_4MIM][PF_6]$ , 50 µL; extraction time, 1 min; centrifugal time, 5 min).







2 mL; pH, 4.0;  $[C_4MIM][PF_6]$ , 50 µL; acetonitrile, 0.4 mL; extraction time, 60 s).





 $[C_4MIM][PF_6]$ , 50 µL; acetonitrile, 0.4 mL; extraction time, 60 s; centrifugal time, 5 min).



**Analytical Methods Accepted Manuscript** 

1 Fig. 8. Effect of the concentration of NaCl on enrichment factors of the four TCs (blank

2 extracts, 5.0 mL; pH, 3.0; [C₄MIM][PF₆], 50 μL; acetonitrile, 0.4 mL; extraction time, 60 s;

3 centrifugal time, 5 min).



# 1 Fig. 9. Chromatograms of the four TCs (A) before and (B) after IL-DLLME, (C) the blank



