Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

1		
2		
3	1	Sensitive fluorescence "off-on" switch system for catechins
5	-	
6 7	2	detection based on water-soluble polythiophene derivatives
8 9	3	Yiming Liu, Xue Meng, Meishan Pei, Guangyou Zhang, Huizhi Li*
10 11 12	4	Shandong Provincial Key Laboratory of Chemical Sensing & Analysis, School of Chemistry
13 14	5	and Chemical Engineering, University of Jinan, Jinan 250022, China
15 16 17	6	
18 19	7	
20 21 22	8	
23 24	9	
25 26 27	10	
28 29	11	
30 31	12	
32 33 34	13	
35 36	14	
37 38 39	15	
40 41	16	
42 43 44	17	
45 46	18	
47 48 49	10	
50 51	20	
52 53 54	20	
55	<i>2</i> 1	*
56 57	22	Corresponding author. Tel.: +86-13064012923.
58 59 60	23	E-man. 040343000@qq.com.

24 Abstract

25	Due to catechins (CCs) play an important role in human health, we proposed a new CCs
26	detection method relying on a novel fluorescence "off-on" switch system. Water-soluble cationic
27	polythiophene derivatives, denoted as poly
28	3-{[1-(2-hydrazino-2-oxopropyl)piperidin-4-ylidene]methyl}thiophene hydrochloride
29	(PMTH • HCl), was prepared as a novel fluorescent material. Initially, the fluorescence of
30	PMTH • HCl can be quenched by Cu^{2+} , as the spontaneous formation of Cu^{2+} - PMTH • HCl
31	assembling dyads, resulting in fluorescence turn off. Then, on addition of CCs in Cu^{2+} -
32	PMTH \cdot HCl, Cu ²⁺ was separated from PMTH \cdot HCl, producing free PMTH \cdot HCl and stable
33	complex Cu^{2+} -CCs, so as to turn on the fluorescence signal of PMTH • HCl. Meanwhile, the
34	mechanisms of fluorescence quenching and recovery were discussed to provide new thoughts to
35	design sensor based on water-soluble conjugated polymers. This fluorescence "off-on" signal was
36	sensitive to the concentration of CCs. Under optimized condition, the fluorescence intensity was
37	linear to CCs concentration varying from 1.0×10^{-8} to 9.0×10^{-6} mol/L ($\gamma = 0.9968$), with a detection
38	limit of 3.34×10^{-9} mol/L. Therefore, an efficient, sensitive, highly selective and practically
39	applicable detection system for CCs has been designed.
40	Keywords: fluorescence; off-on switch; water-soluble polythiophene derivatives; copper

- 41 ions; catechins

46	1.	Introd	luction
10		Inter ou	action

47	Tea, including green and red tea, is becoming a more popular drink in the world, due to a
48	number of bioactive chemicals, particularly rich in catechins (CCs). CCs, belonging to the family
49	of flavonoids, have been shown to play an important role in human health with attention to their
50	various biological and pharmacological effects ¹⁻⁴ , such as anti-carcinogenic activities,
51	anti-oxidant activities, anti-inflammatory and reducing obesity. Therefore, a simple and reliable
52	analytical method for the detection of CCs is a pressing need in developing high quality tea
53	product. To date, many methods such as electrochemical detection ^{4,5} , high-performance liquid
54	chromatography ⁶⁻⁹ and chemiluminescence ¹⁰ have been established for assaying CCs. However,
55	these protocols are insensitive, time-consuming and laborious. In recent years, researchers made
56	significant progress in developing "off-on" switch system ¹¹⁻¹⁵ . The "off-on" switch system could
57	provide accurate results because of the specific adsorption and it is not restricted in the detection
58	compared with "turn-off" ^{16, 17} or "turn-on" switch system ¹⁸⁻²⁰ .
59	Fluorescent probes play an important role in designing fluorescence sensors. Water-soluble

Analytical Methods Accepted Manuscript

60 conjugated polymers (CPs) ²¹⁻²⁵ as optical transducers provided a useful platform for constructing 61 high sensitive chemo-sensors and bio-sensors, owing to good water solubility, light-harvesting, 62 electrical, and strong fluorescence properties. Meanwhile, CPs have the characteristics of 63 amplification and superquenching properties ²⁶⁻²⁸, thanks to delocalized electronic structures, the 64 rapid transfer of excitation throughout an isolated conjugated polymer chains ²⁹ is supported. As a 65 result, CPs offered many sensing advantages ³⁰⁻³⁴ for fluorescence sensors compared with quantum 66 dots ^{35, 36} and small molecule dyes ³⁷.

Based on the above facts, we used a novel water-soluble conjugated polymer denoted as poly

2	
3 4 5	68
6 7	69
8 9 10	70
11 12	71
13 14 15	72
16 17	73
18 19 20	74
20 21 22	75
23 24 25	76
26 27	77
28 29 20	78
30 31 32	79
33 34 25	80
36 37	81
38 39 40	82
40 41 42	83
43 44 45	84
45 46 47	85
48 49	86
50 51 52	87
53 54	88
55 56 57	89
58 59	
017	

1

68	3-{[1-(2-hydrazino-2-oxopropyl)piperidin-4-ylidene]methyl}thiophene hydrochloride
69	(PMTH • HCl) to develop a novel "off-on" switch system for the detection of CCs. In the system,
70	the fluorescence of PMTH \cdot HCl was efficiently quenched by the quencher Cu ²⁺ , so as to turn off
71	the fluorescence signal. Based on the stronger affinity between CCs and Cu ²⁺ , addition of CCs can
72	remove Cu^{2+} away from PMTH • HCl, resulting in fluorescent turn-on.
73	2. Experimental
74	2.1. Reagents and apparatus
75	All chemicals were of guaranteed analytical grade. Double distilled water was used in all
76	experiments. CCs were purchased from Sigma-Aldrich.
77	Infrared spectra (IR) were recorded in potassium bromide pellets on a Perkin Elmer 1750. ¹ H
78	NMR and ¹³ C NMR was measured on a Bruker AV III400. Fluorescence measurements were
79	carried out on a RF-5301 fluorescence spectrophotometer.
80	2.2. Synthesis of PMTH • HCl
81	PMTH • HCl was synthesized according to literature ³⁸ . Firstly,
82	4-(thiophen-3-ylmethylidene)piperidine was used as starting material and then through
83	nucleophilic addition reaction, hydrazinolysis reaction, and oxidative polymerization. PMTH
84	was obtained after purification treatment by chromatography. PMTH • HCl was synthesized by
85	acidification in chloroform. The structure is described as follows (Scheme 1).
86	(Scheme 1)
87	2.3. Fluorescence measurement
88	1.0 mL (1.0×10 ⁻⁵ mol/L) of Cu ²⁺ was added to a solution of 1.0 mL (2.5×10 ⁻⁵ mol/L) of

PMTH •HCl and 10 mL of Tris-HCl solution (pH 7.8) in10 mL colorimeter tube. Upon addition of

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
20
24
20
20
27
28
29
30
31
32
33
34
35
36
37
38
30
10
- 1 0 //1
+1 12
+∠ 10
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
51
00
59
60

90	CCs in PMTH • HCl, fluorescence recovered. The fluorescence spectra were recorded w	ith
91	emission at 515 nm, excitation at 410 nm and slit width at 10 cm.	

92 2.4 Preparation of samples

For sample analysis, 1.0 g green tea or 5.0 g sun cream was immersed in anhydrous ethanol (4:1 v/v) containing 0.10 mol/L HCl for 3 h. The mixture was filtrated and evaporated under vacuum. The residue was dissolved in double distilled water. Human serum was mixed with anhydrous ethanol (1:4 v/v), and then the mixture was allowed to stand at room temperature for 12 h. The supernatant was diluted 5 times after centrifugation.

98 **3. Results and discussions**

99 3.1. Fluorescence intensity changes of PMTH • HCl caused by Cu^{2+}

Fluorescence spectroscopy could be used to explain the interaction between PMTH • HCl and Cu^{2+} such as quenching mechanism. The fluorescence reduction efficiency increased quickly in the first few minutes of reaction and the quenching system could maintain at least 6 h. On addition of Cu^{2+} , the fluorescence intensity of PMTH • HCl decreased, which indicated the strong interaction of PMTH • HCl and Cu^{2+} . When the Cu^{2+} concentration was less than 1.6×10^{-7} mol/L, the fluorescence intensity was linear with the Cu^{2+} concentration (Fig. 1 (a)). Meanwhile, It could be deduced that the molar ratio between PMTH • HCl and Cu^{2+} was 1:1, approximately.

107 The quenching mechanisms are usually divided into static quenching and dynamic quenching, 108 where static quenching results from the formation of non-luminous complex or intermolecular 109 complex between fluorophor and quenching agent and dynamic quenching is due to the collision. 110 In general, the values of quenching rate constant (K_q) were greater than the limiting diffusion rate 111 constant of the biopolymer (2 × 10¹⁰ L/mol·s), which indicated that the quenching mechanism of

Analytical Methods Accepted Manuscript

followed a dynamic quenching. In order to testify that it is dynamic quenching, Stern-Volmer equation was used: $I_0/I = 1 + K_{SV}[Cu^{2+}] = 1 + K_0\tau_0[Cu^{2+}]$ (1)Where I_0 and I are the fluorescence intensities in the absence and presence of quencher, respectively. K_{SV} and K_a are the Stern-Volmer dynamic quenching constant and the quenching rate constant. τ_0 , the lifetime of PMTH • HCl, is 10^{-8} s, approximately. According to the linear regression plots of I_0/I vs. $[Cu^{2+}]$ (Fig. 1 (b)), the value of Kq is 8.98×10^{14} L/mol·s. Thus, the suitable quenching follows a static quenching. (Fig. 1) In order to evaluate the binding affinity or the binding constant (K), the following equation was used: $lg[(I_0-I)/I] = lgK + nlg[Cu^{2+}]$ (2)The linear regression plots of $lg [(I_0-I)/I]$ vs. $lg[Cu^{2+}]$ which were analyzed at three different temperatures (293K, 298K and 303K) yields lgK as the intercept and n (the number of bonding sites) as the slope (Fig. 2). The calculated results were shown in Table 1. The large binding constant indicated that the binding affinity is strong and Cu²⁺ was strong ion chelator to form stable complex with PMTH • HCl. Meanwhile, the value of n and the molar ratio between PMTH \cdot HCl and Cu²⁺ testified the original description that the quenching mode was static. (Fig. 2) (Table 1) There are four binding forces between macromolecule and small molecule ³⁹: H-bonding, Vander Waals, hydrophobic strength, and electrostatic. Vant't Hoff equation was used to study the

134 binding force between PMTH • HCl and Cu^{2+} :

135
$$ln (K_2/K_1) = (\Delta H/R) \cdot (1/T_1 - 1/T_2)$$
(3)

136
$$\Delta S = -(\Delta G - \Delta H)/T$$
(4)

138	Where $\triangle H$, $\triangle S$ and $\triangle G$ are enthalpy change, entropy change and free enthalpy change,
139	respectively. According to the views of Ross 40 , The negative $ riangle H$ and $ riangle S$ values are associated
140	with H-bonding and Van der Waals. The positive $\bigtriangleup H$ and $\bigtriangleup S$ values are characterized by
141	hydrophobic strength. Very low positive or negative $ riangle H$ and positive $ riangle S$ values are associated
142	with electrostatic interactions. The calculated results are revealed in Table 2. The negative $ riangle G$
143	value indicated that it is a spontaneous process. The negative entropy ($\triangle S$) and enthalpy ($\triangle H$)
144	values indicated that the interaction forces were H-bonding and Van der Waals.
145	(Table 2)
146	3.2 Performance evalution of the fluorescence "off-on" switch system
147	In this type of system, PMTH \cdot HCl was allowed to interact with the quencher (Cu ²⁺), which
148	can be attributed to strong Cu-N binding. Upon addition of CCs to Cu^{2+} - PMTH • HCl, oxygen
149	atom could bond with Cu^{2+} (Scheme 2). Therefore, CCs could remove Cu^{2+} away from
150	PMTH •HCl, which lead to the recovery of PMTH •HCl fluorescence (Fig. 3). The mechanism was
151	described in Scheme 3.
152	(Scheme 2)

- 153 (Fig. 3)
- 154 (Scheme 3)

The stability constants for complexes of CCs-Cu²⁺ and Cu²⁺- PMTH \cdot HCl have been

determined by a potentiometric titration technique ⁴¹⁻⁴⁴. The stability constants of CCs-Cu²⁺ and Cu^{2+} -PMTH • HCl were $10^{10.18}$ and $10^{7.50}$, respectively. Therefore, CCs were stronger chelators than PMTH \cdot HCl to form more stable complexes with Cu²⁺, resulting in the fluorescence signal of PMTH • HCl turn on. When the molar ratio between CCs and Cu^{2+} was 1:1, the fluorescence recovered efficiency was maximum. The recovered fluorescence was stable. The fluorescence recovered linearly by the CCs concentration within the range of 1.0×10^{-8} to 9.0×10^{-6} mol/L (n = 5). The equation of the calibration curve was $\Delta I = 79.615 + 11.496 c / (\mu mol/L)$, r = 0.9968, $\Delta I = I_0 - I$, where I_0 and I were the fluorescence intensity before and after the addition of CCs, respectively. Based on S/N = 3, a limit of detection $(3.34 \times 10^{-9} \text{ mol/L})$ was obtained. 3.3 Optimization of experimental condition Due to hydroxyl existing in structure of CCs, pH has a great influence on sensitivity of the fluorescence "off-on" switch system. When pH was less than 4, the fluorescence of PMTH • HCl could not be guenched by Cu^{2+} or stable complexes could not be formed between Cu^{2+} and PMTH • HCl. When pH was more than 9, phenolic hydroxyl could react with base. Meanwhile, Cu^{2+} can catalyze the oxidation of CCs. The fluorescence intensity achieved maximum in the range of 7.2 to 8.6. The optimum pH 7.8 can be used in all subsequent experiments. In order to achieve optimal fluorescence efficiency, the incubation time and temperature play important roles in designing the fluorescence "off-on" switch system. The fluorescence intensity achieved maximum value after incubating for 30 min at room temperature. Although the

incubation time was shortened after rising temperature, the stable time of the system was

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

178	used as the optimal experimental condition.
179	3.4 Specificity of the "off-on" switch system
180	The specificity of the system was investigated by testing the assay in response to common
181	ions, different amino acid, starch and sucrose. The concentrations were at least 50 times greater
182	than that of CCs (4.0×10^{-6} mol/L) under the same conditions. The results (Table 3) demonstrated
183	that the proposed method could be applied in the detection of CCs with high specificity.
184	(Table 3)
185	3.5 Application to detection of samples
186	In order to demonstrate the feasibility of the new fluorescence "off-on" chemodosimeter for
187	practical analysis, it was used to detect the recovery efficiency of different concentrations of CCs
188	in real sample, such as human serum by standard addition methods. The recovery efficiency was
189	in the range of 96.5% -105% and RSD was below 3.02% (Table 4).
190	(Table 4)
191	3.6 Comparison of methods
192	The analytical performance of the fluorescence "off-on" switch system was compared with
193	the previously reported methods in Table 5. Compared with previous methods, the proposed
194	method shows relatively higher sensitivity and lower detection limit.
195	(Table 5)
196	4. Conclusion
197	In summary, an excellent sensitive, specificity and fast detection method for CCs has been
198	constructed by using PMTH • HCl as a fluorescence "off-on" probe. In the fluorescence "off-on"
199	switch system, Cu^{2+} was modified with the ligand for binding with PMTH • HCl, resulting in turn
200	off the fluorescence of PMTH •HCl. Addition of CCs leaded to the recovery of fluorescence based

201	on the stronger binding affinity between CCs and PMTH • HCl. The fluorescence "off-on" switch
202	system with the limit of detection as low as 3.34×10^{-9} mol/L provides a sensitized recognition
203	platform for CCs and possesses promising application in sample analysis.
204	Acknowledgments
205	This project was financially supported by the National Natural Science Foundation of China
206	(Grant Nos. 50872042).
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	
219	
220	
221	
222	

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

223	Ref	rences
224	1	M. Yasuda, C. Matsuda, A. Ohshiro, K. Inouye, M. Tabata, Food Chemistry, 2012, 133,
225		518-525.
226	2	Y. Masukawa, Y. Matsui, N. Shimizu, N. Kondou, H. Endou, M. Kuzukawa, T. Hase. Journal
227		of Chromatography B, 2006, 834 , 26-34.
228	3	M. M. C. López, M.C. C. Pérez, M. S. D. García, J. M. L. Vilari ~no, M. V. G. Rodríguez, L. F.
229		B. Losada, Analytica Chimica Acta, 2012, 721, 68-78.
230	4	S. Masoum, M. Behpour, F. Azimi, M. H. Motaghedifard, Sensors and Actuators B: Chemical,
231		2014, 193 , 582-591.
232	5	K. Fan, X. Luo, J. F. Ping, W. Z. Tang, J. Wu, Y. B. Ying, Q. L. Zhou, Food Chemistry, 2012,
233		60 , 6333-6340.
234	6	A. A. Rahim, S. Nofrizal, B. Saad, Food Chemistry, 2014, 147, 262-268.
235	7	T. Unno, Y. Sagesaka, T. Kakuda, Food Chemistry, 2005, 53, 9885-9889.
236	8	R. G. Peres, F. G. Tonin, M. F. Tavares, D. B. Rodriguez-Amaya, Food Chemistry, 2011, 127,
237		651-655.
238	9	M. L. Mata-Bilbao, C. Andres-Lacueva, E. Roura, O. Jauregui, C. Torre, R. M.
239		Lamuela-Raventos, Food Chemistry, 2007, 55, 8857-8863.
240	10	K. Nakagawa, T. Miyazawa, Anaytical Biochemistry, 1997, 248, 41-49.
241	11	R. Zhang, D. X. Zhao, H. G. Ding, Y. X. Huang, H. Z. Zhong, H. Y. Xie, Biosensors and
242		Bioelectronics, 2014, 56, 51-57.
243	12	Y. X. Qian, Y. D. Zhang, L. Lu, Y. N. Cai, Biosensors and Bioelectronics, 2014, 51, 408-412.
244	13	A.K. Ghosh, C. Ghosh, A. Gupta, J. Agric. Food Chemistry, 2013, 61, 3814-3820.

245	14	D. W. Huang, C. G. Niu, X.Y. Wang, X. X. Lv, G. M. Zeng, Anaytical Chemistry, 2013, 85,
246		1164-1170.
247	15	J. Du, M. Y. Liu, X. H. Lou, T. Zhao, Z. Wang, Y. Xue, J. L. Zhao, Y. S. Xu, Anaytical
248		Chemistry, 2012, 84, 8060-8066.
249	16	M. Hagimori, T. Uto, N. Mizuyama, T. Temma, Y. Yamaguchi, Y. Tominaga, H. Saji. Sensors
250		and Actuators B: Chemical, 2013, 181, 823-828.
251	17	H. Zhang, L. Wang, W. Jiang, Talanta, 2011, 85, 725-729.
252	18	S. Liu, J. J. Hu, H. Zhang, X. G. Su, Talanta, 2012, 101, 368-373.
253	19	W. Y. Liu, H. Y. Li, H. S. Lv., B. X. Zhao, J. Y. Miao, Spectrochim. Acta Part A: Mol.
254		<i>Biomolecular Spectrosc</i> , 2012, 95 , 658-663.
255	20	G. J. Kim, H. J. Kim, Tetrahedron Lett, 2010, 51, 4670-4672.
256	21	X. F. Liu, Q. L. Fan, W. Huang, Biosensors and Bioelectronics, 2011, 26, 2154-2164.
257	22	Y. N. Li, H. Huang, Y. Li, X. G. Su, Sensors and Actuators B: Chemical, 2013, 188, 772-777.
258	23	H. Huang, M. Xu, Y. Gao, G. N. Wang, X. G. Su, <i>Talanta</i> , 2011, 86, 164-169.
259	24	H. Huang, F. P. Shi, Y. N. Li, L. Niu, Y. Gao, X. G. Su, Sensors and Actuators B: Chemical,
260		2013, 178 , 532-540.
261	25	Y. G. Chen, P. Hong, B. M. Xu, Z. K. He, B. H. Zhou, Spectrochimica Acta Part A:
262		Molecular and Biomolecular Spectroscopy, 2014, 122, 441-446.
263	26	T. Zhang, H. Fan, Q. Jin, <i>Talanta</i> , 2010, 81 , 95-99.
264	27	X. F. Liu, Y. L. Tang, L. H. Wang, J. Zhang, S. P. Song, C. H. Fan, S. Wang, Advanced
265		Materials, 2007, 19 , 1471-1474.
266	28	W. Dou, X. Su, <i>Luminescence</i> , 2009, 24 , 45-49.

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

267	29	S. Kumaraswamy, T. Bergstedt, X. B. Shi, F. Rininsland, S. Kushon, W. S. Xia, K. Ley, K.
268		Achyuthan, D. McBranch, D. Whitten, Proceedings of the National Academy of Sciences of
269		the United States of America, 2004, 101 , 7511-7515.
270	30	X. Y. Wang, F. He, F. Tang, L. D. Li, Journal of Materials Chemistry, 2012, 22,
271		15303-15308.
272	31	S. F. Xue, L. Yao, F. Z. Shen, C. Gu, H. B. Wu, Y. G. Ma, Advanced Functional Materials,
273		2012, 22 , 1092-1097.
274	32	Y. Long, H. Chen, H. Wang, Z. Peng, Y. Yang, G. Zhang, N. Li, F. Liu, J. Pei, Analytica
275		<i>Chimica Acta</i> , 2012, 744 , 82-91.
276	33	P. F. Sun, X. M. Lu, Q. L. Fan, Z. Y. Zhang, W. L. Song, B. Li, L. Huang, J. W. Peng, W.
277		Huang, Macromolecules, 2011, 44, 8763-8770.
278	34	R. Y. Zhan, A. J. H. Tan, B. Liu, Polymer Chemistry, 2011, 2, 417-421.
278 279	34 35	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300.
278 279 280	34 35 36	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 257-262.
278279280281	34353637	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 257-262. S. Kumaraswamy, T. Bergstedt, X. B. Shi, F. Rininsland, S. Kushon, W. S. Xia, K. Ley, K.
 278 279 280 281 282 	34353637	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 257-262. S. Kumaraswamy, T. Bergstedt, X. B. Shi, F. Rininsland, S. Kushon, W. S. Xia, K. Ley, K. Achyuthan, D. McBranch, D. Whitten, <i>Proceedings of the National Academy of Sciences of</i>
 278 279 280 281 282 283 	34 35 36 37	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 257-262. S. Kumaraswamy, T. Bergstedt, X. B. Shi, F. Rininsland, S. Kushon, W. S. Xia, K. Ley, K. Achyuthan, D. McBranch, D. Whitten, <i>Proceedings of the National Academy of Sciences of the United States of America</i>, 2004, 101, 7511-7515.
 278 279 280 281 282 283 284 	 34 35 36 37 38 	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 257-262. S. Kumaraswamy, T. Bergstedt, X. B. Shi, F. Rininsland, S. Kushon, W. S. Xia, K. Ley, K. Achyuthan, D. McBranch, D. Whitten, <i>Proceedings of the National Academy of Sciences of the United States of America</i>, 2004, 101, 7511-7515. X. Y. Wang, J. J. Zhao, C. X. Guo, M. S. Pei, G. Y. Zhang, <i>Sensors and Actuators B: Chemical</i>,
278 279 280 281 282 283 283 284 285	 34 35 36 37 38 	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 257-262. S. Kumaraswamy, T. Bergstedt, X. B. Shi, F. Rininsland, S. Kushon, W. S. Xia, K. Ley, K. Achyuthan, D. McBranch, D. Whitten, <i>Proceedings of the National Academy of Sciences of the United States of America</i>, 2004, 101, 7511-7515. X. Y. Wang, J. J. Zhao, C. X. Guo, M. S. Pei, G. Y. Zhang, <i>Sensors and Actuators B:Chemical</i>, 2014, 193, 157-165.
278 279 280 281 282 283 283 284 285 286	 34 35 36 37 38 39 	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 257-262. S. Kumaraswamy, T. Bergstedt, X. B. Shi, F. Rininsland, S. Kushon, W. S. Xia, K. Ley, K. Achyuthan, D. McBranch, D. Whitten, <i>Proceedings of the National Academy of Sciences of the United States of America</i>, 2004, 101, 7511-7515. X. Y. Wang, J. J. Zhao, C. X. Guo, M. S. Pei, G. Y. Zhang, <i>Sensors and Actuators B: Chemical</i>, 2014, 193, 157-165. X. C. Zhao, R. T. Liu, Y. Teng, X. F. Liu, <i>Science of The Total Environment</i>, 2011, 409,
278 279 280 281 282 283 284 285 286 287	 34 35 36 37 38 39 	 R. Y. Zhan, A. J. H. Tan, B. Liu, <i>Polymer Chemistry</i>, 2011, 2, 417-421. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 295-300. R. Gui, X. An, W. Shen, L. Zhu, X. Ma, Z. Chen, X. Wang, <i>Talanta</i>, 2012, 30, 257-262. S. Kumaraswamy, T. Bergstedt, X. B. Shi, F. Rininsland, S. Kushon, W. S. Xia, K. Ley, K. Achyuthan, D. McBranch, D. Whitten, <i>Proceedings of the National Academy of Sciences of the United States of America</i>, 2004, 101, 7511-7515. X. Y. Wang, J. J. Zhao, C. X. Guo, M. S. Pei, G. Y. Zhang, <i>Sensors and Actuators B:Chemical</i>, 2014, 193, 157-165. X. C. Zhao, R. T. Liu, Y. Teng, X. F. Liu, <i>Science of The Total Environment</i>, 2011, 409, 892-897.

289	41	R. A. Ammar, E. M. Al-Mutiri, M. A. Abdalla, <i>Fluid Phase Equilibria</i> , 2011, 301 , 51-55.
290	42	M. Meloun, Z. F. íková, A. Vrána, J. Chem. Thermodynamics, 2011, 43, 930-937.
291	43	S. Kholeif, G. Anderegg, Food Chemistry, 1999, 64, 397-401.
292	44	S. Gu" zelog'lu, G. Yalc, In , M. Pekin, Journal of Organometallic Chemistry, 1998, 568,
293		143-147
294		
295		
296		
297		
298		
299		
300		
301		
302		
303		
304		
305		
306		
307		
308		
309		
310		

1	
2	
3 4	
5	
6	
7	
8 9	
10	
11	
12	
14	
15	
16	
17 18	
19	
20	
21	
22	
24	
25	
20 27	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38	
39 40	
41	
42	
43 44	
45	
46	
47 48	
49	
50	
51 52	
52 53	
54	
55	
50 57	
58	
59	
60	

311	
312	Figure captions
313	Scheme 1 Structure of PMTH • HCl.
314	Fig. 1 (a) Plot of I_0/I vs. $[Cu^{2+}]$. [PMTH •HCl]= 2.5×10 ⁻⁶ mol/L; Tris-HCl buffer solution pH = 7.8;
315	(b) Stern-Volmer plots of fluorescence quenching.
316	Fig. 2 Plot of $lg[(I_0-I)/I]$ vs . $lg[Cu^{2+}]$ at 303K(c), 298K(b) and 293K(a).
317	Fig. 3 Emission spectra of PMTH • HCl), Cu^{2+} + PMTH • HCl and Cu^{2+} + PMTH • HCl +CCs. a:
318	PMTH •HCl; b: Cu^{2+} + PMTH •HCl +CCs ; c: Cu^{2+} + PMTH •HCl; [PMTH •HCl]=4.0×10 ⁻⁶ mol/L;
319	$[Cu^{2+}] = 2.0 \times 10^{-6} \text{ mol/L}; [CCs] = 1.5 \times 10^{-6} \text{ mol/L}; \text{ Tris-HCl buffer solution pH=7.8}.$
320	Scheme 2 Binding mode of CCs toward Cu^{2+} .
321	Scheme 3 Schematic representations of the fluorescence "off-on" switch system for the detections
322	of CCs.

Fig. 2

Fig. 3

ŌН

3`

Çu²⁺

Scheme 3

Tables

Table 1 The quenching constant of the interaction between $[Cu^{2+}]$ and PMTH • HCl at different

	tempera	tures.	
T /(K)	K / (L/mol)	n	γ
293	3.162×10^7	1.048	0.9988
298	2.505×10^7	1.063	0.9983
303	1.950×10^{7}	1.078	0.9986

Table 2 Thermodynamic parameters of the Cu^{2+} - PMTH • HCl system.

T ((V)	$\Delta C / (I/m - 1)$	$\Delta C /(I/m - 1 K)$	ATT // I/
1 /(K)	$\Delta G/(J/mol)$	$\Delta S / (J/mol \cdot K)$	$\Delta H /(J/mol)$
293	-4.207×10^4	-1.042×10^{7}	-3.569×10^4
298	-4.221×10^4	-1.067×10^{7}	-3.569×10^4
303	-4.229×10^4	-1.077×10^{7}	-3.569×10^4

,	Table 3 Effects of interfere	nts
interferents	C / (mol/L)	Interference level / (%)
urea	8.0×10^{-4}	1.83
L-histidine	8.0×10^{-4}	1.45
L-serine	8.0×10^{-4}	0.90
Al ³⁺	8.0×10^{-4}	3.78
glucose	4.0×10^{-4}	2.87
sucrose	4.0×10^{-4}	1.63
L-proline	4.0×10^{-4}	0.83
Fe ³⁺	4.0×10^{-4}	1.79
Mn ²⁺	4.0×10^{-4}	4.35
DL-alanine	2.0×10 ⁻⁴	2.94
L-tryptophan	2.0×10^{-4}	4.12
L-arginine	2.0×10^{-4}	1.79
L-cysteine	2.0×10 ⁻⁴	2.57

Table 4 Determination of CCs in real samples (n = 9)

Sampla	Amount found	Added	Recovered	%) Recover (%)	
Sample	$(\mu mol/L \pm RSD\%)$	(µmol/L	$(\mu mol/L \pm RSD\%)$		
Crean tag autroat 1	2.02 ± 1.56	2.0	5.02 ± 1.06	105.0	
Green tea extract 1	2.92 ± 1.30	4.0	6.85 ± 1.98	98.25	
Care on the carton of 2	1.92 + 1.22	2.0	3.75 ± 1.12	96.5	
Green lea extract 2	1.82 ± 1.22	4.0	5.93 ± 2.09	102.75	
11	0.28 + 2.26	2.0	2.23 ± 3.02	97.5	
Human serum	0.28 ± 2.26	4.0	4.41 ± 1.62	103.25	

Table .	s comparison of analytical param		51 CC3	
Methods	Reagents or condition	Linear range (mol/L)	Detection limit (mol/L)	Reference
fluorimetry	PMTH·HC1	1.0×10^{-8} to 9.0×10^{-6}	3.34×10 ⁻⁹	This paper
electrochemical	multiwalled carbon nanotube paste electrode	1.0×10^{-7} to 2.69×10^{-6}	1.70×10 ⁻⁸	4
electrochemical	ionic liquid, n-octylpyridinium hexafluorophosphate carbon paste electrode	5.0×10^{-7} to 1.25×10^{-5}	1.32×10 ⁻⁷	5
HPLC	monolithic column	1.62×10^{-6} to 2.60×10^{-6}	3.57×10 ⁻⁷	6
HPLC	solid-phase extraction	1.0×10^{-8} to 1.0×10^{-6}	1.0×10^{-7}	7
HPLC	sulfated-b-cyclodextrin	4.06×10^{-6} to 3.25×10^{-4}	3.57×10 ⁻⁷	8
HPLC	liquid chromatography in tandem mass spectrometry	1.09×10^{-8} to 1.379×10^{-6}	2.60×10 ⁻⁹	9

|--|