Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

1 2		
- 3 4 5	1	Pipette tip-based molecularly imprinted monolith for
5 6 7	2	selective micro-solid-phase extraction of methomyl in
8 9 10	3	environmental water
11 12	4	
13 14 15	5	Ting Du ^a , Jing Cheng ^a *, Min Wu ^a , Xiaohua Wang ^a , Hongbin Zhou ^a , Min Cheng ^b *
16 17	6	
18 19 20	7	
21 22 23	8	
23 24 25	9	^a Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College
26 27 28	10	of Chemistry, Central China Normal University, Wuhan 430079, China
29 30	11	^b School of Mechanical Science and Engineering, Hua Zhong University of Science
31 32 33	12	and Technology, Wuhan 430074, China
34 35	13	
36 37 38	14	
39 40 41	15	
42 43	16	
44 45 46	17	
47 48	18	* Corresponding author. Tel.: +86-27-67867961. Fax: +86-27-67867961
49 50 51	19	Email address: chengjingok@mail.ccnu.edu.cn (J. Cheng)
52 53	20	*Corresponding author. Tel: +86-27-87543770; Fax: +86-27-87543670
54 55 56	21	Email address: 494350301@qq.com (M. Cheng)
57 58	22	
60		1

Analytical Methods

1
2
2
3
4
5
6
7
0
ð
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
20
22
23
24
25
26
20
21
28
29
30
24
31
32
33
34
35
00
36
37
38
39
40
40
41
42
43
44
15
40
46
47
48
10
+3 F0
50
51
52
53
5/
04
55
56
57
58
50
59
60

23	Abstract: A novel small molecular weight methomyl molecule-imprinted monolith
24	(MIM) was prepared inside a polypropylene pipette tip by polymerization reaction.
25	Then the pipette tip-based MIM micro solid-phase extraction (PT-MIM-µ-SPE)
26	method was developed for selective extraction of methomyl in aqueous solution. The
27	extraction parameters, such as the sample flow rate, sample volume and elution
28	solvent were investigated. By combining with high performance liquid
29	chromatography-ultraviolet detector, the PT-MIM-µ-SPE method showed a good
30	linear range of 0.6-1000.0 μ g L ⁻¹ with a low limit of detection 0.2 μ g L ⁻¹ . The method
31	was also applied for the pretreatment of methomyl in various environmental water
32	samples. The relative recoveries were in the range of 84.9 to 105.1% with relative
33	standard deviations less than 9.0 %. The results showed that methomyl could be
34	selectively enriched and monitored from environmental water samples.
35	
36	
37	
38	
39	Keywords: Molecularly imprinted monolith; Pipette tip; Micro-solid phase extraction;
40	Methomyl; Environmental water.
41	
42	
43	
44	

45 1. Introduction

46	Methomyl whose trade name is Lannate belongs to carbamate pesticides. It is a
47	systemic, broad spectrum insecticide and was registered for the use on more than 100
48	crops worldwide for control of pests on vegetables, soybeans, cotton, some fruit crops,
49	and ornamentals owing to its broad spectrum of biological activity. Methomyl sprayed
50	on croplands can easily migrate to environmental water. Hence, extensive use of
51	methomyl may cause residues in environmental water. As an acetyl cholinesterase
52	inhibitor, methomyl can cause nerve damage to people and animals, and is harmful to
53	the environment and human health. In order to protect human health, the maximal
54	residue limits (MRLs) of pesticides has been established in food and drinking water
55	by the European Union and China, etc [1,2]. European Union requires the MRLs 0.1
56	$\mu g \; L^{\text{-1}}$ for individual pesticide and of 0.5 $\mu g \; L^{\text{-1}}$ for total pesticides in drinking water
57	[1], while in China, the MRLs of pesticides in drink water are in the range of 0.01-10
58	μ g L ⁻¹ (GB/T 5750.9-2006). Therefore, sensitive and selective methods are desirable
59	in the determination of pesticides in environmental water.

Analytical Methods Accepted Manuscript

For the sensitive detection of carbamate pesticides in water sample, high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) were often used due to the low thermal stability of carbamate pesticides, which were supposed to be sensitive, reliable and suitable [3-6].

Sample preparation is a crucial step during the whole analysis process especially
 in the analysis of trace level of pesticide residues from complicated matrix-based
 samples. Conventional extraction methods for the determination of pesticide residues

Analytical Methods Accepted Manuscript

67	were based on liquid-liquid extraction (LLE) and solid phase extraction (SPE).
68	Compared with LLE, SPE has the advantages of simplicity, rapidly and less
69	consumption of organic solvents. However, the common nonselective sorbents used in
70	SPE usually result in coextraction of many matrix components. Although immune
71	affinity extraction (IAE) is capable of differentially adsorb target analytes, it still has
72	some disadvantages such as lack of stability and high cost of antibody preparation.
73	Molecular imprinting is a technique which can create the artificial receptor-like
74	binding sites with a "memory" for the shape and functional group positions of the
75	template molecule. So, molecularly imprinted polymers (MIPs) are good alternatives
76	to biological substances. MIPs can be synthesized conveniently by a mixture of
77	solution containing template molecule, porogenic reagent, functional monomer,
78	cross-linker and initiator. After polymerization, template molecules are removed and
79	polyporous materials with selectively functional binding sites are obtained. Due to the
80	high stability, ease of preparation, and high sensitivity, MIPs have been used widely in
81	different applications, such as chromatographic stationary phases [7,8], solid phase
82	extraction (SPE) [9-12], catalysis and sensing [13-18]. MIPs-based SPE is one of the
83	most successful and useful application. MIPs based SPE combines both the
84	advantages of MIPs and SPE, and exhibits good extraction efficiency, reusability and
85	selectivity to certain kinds of analytes [19], which is promising to selectively and
86	effectively extract drugs in complicated matrix. The most widely used technique for
87	preparing MIP materials is by conventional free-radical solution polymerization. In
88	order to acquire particles with the appropriate size for HPLC and SPE, the bulk MIPs

Page 5 of 27

1

Analytical Methods

2
3
4
5
6
0
1
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
27
20
20
29
30
31
32
22
33
34
35
36
37
20
38
39
40
41
42
∠ ∕12
40
44
45
46
47
48
40
49
50
51
52
53
51
04 rr
55
56
57
58
50
29
60

89	have to be crushed, grounded and sieved. The particles produced in this
90	time-consuming process are irregular in size and shape, resulting in significant loss in
91	chromatographic performance [20]. In addition, some active sites are destroyed during
92	the grinding process leading to lower MIP loading capacity. To overcome these
93	disadvantages, the molecularly imprinted monolithic (MIM) columns were prepared
94	by in situ polymerization directly inside a capillary or stainless steel or the tip of a
95	pipette. This method could avoid the tedious grinding and sieving procedures as well
96	as the problems of costly particle loss, particles in homogeneity, and molecular
97	imprinted spots loss and could easily obtained a MIM with the ideal porous structure
98	and low back pressure at a high flow rate [21]. To use the synthesized MIM directly as
99	SPE sorbents is a promising method. Recently, Zheng et al. [22] prepared a MIM
100	inside a fused-silica capillary and applied it in the extraction of fluoroquinolones from
101	milk samples. Some research groups, including ours, prepared MIM in a pipette tip
102	for the selective micro-solid phase extraction of residue level of drug and pesticide
103	from complicated matrix [23-26]. Compared with SPE, the amount of sorbents and
104	the volume of eluting solvents could be reduced greatly if the MIM prepared in a
105	fused-silica capillary or a pipette tip, so the extraction efficiency could be increased as
106	a result [27]. Besides, the amount of template molecule required during monolith
107	preparation is much less than that of other methods [28]. Since the MIM that
108	synthesized in a capillary was fragile, and required tedious pretreatment process, the
109	pipette tip-based MIM microextraction is a promising technique for the selective
110	extraction of target analyte residues in complicated matrice.

2		
3	111	To the best of our knowledge MIP sorbents using small molecular weight
4	111	To the best of our knowledge, with soloents using small molecular weight
6 7	112	methomyl as the template molecule have not been reported, and no attention has been
8 9	113	paid to make use of MIM as the sorbent for high selective extraction of methomyl
10 11 12	114	from complex matrices. In this work, methomyl-MIM was synthesized in a pipette tip
12 13 14	115	for the first time. The pipette tip could match to a syringe without any other treatment
15 16	116	to perform the molecularly imprinted monolith micro-solid phase extraction
18 19	117	(PT-MIM-µ-SPE). The MIM was applied for the selective extraction of methomyl.
20 21 22	118	Various experimental parameters affecting the pipette tip based methomyl-MIM- μ -
22		
24 25	119	SPE were optimized. The optimized method based on PT-MIM-µ-SPE combined with
26 27	120	HPLC was established and applied for the determination of methomyl in various
28 29 30	121	environmental water samples.
31 32	122	
33 34 35	123	2. Experimental
36 37	124	
38 39 40	125	2.1. Instruments
40 41 42	126	
43 44 45	127	The chromatographic analysis was carried out on an Agilent 1200 HPLC system
46 47	128	(Agilent Technologies, Palo Alto, CA, USA), equipped with an auto injector and a
48 49 50	129	diode array detector (DAD) . A reverse phase Agilent SB-C18 column (250 mm \times 4. 6
51 52	130	mm i.d., 5 μ m) was used for separation of the analytes. The mobile phase was
53 54 55	131	methanol-water (40:60, v/v) at a flow rate of 1.0 mL min ^{-1} . The column temperature
56 57	132	was 30°C and the detection wavelength was set at 235 nm. The injection volume was
58 59 60		6

1

ase Agilent SB-C18 column (250 mm × 4. 6
n of the analytes. The mobile phase was
e of 1.0 mL min ^{-1} . The column temperature
vas set at 235 nm. The injection volume was

	0
	0
	\square
	σ
1	
	Ο
	D
	5
	D
	0
	Q
1	
	n
	\mathbf{O}
	0
	U
	X
	U
	U

Page 7 of 27

Analytical Methods

1
2
3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
48
49
50
51
51
5Z
53
54
55
56
57
58
59
-

60

13 10 μL. Ultrasonic instrument KQ-100DE was purchased from Kunshan Ultrasonic
134 Instrument Co., Ltd. (Jiangsu, China) and a pHS-3C digital pH meter (Shanghai Rex
135 Instruments Factory, China) was employed for pH measurements.

136

- 137 **2.2. Reagents and Chemicals**
- 138

139 Ethylene glycol dimethacrylate (EGDMA, 98% pure) was purchased from Acros 140 (New USA). Jersev. Methacrylic acid (MAA), Acrylamide (AM), 2,2'-bisisobutyronitrile (AIBN, AR), toluene (AR), dodecanol (AR), sodium 141 142 hydroxide (AR) and hydrochloric acid (AR) were obtained from Tianjin Kermel 143 chemical reagents development centre (Tianjin, China). methomyl, was purchased 144 from Sigma-Aldirich (St louis, MO, USA), and its chemical structure is shown in 145 Fig. 1. Methanol (HPLC grade) and acetonitrile (HPLC grade) were ordered from 146 Tedia (Fair Lawn, New Jersey, USA). Sodium chloride was procured from Zhanyun 147 Chemical Co, Ltd. (Shanghai, China). Ultrapure water was purified on a Mill-Q water 148 purification system (Millipore Corporation, Billerica, MA, USA). 149 The stock standard solution of methomyl was prepared by weighing 2.5 mg 150 methomyl dissolved in 50 mL HPLC-grade methanol. Then the stock standard solution at a concentration of 50 μ g mL⁻¹ was made and stored at 4 °C in a refrigerator. 151 152 A series of standard solutions were daily prepared by an appropriate dilution from the 153 stock solution with ultrapure water. 154

Analytical Methods Accepted Manuscript

2.3. Sample preparation

Reservior water was collected from Danjiang Kou Reservior (Danjiang Kou, Hubei, China). South Lake water, farmland water and waste water were collected from Wuhan (Wuhan, China). All of them were kept at 4 °C and filtered through a 0.45 µm polyether sulfone membrane which was purchased from Wuhan Shenshi Chemical Industry Co. Ltd (Wuhan, China) prior to analysis.

2.4. Preparation of Methomyl-Imprinted Monolith

For the preparation of the methomyl-imprinted monolith, the template methomyl (0.05mmol) was dissolved in porogenic solvents (50 µL toluene, 450 µL 1-dodecanol) in a glass vial and mixed with MAA (0.20 mmol) as the functional monomer. The mixture was surged ultrasonically for 15 min. In order to make the template and the monomer assemble each other better, the mixture was placed in the dark for two hours. Then, 1.00 mmol of cross-linker EGDMA and 0.032 mmol (5.3 mg) of initiator AIBN were added and degassed by ultrasonication for about 30 min. Next, 60 μ L of the homogeneous solution was filled into a pipette tip which had been sealed at one end. Subsequently, the other end of the pipette tip was sealed with silicon rubber. After polymerization at 65 °C for 24 h, the silicon rubber was removed. The resultant MIM was washed with methanol to remove the template molecules. A reference, non-imprinted monolith (NIM), was prepared simultaneously like the same

177 procedure, including washing, but in the absence of the template molecule.

2.5 PT-MIM-μ-SPE procedure

The prepared methomyl-imprinted monolith was applied for extraction of methomyl in aqueous solutions. As shown in Fig. 2, solutions were put in the syringe and loaded by a SN-50C6 syringe pump (Shengnuo Medical Equipment Co., Ltd., Shenzhen, China). For precondition, the MIM was washing with 1.0 mL methanol and 0.5 mL water, respectively. For extraction, an aliquot of 3.0 mL sample solution was loaded at a flow rate of 0.15 mL min⁻¹. Then, The MIM was washed with 0.5 mL water at a flow rate of 0.15 mL min^{-1} to remove the matrix interferences. Lastly, the analytes were eluted with 60 μ L acetonitrile at a flow rate of 0.05 mL min⁻¹. The eluent solution in glass-lined pipe was injected into the HPLC system with an autosampler for analysis directly.

- **3. Results and discussion**

In order to obtain the optimized extraction conditions, enrichment factor (EF) and
Relative recovery (RR) were used to evaluate the extraction efficiency of MIM.

 $EF = \frac{C_{elu}}{C_0}$

197 The EF was defined as the ratio between the analyte concentration in eluent (C_{elu}) 198 and the initial concentration of analyte (C_0) within the sample solution.

1

200 C_{found} represents the concentration of the analyte after adding a known amount of 201 standard to the real sample, C_{real} is the concentration of the analyte in real sample, and 202 C_{add} refers to the concentration of a known amount of standard that was spiked in the 203 real sample.

The imprinting factor (IF) was used to evaluate the recognition abilities of the MIM:

$$206 \qquad IF = \frac{EF_{MIM}}{EF_{NIM}}$$

where the EF_{MIP} is the EF of methomyl extracted by MIM and EF_{NIP} is the EF of methomyl extracted by NIM monolith under the same conditions.

209

210 **3.1. Preparation and evaluation of methomyl-imprinted monolith**

211

3.1.1. Optimization of preparation conditions

213

Different functional monomers will construct different binding sites with template. To improve the recognition and selectivity property of MIM, two different functional monomers, including MAA and AM were investigated. The results showed that MAA has the higher specific recognition ability for methomyl compared with AM. To realize the better selectivity, MAA was chosen as the functional monomer. The ratio between monomer and cross-linker can affect the pore size and capacity of the

Analytical Methods

220	reticular structure of the polymer [16]. Increasing the amount of cross-linker can
221	maintain the stability of the recognition sites and lead to high selectivity for the target.
222	But, on the other hand, too more amount of cross-linker would result in large density
223	and bad permeability of the polymer, which would decrease the extraction efficiency,
224	therefore, the proper ratio is required. In this study, the molar ratios of the monomer to
225	cross-linker ranged from 1:1 to 1:6 were investigated, respectively. The results
226	showed when the ratio was lower than 1:3, the MIM showed bad recognition ability
227	and the mechanical stability of the polymer was poor. However, when the ratio was
228	higher than 1:5, the backpressure is too high to allow the mobile phase to flow
229	through the monolith. So, 1:5 was chosen as the optimized ratio of the monomer and
230	cross-linker, and it was selected for further optimization.
231	
232	3.1.2. The characterization and specific evaluation of the MIM
232 233	3.1.2. The characterization and specific evaluation of the MIM
232 233 234	3.1.2. The characterization and specific evaluation of the MIM The MIM morphological structure was investigated by scanning electron
232233234235	3.1.2. The characterization and specific evaluation of the MIM The MIM morphological structure was investigated by scanning electron microscope (SEM). As can be seen in Fig. 3, there were many macropores and
 232 233 234 235 236 	3.1.2. The characterization and specific evaluation of the MIM The MIM morphological structure was investigated by scanning electron microscope (SEM). As can be seen in Fig. 3, there were many macropores and flow-through channels inlaid in the network skeleton of methomyl-imprinted monolith,
 232 233 234 235 236 237 	3.1.2. The characterization and specific evaluation of the MIM The MIM morphological structure was investigated by scanning electron microscope (SEM). As can be seen in Fig. 3, there were many macropores and flow-through channels inlaid in the network skeleton of methomyl-imprinted monolith, which provided flow paths through the column. Due to the size and density of the
 232 233 234 235 236 237 238 	3.1.2. The characterization and specific evaluation of the MIM The MIM morphological structure was investigated by scanning electron microscope (SEM). As can be seen in Fig. 3, there were many macropores and flow-through channels inlaid in the network skeleton of methomyl-imprinted monolith, which provided flow paths through the column. Due to the size and density of the macropore network, the monolith had a high internal porosity and, consequently, low
 232 233 234 235 236 237 238 239 	3.1.2. The characterization and specific evaluation of the MIM The MIM morphological structure was investigated by scanning electron microscope (SEM). As can be seen in Fig. 3, there were many macropores and flow-through channels inlaid in the network skeleton of methomyl-imprinted monolith, which provided flow paths through the column. Due to the size and density of the macropore network, the monolith had a high internal porosity and, consequently, low column hydraulic resistance. The pores allowed the mobile phase to flow through with
 232 233 234 235 236 237 238 239 240 	3.1.2. The characterization and specific evaluation of the MIM The MIM morphological structure was investigated by scanning electron microscope (SEM). As can be seen in Fig. 3, there were many macropores and flow-through channels inlaid in the network skeleton of methomyl-imprinted monolith, which provided flow paths through the column. Due to the size and density of the macropore network, the monolith had a high internal porosity and, consequently, low column hydraulic resistance. The pores allowed the mobile phase to flow through with low flow resistance.

1	
2	
3	
4	
5	
6	
7	
8	
a	
10	
11	
10	
12	
13	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>Δ1</u>	
42	
<u>4</u> 2	
Δ <i>Λ</i>	
44 15	
40	
40	
41 10	
4ŏ ⊿∩	
49	
5U E	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

242	methomyl-imprinted monolith. As shown in the supplementary material Fig. 1S, the
243	infrared spectrogram of methomyl imprinted monolith was different from that of
244	methomyl and MAA. The characteristic peak of MAA was around at 1690 and 1631
245	cm ⁻¹ , which were corresponding to the C=O and C=C stretching of MAA. Compared
246	with the infrared spectrogram of MAA, the stretching vibration wide peak of
247	$3000-3300 \text{ cm}^{-1}$ and the peak of 1631 cm ⁻¹ became weak in the infrared spectrogram
248	of the associated MIM and NIM complexes. The C=O stretch vibration peak of 1690
249	cm^{-1} shifted to that of 1720 cm^{-1} . These results showed that the polymers have been
250	successfully synthesized.
251	In order to evaluate the selectivity of the MIM, imidacloprid and carbendazim
252	were tested as non-analogues (the supplementary material for the structure detail, Fig.
253	2S). For sampling, methomyl, imidacloprid and carbendazim standard solutions were
254	mixed and diluted using deionized water at a final concentration of 200 μ g L ⁻¹ , 1.0 mL
255	of the mixed solution was loaded on the MIM and NIM at a flow rate of 0.15 mL
256	min ⁻¹ . 60 μ L acetonitrile was used to elute analytes. The eluent was analyzed by
257	HPLC directly. As shown in Fig. 3S, the results indicated that the MIM had a higher
258	affinity for methomyl than NIM, where IF was 2.26. And MIM had weaker extraction
259	ability for both imidacloprid and carbendazim than NIM monolith. All these results
260	demonstrated MIM had the specific selectivity for methomyl.
261	
262	3.1.3. Recognition mechanism of MIM to methomyl
263	

Page 13 of 27

Analytical Methods

1
2
3
4
т Б
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
∠∪ ว4
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
26
30
37
38
39
40
41
42
43
44
-1-1 1 E
40
46
47
48
49
50
51
52
52
23
54
55
56
57
58
50
60
00

264	Based on the above results, hydrogen bonds were expected to be formed among
265	methomyl and monomers (MAA) as a key interaction force for binding site
266	construction. The hydroxyl groups of MAA acted as hydrogen bond donors. The
267	higher hydrogen-bonding ability of the hydroxyl group in MAA and methomyl
268	enhanced the strength of the hydrogen bonding between methomyl and monomers and
269	thus yielded imprinted polymers with better recognition properties. The illustration of
270	the MIM and its molecular recognition was shown in Fig. 4S. Hydrogen bonds were
271	formed between methomyl and MAA, which led to the formation of a self-assembled
272	complex of methomyl and MAA. According to the structure information of MAA and
273	methomyl, three MAA molecules would form three hydrogen bonds with one oxygen
274	atom and two nitrogen atoms of methomyl. The ratio of methomyl/MAA was 1:3,
275	which was in agreement with our result, in which a ratio of 1:4 was used. A bit more
276	functional monomers were always required to ensure complete interaction between
277	functional monomers and templates, because some functional monomers remained
278	dissociative with the templates.

279

280 **3.2. Optimization of PT-MIM-μ-SPE conditions**

281

In order to obtain the best extraction efficiency of the PT-MIM- μ -SPE method, several parameters such as the flow rate, volume, pH value, and salt concentration of sample, and the type and volume of eluent were optimized in this study. Sample solutions were spiked with methomyl at 0.20 μ g mL⁻¹ to perform the experiments.

288	
289	Sample flow rate was an important parameter for MIM microextraction, which
290	was possible to affect extraction efficiency of methomyl and the time of analysis. The
291	sample flow rate was optimized in the range of 0.05-0.25 mL min ⁻¹ . The results
292	indicated that no significant difference of peak areas among different flow rates,
293	indicating that sample flow rate have little influence on extraction efficiency in this
294	work. Considering the analysis time and monolith pressure, 0.15 mL min ⁻¹ was
295	selected for further studies.
296	
297	3.2.2. Effect of eluent type

3.2.1. Effect of sample flow rate

The selection of an appropriate eluent is of high importance for the PT-MIM-µ-SPE process. Considering the consistency to the mobile phase used in liquid chromatography, the eluent is limited to solvents such as methanol, acetonitrile and purified water. 1.0 mL of 0.2 µg mL⁻¹ methomyl standard solution was used in the PT-MIM- μ -SPE system, and then mobile phase (methanol/water (40/60; v/v)), acetonitrile and methanol as eluent were tested. The results indicated that acetonitrile as the eluent exhibited the highest peak area. Thus, acetonitrile was selected as the eluent in the following experiments.

Analytical Methods

3.2.3.	Effect of	of sam	ole	volume
	3.2.3.	3.2.3. Effect of	3.2.3. Effect of samp	3.2.3. Effect of sample

310	The effect of sample volume was monitored by loading methomyl standard
311	solution (containing 0.2 $\mu g \ m L^{\text{-1}}$ of the analyte) from 1.0 to 5.0 mL at a constant flow
312	rate. The eluent volume (methanol) was 60 $\mu L.$ The results showed that EF of
313	methomyl increased with the increasing of sample volume from 1.0 to 5.0 mL. This
314	indicates that the maximal extraction capacity was not achieved even when 5.0 mL of
315	sample solution was loaded. However, RR began to decrease when the sample volume
316	increased. To achieve satisfactory extraction efficiency within a short time, 3.0 mL of
317	sample solution was selected in the PT-MIM-µ-SPE procedure.
318	
319	3.2.4. Effect of eluent volume

Analytical Methods Accepted Manuscript

In order to study the effect of eluent volume on the extraction efficiency, different volumes of eluent (acetonitrile) were tested. The experimental results showed that 60 μ L eluent was sufficient to elute more than 90% analyte from the monolith. Moreover, further increasing the volume of the eluent was not preferred because EF decreased with the increasing of eluent volume. Thus, 60 μ L of eluent volume was selected for subsequent work.

328 3.2.5. Effect of sample pH

Analytical Methods Accepted Manuscript

2
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
21
Z I
22
23
24
25
20
20
27
28
29
20
30
31
32
33
24
34
35
36
37
38
30
39
40
41
12
<u>דר</u> ⊿ר
43
44
45
46
17
4/
48
49
50
51
51
5Z
53
54
55
56
00
57
58
59
60
00

1

330	Sample pH was one of most important parameters for PT-MIM- μ -SPE which
331	may affect the molecule form of the analyte and closely relate to the interaction
332	between analytes and the MIM. The effect of the sample pH on the extraction
333	efficiency for methomyl was investigated using several buffer solutions with pH
334	2.0-9.0. The results showed that from pH 2.0 to 3.0, the peak area of methomyl
335	increased along with the increase of pH, and decreased when pH increased. The low
336	responses observed at low pH may be attributed to the protonation of methomyl
337	molecules. These protonated charged molecules were disadvantageous for the
338	formation of hydrogen bonds between MAA and methomyl which led to that the
339	methomyl molecules could not be adsorbed by the polymer. The decrease of the peak
340	area at higher sample pH could be explained by the deprotonation of carboxyl in
341	imprinted sites and the deprotonation charged imprinted sites could not adsorb analyte
342	effectively. Thus, pH 3.0 was chosen as the optimal pH of the sample.

343

344 **3.2.6. Effect of salt concentration**

345

The effect of salt concentration of the sample on the extraction efficiency was also investigated. The results indicated that EF and RR increased as the concentration of NaCl increased from 0% to 30% (w/v). Addition of salt into the sample solutions could lead to the salting-out effect, and more analyte molecules would be extracted onto the MIM. To obtain high extraction efficiency, 30% NaCl (w/v) was added in the sample solution in the following experiments.

353

3.3. Evaluation of the method

1

Analytical Methods

2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
33
33
34
35
36
37
38
39
40
41
/2
-72 12
43
44
45
46
47
48
49
50
51
50
0Z
53
54
55
56
57
58
59

60

354	
355	By coupling with HPLC, the established method was applied for determination of
356	methomyl in environmental water samples. Analytical performance of the method was
357	validated, including linear range, coefficient (R), the limit of detection (LOD), the
358	limit of quantification (LOQ) and reproducibility. As listed in Table 1. Good linearity
359	(R=0.9998) was obtained in the range of 0.6-1000.0 μ g L ⁻¹ . LOD, which indicated the
360	sensitivity of the analytical method, was evaluated and found to be 0.2 μ g L ⁻¹ (S/N=3).
361	LOQ was 0.6 μ g L ⁻¹ . The reproducibility of the method was determined by the
362	intra-day and inter-day precisions at the concentration of 0.2 $\mu g \ m L^{-1}$ in spiked
363	environmental water samples for methomyl, respectively. The results showed that the
364	intra-day precisions (RSDs) was 3.4%, while the inter-day precisions (RSDs) was
365	4.1%, indicating good reproducibility of the method.
366	
367	3.4. Real samples analysis
368	

To evaluate its applicability and accuracy, the developed PT-MIM- μ -SPE -HPLC method was applied for the determination of methomyl in environmental water samples. The results were listed in Table 2, trace amounts of methomyl was detected in reservoir water and farmland water. To investigate the extraction recoveries, four kinds of water samples, all spiked at concentrations of 5 μ g L⁻¹, 50 μ g L⁻¹, and 500 μ g 17

Analytical Methods Accepted Manuscript

2
3
4
5
6
7
0
0
9
10
11
12
13
1/
15
10
10
17
18
19
20
21
22
22
∠ວ
24 05
25
26
27
28
29
20
24
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
16
+0 17
41
48
49
50
51
52
53
50
54
55
56
57
58
59
~~

374	L ⁻¹ were extracted under the optimized conditions. The relative recoveries were in the
375	range of 84.9 % and 105.1 %, with RSD less than 9.0% ($n=3$). The chromatograms of
376	blank and spiked farmland water samples after treated by MIM-µ-SPE and
377	NIM- μ -SPE were shown in Fig. 4. All the results demonstrated that the proposed
378	method was effective and reliable for the pretreatment and determination of methomyl
379	in environmental water samples.
380	
381	3.5. Comparison of PT-MIM-µ-SPE-HPLC-UV with Other Methods
382	
383	The efficiency of the presented PT-MIM-µ-SPE-HPLC-UV method for
384	environmental water samples was compared with that of other reported methods. As
385	listed in Table 3, PT-MIM-µ-SPE-HPLC-UV method was obviously cheaper than
386	other reported methods, and the LOD by the proposed method are comparable to
387	those reported in other papers. All these results revealed that the PT-MIM- μ -SPE was
388	a sensitive, simple, and reproducible technique that could be used for preconcentration
389	of methomyl in environmental water samples.
390	
391	4. Conclusion
392	In this work, a novel methomyl-MIM has been synthesized for selective extraction
393	of methomyl in aqueous samples. The monolith could be connected with syringes in

- different sizes simply without any other treatment to performµ-SPE process. The
- 395 MIM showed high selectivity and enrichment ability for methomyl. The

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

396	PT-MIM-µ-SPE followed by HPLC-DAD was developed as an analytical method for
397	the sensitive and selective determination of methomyl in environmental water samples.
398	The experimental results revealed that this method had high selectivity, low organic
399	solvent consumption, good extraction efficiency and linearity over the investigated
400	concentration range. The performance of this procedure in the analysis of methomyl
401	in environmental water sample was satisfactory.
402	
403	
404	References
405	[1] EU Council Directive on the Quality of Water Intended for Human Consumption,
406	98/83/CE, 1998.
407	[2] Ministry of Health of the People's Republic of China, GB 2763-2005 Maximum
408	residue limits for pesticides in food, 2005.
409	[3] W.T. Song , Y.Q. Zhang, G.J. Li, H.Y. Chen, H. Wang, Q. Zhao, D. He, C. Zhao,
410	L. Ding, Food Chem. 143 (2014) 192-198.
411	[4] D. Moreno-González, J.F. Huertas-Pérez, A.M. García-Campaña,
412	J.M. Bosque-Sendra, L. Gámiz-Gracia, J. Chromatogr. A 1315 (2013) 1-7.
413	[5] S. Bogialli, R. Curini, A.D. Corcia, A. Laganà, M. Nazzari, M. Tonci,
414	J. Chromatogr. A 1054 (2004) 351-357.
415	[6] J.M. Zhang, Y.L. Wu, Y.B. Lu, J. Chromatogr. B 915-916 (2013) 13-20.
416	[7] J. Courtois, G. Fischer, B. Sellergren, K. Irgum, J. Chromatogr. A 1109 (2006)
417	92-99.

4	418	[8] X.L. Sun, X.W. He, Y.K. Zhang, L.X. Chen, Talanta 79 (2009) 926-934.
2	419	[9] H.W. Sun, F.X. Qiao, G.Y. Liu, S.X. Liang, Anal. Chim. Acta 625 (2008)
2	420	154-159.
2	421	[10] J.J. Ou, L.H. Hu, L.G. Hu, X. Li, H.F. Zou, Talanta 69 (2006) 1001-1006.
2	422	[11] A. Tan, S. Benetton, J. Henion, Anal. Chem. 75 (2003) 5504-5511.
2	423	[12] F.G. Tamayo, E. Turiel, A. Martin-Esteban, J. Chromatogr. A 1152 (2007)
2	424	32-40.
2	425	[13] G.P. González, P.F. Hernando, J.S.D. Alegría, Anal. Chim. Acta 638 (2009)
2	426	209-212.
2	427	[14] G. Vasapollo, R. Del Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano,
2	428	G.Mele, Int. J. Mol. Sci. 12 (2011) 5908-5945.
2	429	[15] V. Suryanarayanan, C.T. Wu, K.C. Ho, Electroanalysis 22 (2010) 1795-1811.
2	430	[16] M. ávila, M. Zougagh, á. Ríos, A. Escarpa, Trends Anal. Chem. 27 (2008) 54-65.
2	431	[17] K. Haupt, K. Mosbach, Chem. Rev. 100 (2000) 2495-2504.
2	432	[18] G. Wulff, J.Q. Liu, Acc. Chem. Res. 45 (2012) 239-247.
2	433	[19] F. Augusto, E. Carasek, R.G.C. Silva, S.R. Rivellino, A.D. Batista, E. Martendal,
2	434	J. Chromatogr. A 1217 (2010) 2533-2542.
2	435	[20] X.J. Liu, C.B. Ouyan, R. Zhao, D.H. Shangouan, Y. Chen, G.Q. Liu, Anal. Chim.
2	436	Acta 571 (2006) 235-241.
2	437	[21] J. Tan, Z.T. Jiang, R. Li, X.P. Yan, Trends in Analytical Chemistry, 39 (2012)
4	438	207-217
2	439	[22] M.M. Zheng, R. Gong, X. Zhao, Y.Q. Feng, J. Chromatogr. A 1217 (2010)
		20

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

2	440	2075-2081.
2	441	[23] W.P. Zhang, Z.L. Chen, Talanta, 103 (2013) 103-109.
2	442	[24] N. Sun, S.L.Wu, H.X. Chen, D.J. Zheng, J.W. Xu, Y. Ye, Microchim. Acta, 179
2	443	(2012) 33-40.
2	444	[25] C. Ma, H. chen, N. Sun, Y. Ye, H.X. Chen, Food Anal. Methods 5 (2012)
2	445	1267-1275.
2	446	[26] T. Du, J. Cheng, M. Wu, X.H. Wang, H.B. Zhou, M. Cheng, J. Chromatogr. B,
2	447	951-952 (2014) 104-109.
2	448	[27] M. Javanbakht, M.H. Namjumanesh, B. Akbari-Adergani, Talanta 80 (2009)
2	449	133-138.
2	450	[28] B. Sellergren, B. Rückert, A.J. Hall, Adv. Mater. 14 (2002) 1204-1208.
2	451	
2	452	Figure captions
2	453	Fig. 1. The molecule structure of methomyl, MAA and EGDMA.
2	454	Fig. 2. Scheme of the PT-MIM-μ-SPE device.
2	455	Fig. 3. SEM image of MIM (magnification, 5000×).
2	456	Fig.4. The chromatograms of blank farmland water sample treated by MIM-µ-SPE
2	457	and spiked farmland water samples treated by MIM-µ-SPE (B) and NIM-µ-SPE (C).
Z	458	Sample solutions of methomyl were spiked at 5 μ g L ⁻¹ .
Z	459	
2	460	Table captions
2	461	Table 1 Analytical performance of PT-MIM-µ-SPE-HPLC method
2	462	Table 2 Recoveries, precisions of the PT-MIM- μ -SPE-HPLC method for methomyl in

Analytical Methods

463 environmental water samples.

464 Table 3 Comparison of the proposed method with other reported methods

265x211mm (96 x 96 DPI)

3 4

Table 1 Analytical performance of PT-MIM-µ-SPE-HPLC method								
Analyte	Linear range (µg L ⁻¹)	R	LOD (µg L ⁻¹)	LOQ (µg L ⁻¹) -	RSD (%)			
					Intra-day	Inter-day		
methomyl	0.6-1000.0	0.9998	0.2	0.6	3.4	4.1		

Table 2 Recoveries, precisions of the PT-MIM-µ-SPE-HPLC method for methomyl in

Comm10	Real	Added	Recovery	RSD (%)
Sample	$(\mu g L^{-1})$	$(\mu g L^{-1})$	(%)	(n = 3)
	0.7	5.0	98.6	9.0
Reservoir water		50.0	100.8	3.2
		500.0	105.1	4.8
		5.0	89.0	7.6
South lake water	ND ^a	50.0	91.4	3.0
		500.0	84.9	3.9
	0.8	5.0	103.6	7.4
Farmland water		50.0	90.6	5.6
		500.0	97.1	3.5
	ND ^a	5.0	93.7	4.7
Waste water		50.0	86.4	4.0
		500.0	91.2	6.1

ND^a: not detected.

Table 3 Comparison of the proposed method with other reported methods

Method	Linear range (µg L ⁻¹)	r ²	$\begin{array}{c} LOD \\ (\mu g \ L^{-1}) \end{array}$	LOQ (µg L ⁻¹)	Reference
MASE-SPE-LC-MS	-	-	2.3	7.6	[3]
UASEME-UHPLC-MS/MS	0.31-100	0.998	0.11	0.31	[4]
MSPD-LC-MS	-	-	1.0	6.0	[5]
UHPLC-ESI-MS/MS	-	0.9916-0.9984	1.0-1.4	2.7-3.5	[6]
PT-MIM-µ-SPE-HPLC	1.0-1000.0	0.9998	0.2	0.6	This work