This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A facile naphthalene-based Schiff base chemosensor, 1-((pyridin-2-ylmethylimino)methyl)naphthalen-2-ol, has been designed and synthesized for selective detection of Zn\(^{2+}\) ions.
A Facile Fluorescent Chemosensor Based On Naphthalene-derived Schiff Base for Zinc Ions in Aqueous Solution

Kai Wu, Yuting Gao, Zhenni Yu, Fangqi Yu, Juhua Jiang, Jiaoxing Guo, and Yifeng Han*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

DOI: 10.1039/b000000x

A facile naphthalene-based Schiff base chemosensor, 1-((pyridin-2-ylmethylimino) methyl) naphthalen-2-ol (NS), has been designed and synthesized for selective detection of Zn$^{2+}$ ions. A fluorescence enhancement of 10-fold at 446 nm can be realized upon addition of 5.0 equiv. of Zn$^{2+}$ with excitation at 352 nm. NS could detect as low as 1.91×10^{-6} M Zn$^{2+}$ with an association constant value of 7.88×10^5 M^{-1}. More importantly, it displayed specific and sensitive recognition to Zn$^{2+}$ and especially avoided the interference of Cd$^{2+}$ in aqueous solution.

Zinc, which plays crucial roles in many important biological processes such as the structural and catalytic cofactors, neural signal transmitters, and gene expression regulators, is the second most abundant transition-metal ion in human body. The normal concentration range for zinc ions in biological systems is narrow, with both deficiencies and excesses causing many pathological states, such as Alzheimer’s disease, epilepsy, Parkinson’s disease, ischemic stroke, and infantile diarrhea. Accordingly, developing fluorescent chemosensors with high selectivity and sensitivity for detecting trace amounts of Zn$^{2+}$ has attracted increasing attention.

In the past several years, considerable efforts have been made to develop fluorescent chemosensors for Zn$^{2+}$ ions based on quinoline, anthracene, coumarin, BODIPY, and fluorescein fluorophores. However, most of them still have limitations such as poor water-solubility, laborious synthesis processes, expensive chemicals, and interference from other coexisting metal ions. Therefore, for practical applications, it is still desirable to develop simple zinc sensors with good water-solubility and high selectivity and sensitivity.

Our research group is actively engaged in the development of novel selective and sensitive fluorescent probes for heavy metal ions. Herein, we report a naphthalene-based Schiff base, 1-((pyridin-2-ylmethylimino) methyl) naphthalen-2-ol (NS), which shows high selectivity for Zn$^{2+}$ over other metal ions studied, and good water-solubility. More importantly, NS can be readily prepared with high yield (84%) by coupling of 2-hydroxy-1-naphthaldehyde and 2-picolyamine in ethanol (Scheme 1).

In the absence of metal ions, the fluorescence intensity of the fluorophore is greatly reduced due to C=N isomerization which could be restricted by binding with Zn$^{2+}$ ions and the fluorescence intensity is then greatly enhanced due to rigid chelated complex formation. The introduction of the 2-picolyamine group provides not only another two metal coordination sites (naphthanol affords one site) but also a hydrophilic group.

In the UV-vis absorption spectra (Fig. 1), NS exhibits two broad bands from 350 to 450 nm with its maximum centered at 399 and 412 nm, which is assigned to the C=N isomerization of the Schiff base. Upon addition of Zn$^{2+}$ (0-10 equiv.), these peaks merged to one and blue-shifted to 381 nm, accompanying six clear isosbestic points at 385, 346, 322, 310, 289, and 234 nm, respectively, indicating that NS formed a complex with Zn$^{2+}$ and therefore the transform of cis-trans isomerization has been restricted.

As expected, NS alone is almost nonfluorescent in neutral aqueous solution (0.01 M HEPES buffer, pH 7.2). However, addition of 5.0 equiv. of Zn$^{2+}$ triggered a ca. 10-fold increase in the fluorescence intensity.

Scheme 1 Synthesis of NS.
This journal is © The Royal Society of Chemistry [year]

Fig. 2 (a) Fluorescence spectra of NS (10 μM) in HEPES buffer (pH 7.2) in the presence of different concentrations of Zn^{2+} (0-100 μM) (λ_ex = 352 nm). Inset: fluorescence intensity changes as a function of Zn^{2+} concentration. (b) Emission spectra of NS (10 μM) in HEPES buffer (pH 5.7) in the presence of various metal ions (λ_ex = 352 nm, 10.0 eq. of Li^+, Na^+, K^+, Ca^{2+}, Cd^{2+}, Hg^{2+}, Co^{2+}, Ni^{2+}, Mn^{2+}, Cu^{2+}, Pb^{2+}, Cr^{3+}, Fe^{3+}, and Zn^{2+}, respectively).

in fluorescence intensity for NS (Fig. 2a), which was attributed to the Zn^{2+} chelation of the nitrogen atom on the Schiff base moiety.

The fluorescence titration of NS with various metal ions was conducted to examine the selectivity (Fig. 2b). As expected, other metal ions such as Li^+, Na^+, K^+, Ca^{2+}, Zn^{2+}, Cd^{2+}, Hg^{2+}, Co^{2+}, Ni^{2+}, Mn^{2+}, Fe^{3+}, Cr^{3+}, Cu^{2+}, and Pb^{2+} did not induce a nominal response under otherwise identical conditions. The competing experiments were then tested in the presence of Zn^{2+} and other competing metal ions (Fig. S2, ESI†). Interestingly, except Co^{2+}, Cu^{2+}, and Ni^{2+}, other background metal ions had small or no obvious interference with the detection of Zn^{2+} ions. It should be noted that NS has displayed a considerable ability to distinguish Zn^{2+} from Cd^{2+} which has similar properties with Zn^{2+} and generally causes a strong interference.7

Subsequently, the Zn^{2+}-sensing ability of NS at a wide range of pH values was investigated. As depicted in Fig. S3, ESI†, NS had no fluorescence response to Zn^{2+} in the highly acidic environment due to the protonation of the nitrogen atoms of NS. However, satisfactory Zn^{2+}-sensing abilities were exhibited in the range of pH from 6 to 10, indicating that NS could be used in neutral natural systems, or a mildly acidic or basic environment.

The binding ratio and association constant (K_a) of complex were determined by titration experiment of NS with Zn^{2+}. K_a of NS/Zn^{2+} was determined to be 7.88×10^6 M^{-1} by a Hill plot Fig. 3 (a) Hill plot of sensor NS. Fluorescence responses as a function of Zn^{2+} concentration (HEPES buffer, pH 7.2, λ_ex = 352 nm). The solid line represents a linear fit to the experimental data. (b) Job’s plot of sensor NS, the total concentration of the sensor and Zn^{2+} is 30.0 μM (HEPES buffer, pH 7.2, λ_ex = 352 nm).

Fig. 4 1H NMR titration experiment of NS in the presence of different concentrations of Zn^{2+} ions (CD_{3}OD).
In water for a variety of chemical and biological applications. This study will inspire in the future design of metal-ion sensors related probes. We anticipate that the experimental results of sensitivity for the analysis of zinc ion. The low detection limit was calculated to be $1.91 \times 10^{-6} \text{M}$, which reveals the high sensitivity for the analysis of Zn$^{2+}$ ion. Moreover, it can distinguish Zn$^{2+}$ from Cd$^{2+}$ in aqueous solution, which is usually a technique problem for other related probes. We anticipate that the experimental results of this study will inspire in the future design of metal-ion sensors in water for a variety of chemical and biological applications.

In conclusion, we have successfully designed a simple naphthalene-based fluorescent chemosensor for Zn$^{2+}$ and investigated its selectivity and binding abilities towards Zn$^{2+}$. It has the unique advantage of easy-preparation, good water solubility, and excellent selectivity and sensitivity toward zinc ion. Moreover, it can distinguish Zn$^{2+}$ from Cd$^{2+}$ in aqueous solution, which is usually a technique problem for other related probes. We anticipate that the experimental results of this study will inspire in the future design of metal-ion sensors in water for a variety of chemical and biological applications.

This work was supported by the National Natural Science Foundation of China (Grant No. 20902082), the Zhejiang Provincial Top Key Academic Discipline of Applied Chemistry and Eco-Dying & Finishing Engineering (ZYG2012004), and the New-shoot Talents Program of Zhejiang Province (2013R406030).

Notes and references

4. (a) J. Liu, K. Wu, S. Li, T. Song, Y. Han and X. Li, Dalton Trans., 2013, 42, 3854; (b) J. Liu, K. Wu, X. Li, Y. Han and M. Xia, RSC Advances, 2013, 3, 8924.

† Electronic Supplementary Information (ESI) available: Experimental details, synthetic details of NS, additional spectroscopic data, and copies of NMR spectra. See DOI: 10.1039/b000000xA.