Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

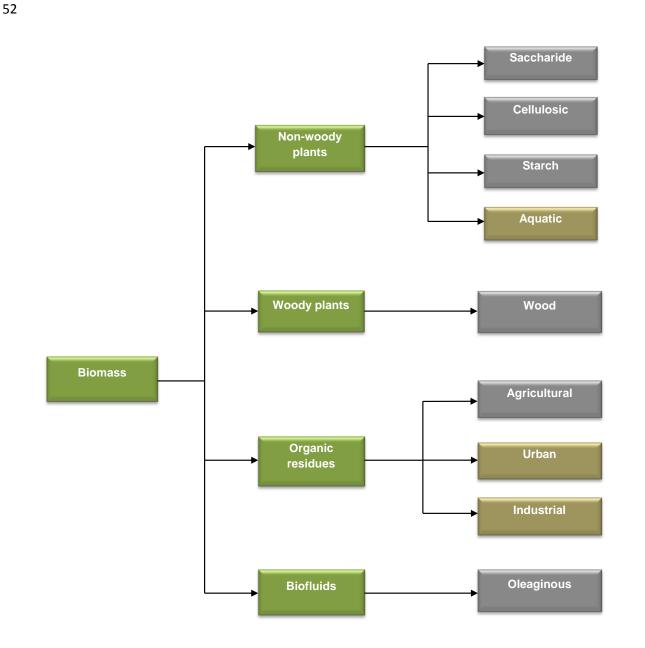
Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

1	Analytical Techniques for Chemical Analysis of Plant Biomass
2	and their Products
3	
4	Sílvio Vaz Jr.
5	
6	Nowadays, the use of biomass as an alternative to non-renewable raw material
7	for energy, materials and chemicals is a prominent theme for academy and
8	industry. Many countries are spending financial resources and efforts to
9	promote a green economy based on plant biomass. Chemical analyses are an
10	important tool to ensure quality, reliability and the best usages for the economic
11	potential of biomass. Analytical techniques can provide information about
12	chemical composition, characterization of properties and determination of
13	concentration for organic and inorganic species. This review discusses the main
14	techniques and their application in chemical analysis of plant biomass and
15	products, covering examples of application for industrial and scientific purposes.
16	Furthermore, aspects of biorefinery, green chemistry, innovation and
17	technological trends are considered.
18	

Brazilian Agricultural Research Corporation (Embrapa); Embrapa Agroenergia Parque Estação Biológica, Avenida W3 (final), CP 70770-901, Brasília-DF, Brazil. Email: silvio.vaz@embrapa.br

Analytical Methods Accepted Manuscript


1. Introduction

The technological development of modern society has stimulated the need for control of products and processes, both to ensure that final products are consumed according to quality standards, besides to prevent negative impacts on the environment. The concern of the society demanding a sustainable supply became a point of strong commercial appeal to the productive sectors such as agribusiness, since the latter has been proposed in recent years a reduction in the greenhouse gases, increased productivity combined with lower tillage per area, decrease in agrochemicals and application of sustainable practices. One example in agribusiness is the bioenergy, here represented by ethanol and biodiesel, which seek to be seen as green fuels as a market strategy.

Modern chemistry plays a strong economic role in industrial activities, with an increasing trend in the importance of its application from the deployment of biorefineries and principles of green chemistry, which make use of the potential of biomass. In this context, analytical chemistry can contribute significantly to the productive chains of biomass, either vegetable or animal origin; but with the first offering the greatest challenges and opportunities for industrial exploitation from its chemical complexity.¹ It is worth mentioning that the chemical analyses are used for composition analysis, characterization of physical and chemical properties and to determine the concentration of chemical species, besides new applications in biomass chemistry.²

43 Techniques and analytical methods provide support for the implementation of
44 laws applied on market and environment, to ensure the quality of raw materials and
45 production processes, which enables the development of new materials and products
46 that add value on biomass,³ what can promote the bioeconomy and positive impact on

chemical sciences.⁴ Chemical analyses play an important role in the exploitation of
biomass, as supporting technologies at all stages of agro-industrial chains as sugarcane,
soybean, corn, forests, pulp and paper, waste and agricultural residues, among others
sources of raw materials. We can observe in Fig. 1 a generic division of biomass by
means their origin.

Fig. 1 Sources of biomass; gray boxes represent the most used biomass types for industrial

55 and R&D activities

י ר	
2	
ა ⊿	
3 4 5 6 7	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
∠ ເ ງງ	
22	
24	
25	
26	
27	
28	
29	
30	
31	
22	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
54	
55	
56	
57	
58	
59	
60	

56	From the Fig. 1 we can consider three classes of biomass with large industrial and
57	R&D uses as raw material for conversion processes (biochemical, chemical and
58	thermochemical): (i) starch, cellulosic material and saccharide are sources of sugar
59	(glucose); (ii) wood and agricultural residues are sources of cellulose, hemicellulose and
60	lignin (the lignocellulosic material); (iii) oleaginous are sources of fatty acids and esters.
61	Each one has their structural characteristics and chemical particularities, which are
62	closely related to the analytical technology and approach to be applied for its analysis.
63	Nowadays, we have an estimated worldwide production of renewable biomass of 210.7
64	million of tons/year to be used in biofuels, fibers and agriculture. ⁵ An exact value for
65	this biomass production is not easy to obtain, because there is a large variation on the
66	production from each country and difficulties to measure its quantity, but the Food and
67	Agriculture Organization of the United Nations (FAO) works on this statistical
68	compilation for the world food and agriculture production. However, is very clear to
69	note the importance of the biomass on modern economy; a good example is the case of
70	wood products generated: ⁵ a sawn wood production of 406.2 million of m ³ , an wood
71	based panels of 287.7 million of m ³ , a wood pulp production of 173.3 million of tons
72	and a paper and paperboard production of 403.2 million of tons. Table 1 shows a
73	landscape of worldwide production of agro-industrial biomass.

79 Table 1 Production data of biomass for food and fiber uses; data obtained from FAO⁵

Biomass	Production	
Cereal	2.5 billion of tons	
Oil crop	170.3 million of tons	
Root and tuber	747.7 million of tons	
Vegetable	1.0 billion of tons	
Fruit	608.9 million of tons	
Fiber	28.1 million of tons	

The biorefinery concept is a very important strategy for the development of biomass usages, where there is a productive biomass chain very similar to the petrochemical chain: fuels, energy, materials, bulk chemicals and fine chemicals.⁶ Biorefineries uses a very large numbers of conversion processes due to biomass chemical diversity, high content of oxygen atom and water; these conversion processes are divided in three major families: (i) chemical processes (basically, catalytic synthetic routes), (ii) biochemical processes (fermentation and biocatalytic or enzymatic routes), (iii) thermochemical routes (gasification, pyrolysis, combustion, etc.).⁶ Therefore, we need analytical chemistry to understand and to control these processes, their raw materials, products and residues.

92 For analytical purposes, the composition of vegetable biomass is described in the93 Table 2.

96 Table 2 Composition of biomass according Vassilev *et al.*⁷

Matter	Components
Organic matter	Structural components (cellulose, hemicellulose, lignin), extractives,
	others
	Organic minerals such as Ca-Mg-K-Na oxalates, others
Inorganic matter	Mineral species from different mineral classes (silicates,
	oxyhydroxides, sulphates, phosphates, carbonates, chlorides,
	nitrates, others)
	Poorly crystallized mineraloids of some silicates, phosphates,
	hydroxides, chlorides, others
	Amorphous phases such as various glasses, silicates, others
Fluid matter (mostly inorganic)	Moisture, gas and gas-liquid inclusions associated with both organic
	and inorganic matter

99 Therefore, a diverse analytical approach is desirable to understand composition
100 and properties of biomass and their products from conversion processes, considering
101 techniques for organic and inorganic species.

2. Analytical techniques for biomass and their products

A large variety of classical and analytical techniques may be applied to biomass
analyses: titrimetry or volumetry; gravimetry; thermal analyses; electrochemical
analyses; chromatography and electrophoresis; spectroscopy, spectrometry and
spectrophotometry; mass spectrometry; and microscopy. There are good sources of
detailed information about their principles in the analytical literature.⁸⁻¹⁶ Table 3

1	
2	
3	
4	
5	
6	
7	
<i>'</i>	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
53 54	
54 55	
56	
57	
58	
59	
60	

presents some general uses of analytical techniques in chemical analysis of biomass andits products.

111

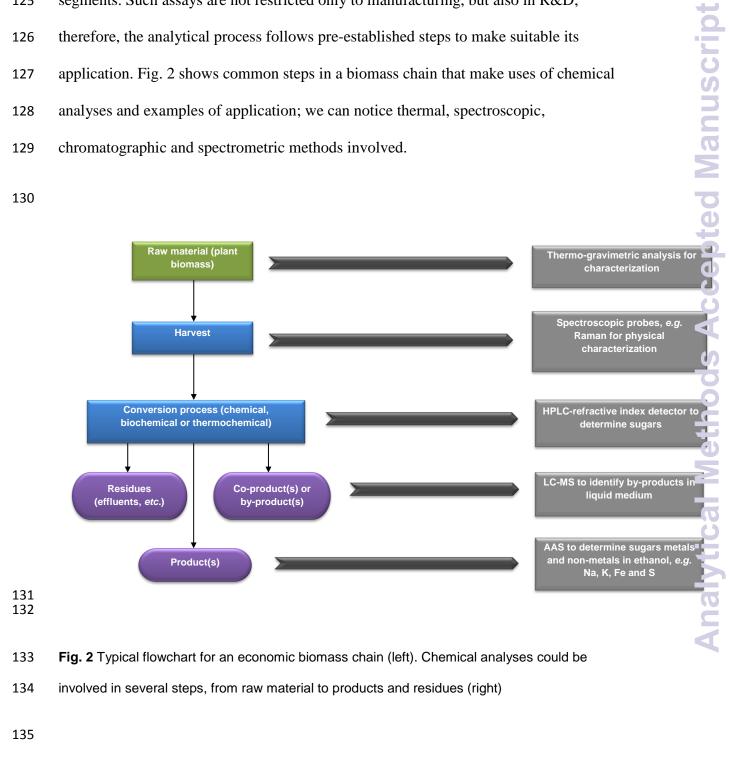
112 Table 3 Some examples of analytical techniques and their uses in chemical analyses of

113 biomass

Technique	Principle of	Example of use	Reference	Pros	Cons
	measurement				
Differential	Enthalpy	Determination of	17	Small quantity	-
scanning	changes	combustion		of sample; high	
calorimetry		properties of		sensitive;	
		biomass		determines	
		(exothermic or		physico-	
		endothermic)		chemical	
				changes in	
				materials	
				impossible to	
				determine by	
				other technique	
Capillary	Migration of	High efficiency	18	High separation	Limitation for
electrophoresis	ions or	separation for		efficiency	non-polar
	charged	polar compounds			compounds
	particles	from biomass			
		degradation			
Mass	Molecular	Structural	19	Identification	Necessity of
spectrometry	fragmentation	identification and		and resolution	separation
		quantification of		of complex	techniques, as
		several organic		molecular	chromatography,
		compounds based		structures	for a better

		on m/z ratio			resolution
X-ray	Emission of	Multielemental	20	Easy to handle;	Chemical
fluorescence	characteristic	quantification in		non-destructive	composition and
spectroscopy	X-rays	solid and liquid			morphology of
		samples from			the sample can
		biomass residues			affect the result
Infrared	Vibrational	Structural	21	Easy to handle,	Low resolution
spectroscopy	energy	identification of	22	mainly for near	for compounds
(near and	absorption	organic		infrared	with same
medium)		compounds and			functional
		lignocellulosic			groups (sum of
		components			bands);
					however, the
					application of
					chemometrics
					can help to
					overcome this
					limitation
X-ray	Intensity of X-	Determination of	23	Important	Long acquisition
difractrometry	rays diffracted	crystallinity and		physical	time (hour or
		chemical		information for	day) for process
		composition of		natural fibers	control
		cellulose		and polymers	
				usages	
Scanning	Surface	Surface and	24	Important	Long acquisition
electron	scanning with	structural analysis		physical	time (hour or
microscopy	a primary	of materials (e.g.,		information for	day) for process
	electron beam	catalysts)		natural fibers	control
				and polymers	
				usages	

Analytical Methods


Nuclear	Transition of	Structural	25	Resolution of	Long acquisit
magnetic	nuclear spin	identification of		complex	time (hour or
resonance	inside an	organic		molecular	day) for proce
$(e.g., {}^{13}C in$	atomic nuclei;	compounds from		structures	control, excep
solid state)	interactions	biomass			under a high
	between	processing (e.g.,			concentration
	nuclei-nuclei	lignocellulosic			the analyte (e.
	and nuclei-	and oleaginous)			fatty acids)
	surround				
	electrons				
Voltammetry	Changes in	Chemical	26	Rapid response	Search for the
(e.g., cyclic	current as a	speciation and			better electrol
and square	function of	quantification of			or voltammet
wave)	potential	metals and non-			technique can
		metals (e.g.,			expend time
		catalysts for			
		glycerin use), or			
		verification of			
		glucose or starchy			
		oxidation			
		processes			

From Table 3 and from the organic and inorganic composition of biomass (Table 2), we can notice several analytical technologies which enable an increase in the biomass knowledge of their properties and conversion processes. These technologies imply the observation of a large variety of chemical species, mainly, in aqueous medium or with water inside or adsorbed on their structures.

3. Application for biomass usages

Biomass chains typically require the application of chemical analyses that may

- encompass a large number of samples at a low cost which are sought by the industrial
- segments. Such assays are not restricted only to manufacturing, but also in R&D;
- therefore, the analytical process follows pre-established steps to make suitable its
- application. Fig. 2 shows common steps in a biomass chain that make uses of chemical
- analyses and examples of application; we can notice thermal, spectroscopic,
- chromatographic and spectrometric methods involved.

Page 11 of 36

136	Challenges to be overcome are basically related to a high heterogeneous chemical
137	content - which becomes a characteristic of their products and by-products; methods of
138	sample treatment cannot modify the structure of biomass components to be studied and
139	produce only minimal modification of the molecules. Conversion processes need to be
140	monitored in situ to provide reliable data. A good analytical approach must to cover: (i)
141	composition of raw material, (ii) monitoring the conversion process, (iii) monitoring the
142	effluent generated, (iv) composition of products and by-products; here we need to
143	consider the cases specialties. A source of doubts for the analyst is the choice of
144	technique and method within several possibilities. To the right choice is important to
145	know the basis of various techniques, conditions in which these techniques are applied,
146	the possible interferences, the desired accuracy, the amount of sample and the time and
147	cost of analysis.
148	There is a set of points to be considered when planning an analytical strategy for
149	biomass materials, comprising:
150	
151	• Homogeneity of the sample;
152	• Understanding of the information required (<i>e.g.</i> , chemical composition,
153	characterization of properties, etc.);
154	• Low cost and large number of samples;
155	• Standards for analysis and their variations across countries;
156	• Quality control <i>vs.</i> quality assurance;
157	• Interesting new area – renewable content requirements for laws in some
158	countries; we need to access the analytical requirements for this.

160 Examples of applications of techniques for raw materials, quality control and161 quality assurance, R&D and real time analysis are treated in this item.

3.1. Determining composition of raw materials

What we need to know during the analysis of raw materials depends on the biomass usage. For instance, oleaginous to produce protein or biodiesel needs different analytical parameters than those for sugarcane to produce ethanol or saccharose. On the other hand, different techniques and methods could be used to obtain the information.

The analysis of the chemical composition of raw materials from biomass commonly includes analytical techniques that provide a rapid response (the shortest period of time between the beginning of the measure and the result), since the results will lead to the acceptance or not of the material for a production process, having direct financial implications for the early stages of production chains. Table 4 shows some examples of the use of analytical techniques in this step.

Despite the specificities of each technique, they usually have a system operating with a similarity level, which tends to facilitate intuitive application of these techniques by the professional who already has theoretical and practical knowledge of analytical chemistry. This has a direct influence on the solution of industrial and scientific challenges in an analytical laboratory, where methods must be validated and, in many cases, developed before anything.

 184 raw materials from biomass

Raw material	Parameter	Analytical	Reference	Pros	Cons
		technique			
Sugarcane for	Content of	HPLC-	27	Methods	Long acquisitio
ethanol	sugars	refractive index		established	time for
production		detector			chromatographi
					run
					(approximately
					30 min)
Vegetable oils	Content of fatty	GC-flame	28	Methods	Necessity of
for biodiesel	acids and esters	ionization		established	organic solvent
production		detector			to extract the
					analyte
Bioenergy	Energetic	Near infrared	29	Rapid	Low band
crops	characteristics	spectroscopy		response	resolution,
				and easy to	which can be
				handle	improved by
					chemometrics
					application
Residues for	Energy content	Differential	30	Rapid	-
gasification		scanning		response	
		calorimetry		and easy to	
				handle	

Analytical Methods Accepted Manuscript

187 The chemical composition of biomass is highly heterogeneous and demand robust188 methods of sample preparation. In the specific case of determining the content of

Analytical Methods Accepted Manuscript

189	cellulose, hemicellulose and lignin, the sample preparation takes place by drying,
190	lyophilization, milling, acid treatment (preferably for cellulose and hemicellulose) and
191	basic treatment with or without the presence of organic solvents (for lignin), followed
192	by chromatographic analysis. Institutions such as the National Renewable Energy
193	Laboratory (NREL), the International Lignin Institute (ILI) and the American Society
194	for Testing and Materials (ASTM) are seeking for standardization and publication of
195	preparation procedures, besides a complete analytical methodology. ³¹⁻³³ Rocha <i>et al</i> .
196	determined the composition of 50 samples of Brazilian bagasse related to different soil
197	type and tillage for usage in the production of second-generation ethanol 34 (Table 5).

199 Table 5 Chemical composition determined for 50 samples of Brazilian bagasse³⁴

Parameter	Range of content (%	C.V. (%)
	m/m)	
Cellulose	40.54 - 46.17	3.5
Hemicellulose	18.90 - 26.90	7.5
Lignin	19.95 - 26.48	6.5
Extractives	1.96 – 13.29	55.6
Ash	1.01 - 5.50	43.8

3.2. Quality control of biofuels

203 Quality control (QC) of the final product requires a large number and variety of 204 chemical analyses to compare with physical and chemical parameters of quality, often 205 established by regulatory legislation. Parameters and their values depends on biofuel 206 usage, physical state and properties and chemical composition; furthermore, we need to

Analytical Methods

consider relevant aspects of national or international regulatory legislation – each country has its legal trade policy to be followed for bioenergy; there is a worldwide effort to unify parameters and methodologies.³⁵ Table 6 shows the Brazilian parameters for quality control of ethanol, an important biofuel for the energetic matrix. It may be noted a variety of analytical techniques applied to QC, positively reflecting on the quality of the final product; furthermore, techniques for this propose are easy to handle (volumetry, potentiometry and gravimetry) or have a high resolution (ion chromatography, gas chromatography and atomic absorption spectrometry).

Table 6 Some analytical parameters of quality for the Brazilian ethanol (anhydrous and
hydrated) for fuel usage³⁶

Parameter	Unity	Specification		Method	Technique	
		Anhydrous	Hydrated			
Acidity (max.)	mg/L	30	30	ASTM* D7795	Volumetry	
рН	-	-	6 - 8	ASTM D6423	Electrochemistry	
					(direct	
					potentiometry)	
Residues (max.)	mg/100mL	5	5	ASTM E1690-	Gravimetry	
				08		
Chloride content	mg/kg	1	1	ASTM D7328	Ion chromatography	
(max.)						
Ethanol content	% v/v	98	94.5	ASTM D5501	Gas	
(min.)					chromatography-	
					flame ionization	
					detector	
Sulphate content	mg/kg	4	4	ASTM D7328	Ion chromatography	
(max.)						

	Iron content	mg/kg	5	5	ASTM D6647	Atomic absorption
	(máx.)					spectrometry
218	*ASTM = Amer	rican Society for	Testing and Ma	aterials		
219						
20	For a qu	ality assuran	ce (QA) of ar	nalytical methods	and results we can ap	ply
21	procedures fro	om the docum	nent Principle	es on Good Labor	atory Practice (GLP) f	from the
22	Organisation	for Economic	Co-operation	n and Developme	ent (OECD). ³⁷ These	
223	procedures co	omprise:				
24						
225		• Respon	sibilities of th	ne quality assurar	ce personnel;	
26		• Test sys	stems;			
27		• Receipt	of samples, l	handling, samplir	ng and storage;	
28		• Standar	d operation p	rocedures;		
29		• Perform	nance of the s	tudy;		
230		• Reporti	ng of study re	esults.		
231						
232	QC and	QA tools mu	st be applied	together to obtai	n the best confidence f	or
233	biomass prod	ucts like a bio	ofuel.			
234						
235	3.3. Research	n and develoj	pment of pro	ducts and proce	sses	
236	Researc	h can be con	centualized as	s an activity focu	sed on problem solving	a hy
.30			-	-	lation and application	
	scientific met	_		5 Provieni Ionnu		or a

Analytical Methods

aimed, among other goals, to give practical application to the results generated in the
preliminary stage of research, or search for the solution, either in laboratory or industrial
scale.

Generally, in this step the use of a technique depends on the analytical needs arisen during the experimental work (*e.g.*, identification of products and by-products of an innovative process). It may be mentioned in this context a research aiming to produce second-generation biofuels, biomass gasification, materials and chemicals from lignin or lignocellulosic sugars.

It is worth noting that currently the increase in use of hyphenated techniques has shown gain in separation and detection.³⁹ These techniques are characterized by the union of two or more analytical techniques (*e.g.*, solid phase microextraction-GC-mass spectrometry, SPME-GC-MS), which can optimize the sample preparation, time and costs involved. Certainly, such techniques are also very useful in research of biomass and might have more uses following the emergence of new challenges for production processes and analyses.

The recent approach of innovative multidimensional separation techniques for complex chemical mixtures could be extended to biomass. Liquid-phase coupled to gas-phase can generate LC-GC and LC-GCxGC; supercritical fluid-phase coupled to gas-phase generates SCF-GCxGC; and liquid-phase coupled to liquid-phase generates LCxLC. Hyphenation with MS could generate GCxGC-MS and LCxLC-MS. Their advantages rises from possibility to work with different selectivity and distinct retention profile from each one, what could improve the number of molecules detected by mean high resolution separations; however, a chemometric data treatment is required to obtain a consistent result.⁴⁰ Good examples are the use of GCxGC-FID and GCxGC-MS for

Analytical Methods Accepted Manuscript

quantitative analysis of crude and stabilized bio-oil.⁴¹ Similarly, LCxLC is growing as a
high separation tool that should be taken in account for complexes products from
biomass conversion, as lignin derivatives. Table 7 describes improvements in analytical
methodology from hyphenated techniques when compared against more conventional
techniques.

269 Table 7 Comparative differences between some new hyphenated techniques and conventional

270 techniques

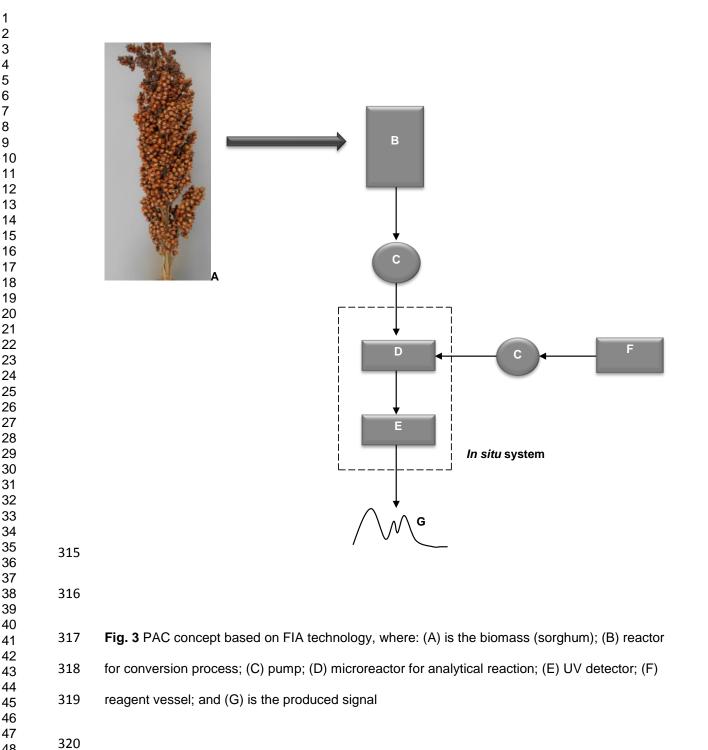
Hyphenated	Conventional	Improvements	Sample	Reference
techniques	techniques			
GCxGC-FID	GC-FID	Separation	Lignin derivatives	42
		efficiency	in aqueous medium	
		Sensitivity for	(phenols and	
		complex samples	hydrocarbons)	
LC-MS ⁿ	LC-MS	Sensitivity	Hydroxycinnamates	43
			from leaves (plant	
			secondary	
			metabolites)	
Py-SPME-CG-MS	Py-GC-MS	Time (without	Anhydrosugars	44
		laborious sample	produced by	
		treatment)	pyrolysis of	
		Costs	hexoses, pentoses	
			and deoxyhexoses	
			from natural gums	
SFC-GCxGC-FID	GCxGC-FID	Time	Mixtures	45
		Costs	containing alkanes,	
		Safe	aromatics, PAHs,	

 nitrogenated organics, and sulfur-containing organics

Furthermore, direct spectrometric techniques as DESI-MS (desorption electrospray ionization-mass spectrometry) and DART-MS (direct analysis in real time-mass spectrometry) could be used to study biomass components, as saccharides and oils, in a short period of time.^{46, 47} LIBS (laser induced breakdown spectroscopy) rises also as a possibility of direct technic to determine elemental composition and polymer constitution.^{48, 49} NMR and NIR compact devices are has been increasingly used for rapid measurements in fields to determine oil content in seeds,⁵⁰ and biomass content above ground in crop harvest,⁵¹ what can be applied for sugarcane and corn straw management.

NMR has an important role in the study of the biomass components, mainly for
the lignin structure. For instance, 2D HSQC NMR (two dimensional – heteronuclear
single-quantum coherence) with ¹H and ¹³C heteronuclear couplings can be applied to
identify monomeric and dimeric structures present in lignin.⁵² Furthermore, ³¹P NMR
can be used as a marker for labeling hydroxyl groups to determine lignin composition
and to understand their degradation mechanisms, especially during wood liquefaction.⁵³

3.4. Monitoring of conversion processes in real time


The need for monitoring conversion processes in real time led to the creation of
the term *process analytical chemistry* or PAC, often also called process analytical

Analytical Methods Accepted Manuscript

technology or PAT. PAC/PAT - as an area of research, innovation and application -favors the use of techniques and robust methods, preferably in real time and direct mode (on-line), with analyses performed directly in the reactor, rather than analyses in laboratory.^{54, 55} A main advantage of this approach is that analyses *in situ* provide faster result for taking corrective action, and consequent adjustment on the process development or production. An example is the monitoring of variables such as temperature, pH, pressure, formation of products and by-products, including others, to ensure the quality of the final product.

Nevertheless, the need to have robust analytical instrumentation, such as electrochemical sensors for simple and automated use, limited the number of analytical parameters to be analyzed; values for limits of detection (LOD) and quantification (LOQ) hardly reach laboratory values. However, the continuing development of new analytical technologies and new materials will certainly increase the chances of obtaining best results, by accepting greater variation in physiochemical conditions of the reactive medium, which allows a better identification of chemical species. In the latter case, can be used detectors of absorption in the ultraviolet (UV), and near (NIR) and medium infrared (MIR) with Fourier transform (FTIR).55

Applications of the approach PAC/PAT by the use of methods of flow analysis for chemical and biochemical processes can be noticed.⁵⁶ Flow analysis is a class of instrumental technique that allows analyses *in situ*, and their methods can serve well to the concept presented here. A good example is presented in the Fig. 3, where a conversion process for sugar is accompanied by PAC based on FIA system.

3.5. Alternative methodologies for treatment of biomass samples

Plant biomass has an intrinsic heterogeneity due to its chemical constitution, as a result of the different molecular structures of the main components (cellulose, hemicellulose, and lignin) and others (proteins, oils, etc.), which may vary depending upon the plant species, climate, soil type and tillage. Its heterogeneity is reflected in the

Analytical Methods Accepted Manuscript

products, co-products, by-products, waste and liquid effluents from conversionprocesses.

Most of the preparatory methods for samples was developed using concentrated acids for aggressive attack in order to release the analyte from the matrix. However, the use of basic reagents have enabled the application of preparation procedures such as extractions and digestions,⁵⁷ that can reduce costs, negative impacts on environment and occupational hazards. Furthermore, these alternative strategies can contribute to the establishment of green chemistry principles for analytical chemistry (Fig. 4, item 4).

An example of basic digestion is the determination of Ca, Fe, Mg, Mn and Zn in lignocellulosic biomass by atomic absorption spectrometry with good accuracy and precision, where the sample is treated for the extraction of analytes with carbonate and sodium hydroxide and ethylenediaminetetraacetic acid (EDTA),⁵⁸ which can be extended to another spectrometric atomic techniques, as graphite furnace absorption (GFAAS) and inductively coupled plasma-optical emission (ICP-OES). Determination of these elements is important: in catalytic processes of biomass conversion³ such metals could influence on the catalyst performance and alter the reaction kinetics. Na, K, Ca and Mg can be determined in biodiesel using the same analytical technique, but with a sample preparation through formation of microemulsions, providing an increase in the stability of the signal.⁵⁹

An example of time optimization is the determination of glucose for secondgeneration ethanol production from lignocellulosic biomass, by using Raman spectroscopy. In this case, it requires little sample preparation, with this being only filtrated.⁶⁰ Thus, the extent of the preparation procedures will depend directly on the

Page 23 of 36

Analytical Methods

physical characteristics of the analytical instrument, as well as the phenomenon thatallows the taking of the measurement.

Typically, methods and preparation procedures are the focus of constant improvement and optimization, aiming to achieve higher effectiveness in determining the real concentration of an analyte, or higher accuracy. A technology that permits hyphenation mode (preparation-separation-detection), as solid-phase extraction (SPE) and microextraction (SPME), *etc.*,⁶¹ provides an advance on biomass knowledge and use.

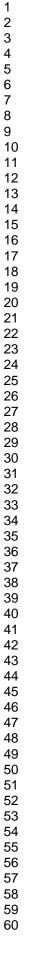
Ionic liquids (IL) have drawn attention in recent years due to their special properties, which can be used advantageously in analytical chemistry as an alternative for organic solvents for preparative step. Their properties as high thermal stability, negligible vapor pressure, and non-flammability, in addition to varying viscosities, conductivity, and miscibility in different solvents can be used to dissolve samples for analyses by means chromatographic, electrophoretic and electrochemical techniques.⁶² Besides, IL can promote a green analytical process and improve the extraction efficiency,⁶³ reducing time and solvent consumption.

3.6. Relevant considerations

It is vital to have a management plan for the analytical process to be applied. As considered in the item 3.2, the plan should be structured according to procedures from GLP, including studies on environmental impacts of chemical species and data control to determine reliability and reproducibility.³⁷ In some cases, it is necessary also to follow the norm ISO 17025,⁶⁴ which establishes the criteria and procedures for accreditation of the analytical laboratory.

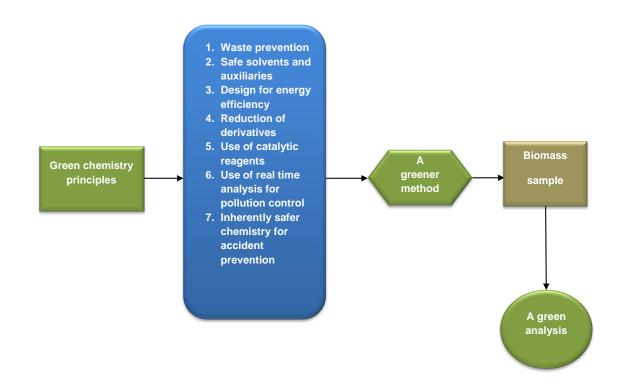
Analytical Methods Accepted Manuscript

Page 24 of 36


Analytical Methods Accepted Manuscript

The use of chemometrics for planning and data treatment can be seen as a powerful mathematic tool in cases where only analytical technique is not enough to provide qualitative or quantitative information. This is very common when a large amount of variables is present (*e.g.*, chemical composition, concentration, wavelength, absorption intensity, etc.) requiring a multivariate analysis. Some examples are the use of partial least square (PLS) regression method in the MID analysis of biodiesel⁶⁵ and the use of principal component analysis (PCA) model in the NIR analysis to determine chemical composition of biomass based on exploratory analysis.⁶⁶

In respect to the most recent technological development for time otimization, miniaturization techniques as lab-on-a-chip and microfabrication offer personalized analytical systems, lower energy demands, ultra-fast analysis, and high throughput; but this is not completely ready to use⁶⁷ and overcoming of technical challenges related to fabrication will determine their applications for biomass and other complex samples. However, this is a good opportunity to improve separation sciences, and to access data in real time and mobile mode. Additionally, the use of smaller columns and ultra-high-pressure pumps for ultra-high performance liquid chromatography (UHPLC) has promoted liquid chromatography achieves separation efficiency near to GC,⁶¹ what can help in time optimization, mainly, for QC.


4. Green analyses for a sustainable analytical chemistry

Armenta and colleagues discussed broadly the creation of the term green analytical
chemistry, its milestones and examples of application, namely: (i) sample treatment; (ii)
oriented scanning methodologies; (iii) alternatives to toxic reagents; (iv) waste
minimization; (v) recovery of reagents; (vi) on-line decontamination of wastes; and

(vii) reagent-free methodologies.⁶¹ Thus, it should be considered that the analysis of
biomass should be based on the 12 principles of green chemistry,⁶⁸ since the context of
their application is reflected in the sustainability of raw materials and processes. For
instance, the application of 7 from the most representative principles for analytical
chemistry will contribute to achieve a more sustainable analytical methodology, what is
presented in Fig. 4.

404

405 Fig. 4 Application of 7 most representative principles from 12 green chemistry principles to
406 develop a green analysis of biomass

407

Waste prevention, safe solvents and auxiliaries, energy efficiency and inherently
safer chemistry for accident prevention are obvious for all chemical operations. Safer

Analytical Methods Accepted Manuscript

2	
3	
4	
5	
6	
6 7	
8	
9	
10	
9 10 11	
12	
13	
1/	
13 14 15 16 17	
10	
10	
17	
18	
19	
20 21 22	
21	
22	
23	
22 23 24	
25	
26	
27 28 29	
28	
29	
30	
31	
32	
32 33 34 35	
აა ექ	
34	
35	
36 37 38 39	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
51 52	
52 50	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

> chemicals, reduction of derivatives, and use of catalysts should be taken in account for 410 411 each analysis because each analytical process has its technical particularities; the use of real time analysis for pollution control is a good opportunity for technology 412 413 development in analytical chemistry, by means an *in situ* systems for effluent analyses (gaseous and liquids). In a large number of cases is not possible to apply all of these 414 principles due to sample or medium particularities, but is very important to consider one 415 416 by one in an analytical process. This exercise will ensure the "greener" of the analysis. As a practical guidance, De la Guardia and Garrigues established the main 417 objectives to be considered for a green analytical chemistry:⁶⁹ (i) simplification; (ii) 418 reagents selection to avoid based on toxicity, renewability or degradability data; (iii) 419 420 maximization of information; (iv) minimization of consumes, considering number of samples, volumes or masses of reagents, energy consumption; and (v) detoxification of 421 422 wastes. These objects will define the best strategy to be applied, as a result of the 423 principles presented in the Fig. 4. We can consider as an example based on these green 424 objectives the supercritical-fluid chromatography in the analysis of fatty acid ethyl esters,⁷⁰ where a supercritical fluid is used as the mobile phase to reduce time of 425 analysis, solvent quantity and effluent generation. 426

427

428 **5. Conclusions and trends**

429 Chemical analysis of biomass is an enthusiastic branch of analytical chemistry because
430 it can provide information about constitution of raw material, conversion processes,
431 products, by-products and residues. Then, this can be applied on a whole production
432 chain to solve many technical, scientific and economic problems.

Analytical Methods

Currently, we have a lot of sophisticated techniques and methods and the understanding of their principles is very necessary to take all potential for a better application. On the other hand, process analytical chemistry enables monitoring processes in real time, what can promote a gain in time for information collection in industrial processes. In both cases, is fundamental to establish a management plan to ensure the data reliability, besides to consider the use of chemometrics for multivariate analysis.

Sample preparation in a state that permits its analysis can bring difficulties to the
analyst, because biomass is highly heterogeneous. So, the analyst needs to see the
sample as a challenge to be attacked with strategies that favors a use of greener
reagents, little volume of solvents, and hyphenation or automation possibilities.

Green chemistry and sustainability of processes and products are themes that passed from academic discussion to industrial usage. Then, analytical chemistry as part of chemical sciences should follow this current trend, what can contribute for a bioeconomy based on biomass usage instead non-renewable raw sources, as the oil, contributing to reduce negative environmental impacts from the modern society.

449 Regarding to trends for chemical analyses of biomass, some points can be450 highlighted:

452 ✓ Increasing in the use of spectroscopic probes to monitoring conversion
453 processes, as Raman and FTIR; these techniques can reduce time and costs
454 without previous treatment or with minimal sample processing;
455 ✓ Decreasing in invasive techniques, due to the necessity to study raw
456 material components without modification on their chemical structure -

Page 28 of 36

Analytical Methods Accepted Manuscript

Analytical Methods

1 2

2 3 4	457	this is the case of lignin; here is a good business opportunity for compact
5 6	458	systems (e.g., NMR and NIR);
7 8 9	459	\checkmark Increasing in the use of hyphenated techniques for complex samples, to
10 11	460	possibility a better detection and quantification of products and by-
12 13 14	461	products from conversion processes and raw material;
15 16	462	\checkmark Increasing in the miniaturization and automation of analytical systems, to
17 18	463	achieve larger analytical capacity in laboratories; an automated laboratory
19 20 21	464	can run analyses 24 hours per day;
22 23	465	\checkmark Establishment of recognized worldwide methodology for the quality
24 25	466	control of raw material and products, as oleaginous biomass and biodiesel
26 27 28	467	or sugarcane and ethanol; this is very important for a biobased global
29 30	468	economy;
31 32 33	469	\checkmark Increasing in the use of green methods, to reduce negative impacts on
34 35	470	environment and health.
36 37 38 39	471	
40 41 42 43	472	Acknowledgements
44 45	473	The author would like to thank to Dr. Adilson Kobayashi (Embrapa Agroenergy) and
46 47 48	474	Dr. Jennifer R. Dodson (Federal University of Rio de Janeiro) for the suggestions on the
49 50	475	text content.
51 52 53 54	476	
55 56 57 58	477	
59 60	478	

6. References

1 2 3 4	 R. J. A. Gosselink, E. de Jong, B. Guran and A. Abächerli, Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN), <i>Ind. Crops Prod.</i>, 2004, 20, 121-129. W. J. Orts, K. M. Holtman and J. N. Seiber, Agricultural chemistry and bioenergy, <i>J. Agric. Food Chem.</i>, 2008, 56, 3892-3899. P. Gallezot, Conversion of biomass to selected chemical products, <i>Chem. Soc.</i> <i>Rev.</i>, 2012, 41, 1538-1558.
3	 market requirements (EUROLIGNIN), <i>Ind. Crops Prod.</i>, 2004, 20, 121-129. W. J. Orts, K. M. Holtman and J. N. Seiber, Agricultural chemistry and bioenergy, <i>J. Agric. Food Chem.</i>, 2008, 56, 3892-3899. P. Gallezot, Conversion of biomass to selected chemical products, <i>Chem. Soc. Rev.</i>, 2012, 41, 1538-1558.
3	 W. J. Orts, K. M. Holtman and J. N. Seiber, Agricultural chemistry and bioenergy, <i>J. Agric. Food Chem.</i>, 2008, 56, 3892-3899. P. Gallezot, Conversion of biomass to selected chemical products, <i>Chem. Soc. Rev.</i>, 2012, 41, 1538-1558.
3	 bioenergy, J. Agric. Food Chem., 2008, 56, 3892-3899. P. Gallezot, Conversion of biomass to selected chemical products, <i>Chem. Soc. Rev.</i>, 2012, 41, 1538-1558.
	 P. Gallezot, Conversion of biomass to selected chemical products, <i>Chem. Soc.</i> <i>Rev.</i>, 2012, 41, 1538-1558.
	<i>Rev.</i> , 2012, 41 , 1538-1558.
4	
4	
	JL. Dubois, Requirements for the development of a bioeconomy for chemicals,
	Current Opinion in Environmental Sustainability, 2011, 3, 11-14.
5	Food and Agriculture Organization of the United Nations, FAO Statistical
	Yearbook 2013, Food and Agriculture Organization of the United Nations,
	Rome, 2013.
6	B. Kamm, P. R. Gruber and M. Kamm, Biorefineries – Industrial Processes and
	Products: Status Quo and Future Directions, Wiley-VCH, Weinheim, 2006.
7	S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, T. J. Morgan, An
	overview of the organic and inorganic phase composition of biomass, Fuel,
	2012, 94 , p. 1-33.
8	P. Artiga, F. González, A. Mosquera-Corral, J. L. Campos, J. M. Garrido, E.
	Ficara and R. Méndez, Multiple analyses reprogrammable titration analyser for
	the kinetic characterisation of nitrifying and autotrophic denitrifying biomass,
	Biochem. Eng. J., 2005, 26, 176-183.
9	J. Seixo, M. H. Varela, J. A. P. Coutinho and M. A. Z. Coelho, Influence of C/N
	ratio on autotrophic biomass development in a sequencing batch reactor,
	Biochem. Eng. J., 2004, 21 , 131-139.
	6 7 8

1 2		
3	504	10 P. K. Kanaujia, Y. K. Sharma, U. C. Agrawal and M. O. Garg, Analytical
4 5	505	approaches to characterizing pyrolysis oil from biomass, TrAC, Trends Anal.
6 7	506	<i>Chem.</i> , 2013, 42 , 125-136.
8 9	507	11 R. M. Takeuchi, A. L. Santos, P. M. Padilha and N. R. Stradiotto, Copper
10 11	508	determination in ethanol fuel by differential pulse anodic stripping
12	509	voltammetry at a solid paraffin-based carbon paste electrode modified with 2-
13 14 15	510	aminothiazole organofunctionalized silica, Talanta, 2007, 71, 771-777.
16 17	511	12 P. Mischnick and D. Momcilovic, Chemical structure analysis of starch and
18 19 20	512	cellulose derivatives, Adv. Carbohydr. Chem. Biochem., 2010, 64, 117-210.
21 22	513	13 T. Q. Hu, ed, in Characterization of Lignocellulosic Materials, Blackwell
23	514	Publishing, Oxford, 2008.
24 25	515	14 J. Cazes, ed., in <i>Ewing's Analytical Instrumentation Handbook</i> , 3 rd edn, Marcel
26 27	516	Dekker, New York, 2005.
28 29	517	15 G. F. Atkinson, Introducing the analytical perspective, J. Chem. Educ., 1982, 59,
30 31	518	201.
32	519	16 H. A. Laitinen, W. E. Harris, in Chemical Analysis – An Advanced Text and
33 34	520	Reference, McGraw-Hill, New York, 1975.
35 36	521	17 F. He, W. Yi and J. Zha, Measurement of the heat of smoldering combustion in
37 38	522	straws and stalks by means of simultaneous thermal analysis, Biomass
39	523	<i>Bioenergy</i> , 2009, 33 , 130-136.
40 41	524	18 T. Javor, W. Buchberger and O. Faix, Capillary electrophoretic determination of
42 43 44	525	lignin degradation products obtained by permanganate oxidation, Anal. Chim.
45 46	526	Acta, 2003, 484 , 181-187.
47 48 49	527	19 X. Zou, T. Qin, L. Huang, X. Zhang, Z. Yang and Y. Wang, Mechanisms and
50 51	528	Main Regularities of Biomass Liquefaction with Alcoholic Solvents, Energy
52 53 54	529	Fuels, 2009, 23 , 5213-5218.
55 56	530	20 J. L. Míguez, E. Granada, L. M. L. González, J. Xiberta and P. Fernández,
57 58 59	531	Prediction of the properties of Spanish lignocellulosic briquettes by means of
60	532	dispersive X-ray fluorescence, Renewable Energy, 2002, 27, 575-584.

Srip
nsc
Jan
ept
ACC
S
thod
Met
cal
Ilyti
Ana

2		
3 4	533	21 G. Sivasankarapillai and A. McDonald, Synthesis and properties of lignin-highly
5 6	534	branched poly(ester-amine) polymeric systems, Biomass Bioenergy, 2011, 35,
7	535	919-931.
8 9	536	22 I. P. Soares, T. F. Rezende and I. C. P. Fortes, Study of the behavior changes in
10 11	537	physical-chemistry properties of diesel/biodiesel (B2) mixtures with residual
12 13	538	oil and its quantification by partial least-squares attenuated total reflection-
14	539	fourier transformed infrared spectroscopy (PLS/ATR-FTIR), Energy Fuels,
15 16	540	2009, 23 , 4143-4148.
17 18	541	23 MK. Bahng, C. Mukarate, D. J. Robichaud and M. R. Nimlos, Current
19 20 21	542	technologies for analysis of biomass thermochemical processing: A review,
22 23	543	Anal. Chim. Acta, 2009, 651, 117-138.
24 25	544	24 H. Guoxin and H. Hao, Hydrogen rich fuel gas production by gasification of wet
26 27 28	545	biomass using a CO ₂ sorbent, <i>Biomass Bioenergy</i> , 2009, 33 , 899-906.
29 30	546	25 M. Bardet, S. Hediger, G. Gerbaud, S. Gambarelli, J. F. Jacquot, M. F. Foray
31 32 33	547	and A. Gadelle, Investigation with ¹³ C NMR, EPR and magnetic susceptibility
33 34 35	548	measurements of char residues obtained by pyrolysis of biomass, Fuel, 2007,
36 37	549	86 , 1966-1976.
38 39 40	550	26 J. Hu, J. Li, Y. Gu, Z. Guan, W. Mo, Y. Ni, T. Li and G. Li, Oxidative
41 42	551	carbonylation of glycerol to glycerol carbonate catalyzed by PdCl ₂ (phen)/KI,
43 44	552	Appl. Catal., A, 2010, 386 , 188-193.
45 46 47	553	27 C. Shuo and G.M. Aita, Enzymatic hydrolysis and ethanol yields of combined
48 49	554	surfactant and dilute ammonia treated sugarcane bagasse, Bioresour. Technol.,
50 51	555	2013, 131 , 357-364.
52 53 54	556	28 L. C. Meher, D. V. Sagar and S. N. Naik, Technical aspects of biodiesel
55 56	557	production by transesterification—a review, Renewable Sustainable Energy
57 58 59 60	558	<i>Rev.</i> , 2006, 10 , 248-268.

1 2			
2 3 4	559	29	C. D. Everard, K. P. McDonnell and C. C. Fagan, Prediction of biomass gross
5 6	560		calorific values using visible and near infrared spectroscopy, Biomass
7 8 9	561		Bioenergy, 2012, 45 , 203-2011.
10 11	562	30	A. C. C. Chang, HF. Chang, F. J. Lin, KH, Lin and CH. Chen, Biomass
12 13	563		gasification for hydrogen production, Int. J. Hydrogen Energy, 2011, 36,
14	564		14252-14260.
15 16	565	31	National Renewable Energy Laboratory, Analytical Procedures,
17 18	566		http://www.nrel.gov/biomass/analytical_procedures.html, accessed February
19	567		2014.
20 21	568	32	The International Lignin Institute, Norms and Standards, http://www.ili-
22 23	569		lignin.com/projects/norms.php, accessed February 2014.
24 25	570	33	The American Society for Testing and Materials, Committee D07 on Wood,
26	571		http://www.astm.org/COMMITTEE/D07.htm, accessed February 2014.
27 28	572	34	G. J. M. Rocha, A. R. Gonçalves, B. R. de Oliveira, E. O. Gómez and C. E. V.
29 30	573		Rossell, Compositional Variability of Raw, Steam Exploded and Delignificated
31 32	574		Sugarcane Bagasse, 8th International Congress on Generation
33	575		Distributed and Energy in Rural Areas, Campinas, Brazil, 2010.
34 35	576	35	Global Bioenergy Partnership, http://www.globalbioenergy.org, accessed
36 37		55	
38	577	26	February 2014.
39 40	578	36	Brazilian National Agency of Petroleum, Natural Gas and Biofuels, <i>Resolution</i>
41 42	579		n. 7, Brazilian National Agency of Petroleum, Natural Gas and Biofuels,
43	580		Brasília, 2008.
44 45	581	37	Organization for Economic Co-operation and Development, OECD Series on
46 47	582		Principles of Good Laboratory Practice and Compliance Monitoring –
48 49	583		Number 1, Organization for Economic Co-operation and Development, Paris,
50 51 52	584		1998.
53 54	585	38	B. Frederick, in Methodology and Organization of Research, Springer, New
55	586		York, 2011.
56 57	587	39	A. Menezes-Filho, F. N. dos Santos and P. A. P. Pereira, Development,
58 59 60	588		validation and application of a method based on DI-SPME and GC–MS for

Page 33 of 36

1

2 3	589		determination of pesticides of different chemical groups in surface and
4 5 6	590		groundwater samples, Microchem. J., 2010, 96, 139-145.
7 8	591	40	K. D. Nizio, T. M. McGinitie and J. J. Harynuk, Comprehensive
9 10	592		multidimensional separations for the analysis of petroleum, J. Chromatogr. A,
11 12 13	593		2012, 1255 , 12-23.
14 15	594	41	M. R. Djokic, T. Dijkmans, G. Yildiz, W. Prins and K. M. Van Geem,
16 17	595		Quantitative analysis of crude and stabilized bio-oils by comprehensive two-
18 19 20	596		dimensional gas-chromatography, J. Chromatogr. A, 2012, 1257 , 131-140.
21 22		40	
23	597	42	J. Horáček, F. Homola, I. Kubičková, D. Kubička, Lignin to liquids over
24 25	598		sulfided catalysts, Catalysis Today, 2012, 179, p. 191-198.
26 27 28	599	43	I. Parveen, M. D. Threadgill, B. Hauck, I. Donnison, A. Winters, Isolation,
29 30	600		identification and quantitation of hydroxycinnamic acid conjugates, potential
31 32	601		platform chemicals, in the leaves and stems of <i>Miscanthus</i> \times <i>giganteus</i> using
33 34 35	602		LC–ESI-MS ⁿ , <i>Phytochemistry</i> , 2011, 72 , p. 2376-2384.
36 37	603	44	C. Torri, E. Soragni, S. Prati, D. Fabbri, Py-SPME-GC -MS with on-fiber
38 39	604		derivatization as a new solvent-less technique for the study of polar
40 41 42	605		macromolecules: Application to natural gums, Microchem. J., 2013,110, p.
43 44	606		719-725.
45 46	607	45	John V. Seeley, Stacy K. Seeley, Multidimensional gas chromatography:
47 48 49	608		fundamental advances and new applications, Anal. Chem., 2013, 85, p. 557-
50 51	609		578.
52 53	610	46	Y. Zhang and H. Chen, Detection of saccharides by reactive desorption
54 55 56	611		electrospray ionization (DESI) using modified phenylboronic acids, J. Mass
57 58 59 60	612		Spectrom., 2010, 289 , 98-107.

Analytical Methods Accepted Manuscript

1 2		
3 4	613	47 L. Vaclavik, T. Cajka, V. Hrbek and J. Hajslova, Ambient mass spectrometry
5 6	614	employing direct analysis in real time (DART) ion source for olive oil quality
7 8 9	615	and authenticity assessment, Anal. Chim. Acta, 2009, 645, 56-63.
10 11	616	48 P. Pořízka, D. Prochazka, Z. Pilát, L. Krajcarová, J. Kaiser, R. Malina, J.
12 13 14	617	Novotný, P. Zemánek, J. Ježek, M. Šerý, S. Bernatová, V. Krzyžánek, K.
15 16	618	Dobranská, K. Novotný, M. Trtílek, O. Samek, Application of laser-induced
17 18	619	breakdown spectroscopy to the analysis of algal biomass for industrial
19 20 21	620	biotechnology, Spectrochim. Acta, Part B, 2012, 74–75, 169-176.
22 23	621	49 F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, J. J. Laserna, Laser-induced
24 25	622	breakdown spectroscopy, Anal. Chem., 2013, 85, 640-669.
26 27 28	623	50 B. Blümich, J. Perlo, F. Casanova, Mobile single-sided NMR, Prog. Nucl.Mag.
29 30	624	<i>Res. Sp.</i> , 2008, 52 , p. 197-269.
31 32 33	625	51 T. Sakamoto, A. A. Gitelson, A. L. Nguy-Robertson, T. J. Arkebauer, B. D.
34 35	626	Wardlow, A. E. Suyker, S. B. Verma, M. Shibayama, An alternative method
36 37	627	using digital cameras for continuous monitoring of crop status, Agr. Forest
38 39 40	628	<i>Meteorol.</i> , 2012, 154–155 , p. 113-126.
41 42	629	52 C. Fernández-Costas, S. Gouveia, M.A. Sanromán, D. Moldes, Structural
43 44	630	characterization of Kraft lignins from different spent cooking liquors by 1D
45 46 47	631	and 2D Nuclear Magnetic Resonance spectroscopy, Biomass Bioenergy, 2014,
48 49	632	63 , p. 156-166.
50 51	633	53 E. Jasiukaitytė, M. Kunaver, C. Crestini, Lignin behaviour during wood
52 53 54	634	liquefaction—Characterization by quantitative ³¹ P, ¹³ C NMR and size-
55 56	635	exclusion chromatography, Catalysis Today, 2010, 156, p. 23-30.
57 58 59	636	54 J. F. Van Staden, Analytical aspects of chemical process control - part 1.
60	637	Fundamentals, Pure Appl. Chem., 1999, 71, 2303-2308.

1 2			
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 8 9 20 21 22 32 4 25 26 27 28 9 30 31 32 33 4 5 6 7 8 9 30 31 32 33 4 5 8 9 30 31 32 33 4 5 8 9 30 31 32 33 4 5 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 37 8 37 8 37 8 37 8 37 8 37 8 3	638	55	J. Workman-Jr., M. Koch and D. Veltkamp, Process analytical chemistry, Anal.
	639		Chem., 2005, 77 , 3789-3806.
	640	56	N. W. Barnett, C. E. Lenehan and S. W. Lewis, Sequential injection analysis: an
	641		alternative approach to process analytical chemistry, TrAC, Trends Anal.
	642		Chem., 1999, 18, 346-353.
	643	57	J. A. Nóbrega, M. C. Santos, R. A. de Souza, S. Cadore, R. M. Barnes and M.
	644		Tatro, Sample preparation in alkaline media, Spectrochim. Acta, Part B, 2006,
	645		61 , 465-495.
	646	58	A. V. Filgueiras, I. Lavilla and C. Bendicho, Ultrasound-assisted solubilization
	647		of trace and minor metals from plant tissue using ethylenediaminetetraacetic
	648		acid in alkaline medium, Fresenius' J. Anal. Chem., 2001, 369, 451-456.
	649	59	F. H. Lyra, M. T. W. D. Carneiro, G. P. Brandão, H. M. Pessoa and E. V. de
	650		Castro, Determination of Na, K, Ca and Mg in biodiesel samples by flame
	651		atomic absorption spectrometry (FAAS) using microemulsion as sample
	652		preparation, Microchem. J., 2010, 96, 180-185.
	653	60	CJ. Shih and E. A. Smith, Determination of glucose and ethanol after
	654		enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy,
40	655		Anal. Chim. Acta, 2009, 653, 200-206.
41 42	656	61	S. Amenta, S. Garrigues and M. de la Guardia, Green analytical chemistry,
43 44	657		TrAC, Trends Anal. Chem., 2008, 27, 497-511.
45 46	658	62	T. D. Ho, C. Zhang, L. W. Hantao, J. L. Anderson, Ionic liquids in analytical
47 48 49 50 51 52 53 54 55 56 57 58 59 60	659		chemistry: fundamentals, advances, and perspectives, Anal. Chem., 2014, 86, p.
	660		262–285.
	661	63	Q. Ren, H. Xing, Z. Bao, B. Su, Q. Yang, Y. Yang, Z. Zhang, Recent advances
	662		in separation of bioactive natural products, Chinese J. Chem. Eng., 2013, 21,p.
	663		937-952.
	664	64	International Standard Organization, Norm ISO/IEC 17025, International
	665		Standard Organization, Geneva, 2005.

Analytical Methods Accepted Manuscript

Analytical Methods

3 4 5
5
~
5 6 7
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
23
9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 13 2 33 4 35 36 37 38 9 0 41
25
20
20
21
28
29
30
31
32
33
34
35
26
30
37
38
39
40
41
42
42 43
42
42 43 44
42 43 44 45
42 43 44 45 46
42 43 44 45 46 47
42 43 44 45 46 47 48
42 43 44 45 46 47 48 49
42 43 44 45 46 47 48 49 50
42 43 44 45 46 47 48 49 50 51
42 43 44 45 46 47 48 49 50 51 52
42 43 44 45 46 47 48 49 50 51 52 53
42 43 44 45 46 47 48 49 50 51 52 53 54
42 43 44 45 46 47 48 49 50 51 52 53 54
42 43 44 45 46 47 48 49 50 51 52 53 54 55
42 43 44 45 46 47 48 49 50 51 52 53 4 55 56
42 43 44 45 46 47 48 49 50 51 52 3 55 56 57
42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58
42 43 44 45 46 47 48 49 50 51 52 3 55 56 57

666	65	I. P. Soares, T. R. Fonseca, I. C. P. Fortes, E. V. R. Castro and R. C. Silva,
667		Multivariate calibration by variable selection for blends of raw soybean
668		oil/biodiesel from different sources using Fourier Transform Infrared
669		Spectroscopy (FTIR) spectra data, Energy Fuel, 2008, 22, 2079-2083.
670	66	L. Liu, X. P. Ye, A. R. Womac and S. Sokhansanj, Variability of biomass
671		chemical composition and rapid analysis using FT-NIR techniques, Carbohydr.
672		Polym., 2010, 81 , 820-829.
673	67	E. Hilder and R. Shellie, Future of separations, <i>The Analytical Scientist</i> , 2013, 3 ,
674		24-31.
675	68	P. T. Anastas and J. C. Warner, in Green Chemistry: Theory and Practice,
676		Oxford University Press, New York, 1998.
677	69	M. de la Guardia and M. Guarrigues, eds., in Challenges in Green Analytical
678		Chemistry, Cambridge, RSC Publishing, 2011, pp. 1-12.
679	70	C. A. M. Cristando, S. Perper and M. Johannsen, Supercritical fluid simulated
680		moving bed chromatography for the separation of ethyl linoleate and ethyl
681		oleate, J. Supercrit. Fluids, 2012, 66, 129-136.
682		