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Analytical Techniques for Chemical Analysis of Plant Biomass 1 

and their Products 2 

 3 

Sílvio Vaz Jr. 4 

 5 

Nowadays, the use of biomass as an alternative to non-renewable raw material 6 

for energy, materials and chemicals is a prominent theme for academy and 7 

industry. Many countries are spending financial resources and efforts to 8 

promote a green economy based on plant biomass. Chemical analyses are an 9 

important tool to ensure quality, reliability and the best usages for the economic 10 

potential of biomass. Analytical techniques can provide information about 11 

chemical composition, characterization of properties and determination of 12 

concentration for organic and inorganic species. This review discusses the main 13 

techniques and their application in chemical analysis of plant biomass and 14 

products, covering examples of application for industrial and scientific purposes. 15 

Furthermore, aspects of biorefinery, green chemistry, innovation and 16 

technological trends are considered. 17 

 18 
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1. Introduction 23 

The technological development of modern society has stimulated the need for control of 24 

products and processes, both to ensure that final products are consumed according to 25 

quality standards, besides to prevent negative impacts on the environment. The concern 26 

of the society demanding a sustainable supply became a point of strong commercial 27 

appeal to the productive sectors such as agribusiness, since the latter has been proposed 28 

in recent years a reduction in the greenhouse gases, increased productivity combined 29 

with lower tillage per area, decrease in agrochemicals and application of sustainable 30 

practices. One example in agribusiness is the bioenergy, here represented by ethanol and 31 

biodiesel, which seek to be seen as green fuels as a market strategy.  32 

Modern chemistry plays a strong economic role in industrial activities, with an 33 

increasing trend in the importance of its application from the deployment of 34 

biorefineries and principles of green chemistry, which make use of the potential of 35 

biomass. In this context, analytical chemistry can contribute significantly to the 36 

productive chains of biomass, either vegetable or animal origin; but with the first 37 

offering the greatest challenges and opportunities for industrial exploitation from its 38 

chemical complexity.
1
 It is worth mentioning that the chemical analyses are used for 39 

composition analysis, characterization of physical and chemical properties and to 40 

determine the concentration of chemical species, besides new applications in biomass 41 

chemistry.
2
   42 

Techniques and analytical methods provide support for the implementation of 43 

laws applied on market and environment, to ensure the quality of raw materials and 44 

production processes, which enables the development of new materials and products 45 

that add value on biomass,
3
 what can promote the bioeconomy and positive impact on 46 
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chemical sciences.
4
 Chemical analyses play an important role in the exploitation of 47 

biomass, as supporting technologies at all stages of agro-industrial chains as sugarcane, 48 

soybean, corn, forests, pulp and paper, waste and agricultural residues, among others 49 

sources of raw materials. We can observe in Fig. 1 a generic division of biomass by 50 

means their origin.  51 

 52 
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 53 

Fig. 1 Sources of biomass; gray boxes represent the most used biomass types for industrial 54 

and R&D activities 55 
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From the Fig. 1 we can consider three classes of biomass with large industrial and 56 

R&D uses as raw material for conversion processes (biochemical, chemical and 57 

thermochemical): (i) starch, cellulosic material and saccharide are sources of sugar 58 

(glucose); (ii) wood and agricultural residues are sources of cellulose, hemicellulose and 59 

lignin (the lignocellulosic material); (iii) oleaginous are sources of fatty acids and esters. 60 

Each one has their structural characteristics and chemical particularities, which are 61 

closely related to the analytical technology and approach to be applied for its analysis. 62 

Nowadays, we have an estimated worldwide production of renewable biomass of 210.7 63 

million of tons/year to be used in biofuels, fibers and agriculture.
5
 An exact value for 64 

this biomass production is not easy to obtain, because there is a large variation on the 65 

production from each country and difficulties to measure its quantity, but the Food and 66 

Agriculture Organization of the United Nations (FAO) works on this statistical 67 

compilation for the world food and agriculture production. However, is very clear to 68 

note the importance of the biomass on modern economy; a good example is the case of 69 

wood products generated:
5
 a sawn wood production of 406.2 million of m

3
, an wood 70 

based panels of 287.7 million of m
3
, a wood pulp production of 173.3 million of tons 71 

and a paper and paperboard production of 403.2 million of tons. Table 1 shows a 72 

landscape of worldwide production of agro-industrial  biomass.  73 

 74 

 75 

 76 

 77 

 78 
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Table 1 Production data of biomass for food and fiber uses; data obtained from FAO
5
  79 

Biomass Production  

Cereal 2.5 billion of tons 

Oil crop 170.3 million of tons 

Root and tuber 747.7 million of tons 

Vegetable  1.0 billion of tons 

Fruit  608.9 million of tons 

Fiber 28.1 million of tons 

   80 

 81 

The biorefinery concept is a very important strategy for the development of 82 

biomass usages, where there is a productive biomass chain very similar to the 83 

petrochemical chain: fuels, energy, materials, bulk chemicals and fine chemicals.
6
 84 

Biorefineries uses a very large numbers of conversion processes due to biomass 85 

chemical diversity, high content of oxygen atom and water; these conversion processes 86 

are divided in three major families: (i) chemical processes (basically, catalytic synthetic 87 

routes), (ii) biochemical processes (fermentation and biocatalytic or enzymatic routes), 88 

(iii) thermochemical routes (gasification, pyrolysis, combustion, etc.).
6
 Therefore, we 89 

need analytical chemistry to understand and to control these processes, their raw 90 

materials, products and residues. 91 

For analytical purposes, the composition of vegetable biomass is described in the 92 

Table 2. 93 

 94 

 95 
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Table 2 Composition of biomass according Vassilev et al.
7 96 

 Matter Components 

Organic matter Structural components (cellulose, hemicellulose, lignin), extractives, 

others 

Organic minerals such as Ca-Mg-K-Na oxalates, others 

Inorganic matter  Mineral species from different mineral classes (silicates, 

oxyhydroxides, sulphates, phosphates, carbonates, chlorides, 

nitrates, others) 

Poorly crystallized mineraloids of some silicates, phosphates, 

hydroxides, chlorides, others 

Amorphous phases such as various glasses, silicates, others  

Fluid matter (mostly inorganic) Moisture, gas and gas-liquid inclusions associated with both organic 

and inorganic matter 

 97 

 98 

Therefore, a diverse analytical approach is desirable to understand composition 99 

and properties of biomass and their products from conversion processes, considering 100 

techniques for organic and inorganic species.      101 

    102 

2. Analytical techniques for biomass and their products 103 

A large variety of classical and analytical techniques may be applied to biomass 104 

analyses: titrimetry or volumetry; gravimetry; thermal analyses; electrochemical 105 

analyses; chromatography and electrophoresis; spectroscopy, spectrometry and 106 

spectrophotometry; mass spectrometry; and microscopy. There are good sources of 107 

detailed information about their principles in the analytical literature.
8-16

 Table 3 108 
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presents some general uses of analytical techniques in chemical analysis of biomass and 109 

its products. 110 

 111 

Table 3 Some examples of analytical techniques and their uses in chemical analyses of 112 

biomass 113 

Technique Principle of 

measurement 

Example of use Reference Pros Cons 

Differential 

scanning 

calorimetry 

Enthalpy 

changes  

Determination of 

combustion 

properties of 

biomass 

(exothermic or 

endothermic)  

17 Small quantity 

of sample; high 

sensitive; 

determines 

physico-

chemical   

changes in 

materials 

impossible to 

determine by 

other technique  

- 

Capillary 

electrophoresis  

Migration of 

ions or 

charged 

particles  

High efficiency 

separation for 

polar compounds 

from biomass 

degradation  

18 High separation 

efficiency 

Limitation for 

non-polar  

compounds    

Mass 

spectrometry 

Molecular 

fragmentation 

Structural 

identification and 

quantification of 

several organic 

compounds based 

19 Identification 

and resolution 

of complex 

molecular 

structures 

Necessity of 

separation 

techniques, as 

chromatography, 

for a better 
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on m/z ratio  resolution 

X-ray 

fluorescence 

spectroscopy 

Emission of 

characteristic 

X-rays 

Multielemental 

quantification in 

solid and liquid 

samples from 

biomass residues  

20 Easy to handle; 

non-destructive    

Chemical 

composition and 

morphology of 

the sample can 

affect the result  

Infrared 

spectroscopy 

(near and 

medium)  

Vibrational 

energy 

absorption 

Structural 

identification of 

organic 

compounds and 

lignocellulosic 

components 

21 

22 

Easy to handle, 

mainly for near 

infrared 

Low resolution 

for compounds 

with same 

functional 

groups (sum of 

bands); 

however, the 

application of 

chemometrics 

can help to 

overcome this 

limitation    

X-ray 

difractrometry  

Intensity of X-

rays diffracted 

Determination of 

crystallinity and 

chemical 

composition of 

cellulose  

23  Important 

physical 

information for 

natural fibers 

and polymers 

usages  

Long acquisition 

time (hour or 

day) for process 

control 

Scanning 

electron 

microscopy  

Surface 

scanning with 

a primary 

electron beam 

Surface and 

structural analysis 

of materials (e.g., 

catalysts)  

24 Important 

physical 

information for 

natural fibers 

and polymers 

usages 

Long acquisition  

time (hour or 

day) for process 

control 
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Nuclear 

magnetic 

resonance 

(e.g., 
13

C in 

solid state) 

Transition of 

nuclear spin 

inside an 

atomic nuclei; 

interactions 

between 

nuclei-nuclei 

and nuclei-

surround 

electrons   

Structural 

identification of 

organic 

compounds from 

biomass 

processing (e.g., 

lignocellulosic 

and oleaginous)  

25 Resolution of 

complex 

molecular 

structures 

Long acquisition  

time (hour or 

day) for process 

control, except 

under a high 

concentration of 

the analyte (e.g., 

fatty acids)      

Voltammetry 

(e.g., cyclic 

and square 

wave) 

Changes in 

current as a 

function of 

potential 

Chemical 

speciation and 

quantification of 

metals and non-

metals (e.g., 

catalysts for 

glycerin use), or 

verification of  

glucose or starchy 

oxidation 

processes   

26 Rapid response Search for the 

better electrolyte 

or voltammetric 

technique can 

expend time   

 114 

 115 

From Table 3 and from the organic and inorganic composition of biomass (Table 116 

2), we can notice several analytical technologies which enable an increase in the 117 

biomass knowledge of their properties and conversion processes. These technologies 118 

imply the observation of a large variety of chemical species, mainly, in aqueous 119 

medium or with water inside or adsorbed on their structures.            120 

 121 
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3. Application for biomass usages    122 

Biomass chains typically require the application of chemical analyses that may 123 

encompass a large number of samples at a low cost - which are sought by the industrial 124 

segments. Such assays are not restricted only to manufacturing, but also in R&D; 125 

therefore, the analytical process follows pre-established steps to make suitable its 126 

application. Fig. 2 shows common steps in a biomass chain that make uses of chemical 127 

analyses and examples of application; we can notice thermal, spectroscopic, 128 

chromatographic and spectrometric methods involved.   129 

  130 
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   132 

Fig. 2 Typical flowchart for an economic biomass chain (left). Chemical analyses could be 133 

involved in several steps, from raw material to products and residues (right)    134 

 135 
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Challenges to be overcome are basically related to a high heterogeneous chemical 136 

content - which becomes a characteristic of their products and by-products; methods of 137 

sample treatment cannot modify the structure of biomass components to be studied and 138 

produce only minimal modification of the molecules. Conversion processes need to be 139 

monitored in situ to provide reliable data.  A good analytical approach must to cover: (i) 140 

composition of raw material, (ii) monitoring the conversion process, (iii) monitoring the 141 

effluent generated, (iv) composition of products and by-products; here we need to 142 

consider the cases specialties. A source of doubts for the analyst is the choice of 143 

technique and method within several possibilities. To the right choice is important to 144 

know the basis of various techniques, conditions in which these techniques are applied, 145 

the possible interferences, the desired accuracy, the amount of sample and the time and 146 

cost of analysis.     147 

There is a set of points to be considered when planning an analytical strategy for 148 

biomass materials, comprising: 149 

  150 

 Homogeneity of the sample; 151 

 Understanding of the information required (e.g., chemical composition, 152 

characterization of properties, etc.);  153 

 Low cost and large number of samples; 154 

 Standards for analysis and their variations across countries;   155 

 Quality control vs. quality assurance; 156 

 Interesting new area – renewable content requirements for laws in some 157 

countries; we need to access the analytical requirements for this.     158 

  159 
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Examples of applications of techniques for raw materials, quality control and 160 

quality assurance, R&D and real time analysis are treated in this item.   161 

 162 

3.1. Determining composition of raw materials 163 

What we need to know during the analysis of raw materials depends on the 164 

biomass usage. For instance, oleaginous to produce protein or biodiesel needs different 165 

analytical parameters than those for sugarcane to produce ethanol or saccharose. On the 166 

other hand, different techniques and methods could be used to obtain the information.        167 

The analysis of the chemical composition of raw materials from biomass 168 

commonly includes analytical techniques that provide a rapid response (the shortest 169 

period of time between the beginning of the measure and the result), since the results 170 

will lead to the acceptance or not of the material for a production process, having direct 171 

financial implications for the early stages of production chains. Table 4 shows some 172 

examples of the use of analytical techniques in this step. 173 

Despite the specificities of each technique, they usually have a system operating 174 

with a similarity level, which tends to facilitate intuitive application of these techniques 175 

by the professional who already has theoretical and practical knowledge of analytical 176 

chemistry. This has a direct influence on the solution of industrial and scientific 177 

challenges in an analytical laboratory, where methods must be validated and, in many 178 

cases, developed before anything. 179 

 180 

 181 

 182 
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Table 4 Examples of analytical techniques widely used in analyses of chemical composition of 183 

raw materials from biomass    184 

Raw material  Parameter  Analytical 

technique   

Reference Pros Cons 

Sugarcane for 

ethanol 

production 

Content of 

sugars  

HPLC-

refractive index 

detector  

27 Methods 

established 

Long acquisition 

time for 

chromatographic 

run  

(approximately 

30 min) 

Vegetable oils 

for biodiesel 

production 

Content of fatty 

acids and esters     

GC-flame 

ionization 

detector  

28 Methods 

established 

Necessity of 

organic solvent 

to extract the 

analyte     

Bioenergy 

crops   

Energetic 

characteristics    

Near infrared 

spectroscopy  

29 Rapid 

response 

and easy to 

handle 

Low band 

resolution, 

which can be 

improved by 

chemometrics 

application  

Residues for 

gasification 

Energy content Differential 

scanning 

calorimetry   

30 Rapid 

response 

and easy to 

handle 

- 

 185 

 186 

The chemical composition of biomass is highly heterogeneous and demand robust 187 

methods of sample preparation. In the specific case of determining the content of 188 
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cellulose, hemicellulose and lignin, the sample preparation takes place by drying, 189 

lyophilization, milling, acid treatment (preferably for cellulose and hemicellulose) and 190 

basic treatment with or without the presence of organic solvents (for lignin), followed 191 

by chromatographic analysis. Institutions such as the National Renewable Energy 192 

Laboratory (NREL), the International Lignin Institute (ILI) and the American Society 193 

for Testing and Materials (ASTM) are seeking for standardization and publication of 194 

preparation procedures, besides a complete analytical methodology.
31-33 

Rocha et al. 195 

determined the composition of 50 samples of Brazilian bagasse related to different soil 196 

type and tillage for usage in the production of second-generation ethanol 
34

 (Table 5). 197 

 198 

Table 5 Chemical composition determined for 50 samples of Brazilian bagasse
34

 199 

Parameter  Range of content (% 

m/m)  

C.V. (%)  

Cellulose 40.54 – 46.17 3.5 

Hemicellulose 18.90 – 26.90 7.5 

Lignin 19.95 – 26.48 6.5 

Extractives 1.96 – 13.29 55.6 

Ash 1.01 – 5.50 43.8 

 200 

 201 

3.2. Quality control of biofuels  202 

Quality control (QC) of the final product requires a large number and variety of 203 

chemical analyses to compare with physical and chemical parameters of quality, often 204 

established by regulatory legislation. Parameters and their values depends on biofuel 205 

usage, physical state and properties and chemical composition; furthermore, we need to 206 
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consider relevant aspects of national or international regulatory legislation – each 207 

country has its legal trade policy to be followed for bioenergy; there is a worldwide 208 

effort to unify parameters and methodologies.
35

 Table 6 shows the Brazilian parameters 209 

for quality control of ethanol, an important biofuel for the energetic matrix. It may be 210 

noted a variety of analytical techniques applied to QC, positively reflecting on the 211 

quality of the final product; furthermore, techniques for this propose are easy to handle 212 

(volumetry, potentiometry and gravimetry) or have a high resolution (ion 213 

chromatography, gas chromatography and atomic absorption spectrometry). 214 

 215 

Table 6 Some analytical parameters of quality for the Brazilian ethanol (anhydrous and 216 

hydrated) for fuel usage
36

 217 

Parameter  Unity   Specification Method  Technique   

Anhydrous  Hydrated  

Acidity (max.) mg/L
 

30 30 ASTM* D7795  Volumetry 

pH - - 6 – 8 ASTM D6423 Electrochemistry 

(direct 

potentiometry) 

Residues (max.)  mg/100mL
 

5 5 ASTM E1690-

08 

Gravimetry 

Chloride content 

(max.) 

mg/kg
 

1 1 ASTM D7328 Ion chromatography  

Ethanol content 

(min.) 

% v/v 98 94.5 ASTM D5501 Gas 

chromatography-

flame ionization 

detector  

Sulphate content 

(max.) 

mg/kg
 

4 4 ASTM D7328 Ion chromatography 
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Iron content 

(máx.) 

mg/kg
 

5 5 ASTM D6647 Atomic absorption 

spectrometry 

*ASTM = American Society for Testing and Materials 218 

 219 

For a quality assurance (QA) of analytical methods and results we can apply 220 

procedures from the document Principles on Good Laboratory Practice (GLP) from the 221 

Organisation for Economic Co-operation and Development (OECD).
37

 These 222 

procedures comprise:   223 

 224 

 Responsibilities of the quality assurance personnel; 225 

 Test systems; 226 

 Receipt of samples, handling, sampling and storage; 227 

 Standard operation procedures; 228 

 Performance of the study; 229 

 Reporting of study results. 230 

 231 

QC and QA tools must be applied together to obtain the best confidence for 232 

biomass products like a biofuel. 233 

 234 

3.3. Research and development of products and processes  235 

Research can be conceptualized as an activity focused on problem solving, by 236 

employing scientific processes, including problem formulation and application of a 237 

scientific method to obtain the solution.
38

 Allied to this concept, R&D activities are 238 
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aimed, among other goals, to give practical application to the results generated in the 239 

preliminary stage of research, or search for the solution, either in laboratory or industrial 240 

scale. 241 

Generally, in this step the use of a technique depends on the analytical needs 242 

arisen during the experimental work (e.g., identification of products and by-products of 243 

an innovative process). It may be mentioned in this context a research aiming to 244 

produce second-generation biofuels, biomass gasification, materials and chemicals from 245 

lignin or lignocellulosic sugars. 246 

It is worth noting that currently the increase in use of hyphenated techniques has 247 

shown gain in separation and detection.
39

 These techniques are characterized by the 248 

union of two or more analytical techniques (e.g., solid phase microextraction-GC-mass 249 

spectrometry, SPME-GC-MS), which can optimize the sample preparation, time and 250 

costs involved. Certainly, such techniques are also very useful in research of biomass 251 

and might have more uses following the emergence of new challenges for production 252 

processes and analyses.  253 

The recent approach of innovative multidimensional separation techniques for 254 

complex chemical mixtures could be extended to biomass. Liquid-phase coupled to gas-255 

phase can generate LC-GC and LC-GCxGC; supercritical fluid-phase coupled to gas-256 

phase generates SCF-GCxGC; and liquid-phase coupled to liquid-phase generates 257 

LCxLC. Hyphenation with MS could generate GCxGC-MS and LCxLC-MS. Their 258 

advantages rises from possibility to work with different selectivity and distinct retention 259 

profile from each one, what could improve the number of molecules detected by mean 260 

high resolution separations; however, a chemometric data treatment is required to obtain 261 

a consistent result.
40

 Good examples are the use of GCxGC-FID and GCxGC-MS for 262 
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quantitative analysis of crude and stabilized bio-oil.
41

 Similarly, LCxLC is growing as a 263 

high separation tool that should be taken in account for complexes products from 264 

biomass conversion, as lignin derivatives. Table 7 describes improvements in analytical 265 

methodology from hyphenated techniques when compared against more conventional 266 

techniques. 267 

 268 

Table 7 Comparative differences between some new hyphenated techniques and conventional 269 

techniques  270 

Hyphenated 

techniques 

Conventional 

techniques  

Improvements Sample Reference 

GCxGC-FID GC-FID Separation 

efficiency 

Sensitivity for 

complex samples  

Lignin derivatives 

in aqueous medium 

(phenols and 

hydrocarbons) 

42 

LC-MS
n 
 LC-MS Sensitivity 

 

Hydroxycinnamates 

from leaves (plant 

secondary 

metabolites) 

43 

Py-SPME-CG-MS Py-GC-MS Time (without 

laborious sample 

treatment) 

Costs  

Anhydrosugars 

produced by 

pyrolysis of 

hexoses, pentoses 

and deoxyhexoses 

from natural gums 

44 

SFC-GCxGC-FID GCxGC-FID Time 

Costs 

Safe 

Mixtures 

containing alkanes, 

aromatics, PAHs, 

45 
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nitrogenated 

organics, and 

sulfur-containing 

organics 

 271 

Furthermore, direct spectrometric techniques as DESI-MS (desorption 272 

electrospray ionization-mass spectrometry) and DART-MS (direct analysis in real time-273 

mass spectrometry) could be used to study biomass components, as saccharides and 274 

oils, in a short period of time.
46, 47 

LIBS (laser induced breakdown spectroscopy) rises 275 

also as a possibility of direct technic to determine elemental composition and polymer 276 

constitution.
48, 49

 NMR and NIR compact devices are has been increasingly used for 277 

rapid measurements in fields to determine oil content in seeds,
50

 and biomass content 278 

above ground in crop harvest,
51

 what can be applied for sugarcane and corn straw 279 

management. 280 

NMR has an important role in the study of the biomass components, mainly for 281 

the lignin structure. For instance, 2D HSQC NMR (two dimensional – heteronuclear 282 

single-quantum coherence) with 
1
H and 

13
C heteronuclear couplings can be applied to 283 

identify monomeric and dimeric structures present in lignin.
52

 Furthermore, 
31

P NMR 284 

can be used as a marker for labeling hydroxyl groups to determine lignin composition 285 

and to understand their degradation mechanisms, especially during wood liquefaction.
53 286 

      287 

3.4. Monitoring of conversion processes in real time 288 

The need for monitoring conversion processes in real time led to the creation of 289 

the term process analytical chemistry or PAC, often also called process analytical 290 
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technology or PAT. PAC/PAT - as an area of research, innovation and application - 291 

favors the use of techniques and robust methods, preferably in real time and direct mode 292 

(on-line), with analyses performed directly in the reactor, rather than analyses in 293 

laboratory.
54, 55

 A main advantage of this approach is that analyses in situ provide faster 294 

result for taking corrective action, and consequent adjustment on the process 295 

development or production. An example is the monitoring of variables such as 296 

temperature, pH, pressure, formation of products and by-products, including others, to 297 

ensure the quality of the final product. 298 

Nevertheless, the need to have robust analytical instrumentation, such as 299 

electrochemical sensors for simple and automated use, limited the number of analytical 300 

parameters to be analyzed; values for limits of detection (LOD) and quantification 301 

(LOQ) hardly reach laboratory values. However, the continuing development of new 302 

analytical technologies and new materials will certainly increase the chances of 303 

obtaining best results, by accepting greater variation in physiochemical conditions of 304 

the reactive medium, which allows a better identification of chemical species. In the 305 

latter case, can be used detectors of absorption in the ultraviolet (UV), and near (NIR) 306 

and medium infrared (MIR) with Fourier transform (FTIR).
55

 307 

Applications of the approach PAC/PAT by the use of methods of flow analysis for 308 

chemical and biochemical processes can be noticed.
56

 Flow analysis is a class of 309 

instrumental technique that allows analyses in situ, and their methods can serve well to 310 

the concept presented here. A good example is presented in the Fig. 3, where a 311 

conversion process for sugar is accompanied by PAC based on FIA system. 312 

 313 

 314 
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              G 

 315 

 316 

Fig. 3 PAC concept based on FIA technology, where: (A) is the biomass (sorghum); (B) reactor 317 

for conversion process; (C) pump; (D) microreactor for analytical reaction; (E) UV detector; (F) 318 

reagent vessel; and (G) is the produced signal 319 

    320 

3.5. Alternative methodologies for treatment of biomass samples   321 

Plant biomass has an intrinsic heterogeneity due to its chemical constitution, as a 322 

result of the different molecular structures of the main components (cellulose, 323 

hemicellulose, and lignin) and others (proteins, oils, etc.), which may vary depending 324 

upon the plant species, climate, soil type and tillage. Its heterogeneity is reflected in the 325 
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products, co-products, by-products, waste and liquid effluents from conversion 326 

processes.  327 

Most of the preparatory methods for samples was developed using concentrated 328 

acids for aggressive attack in order to release the analyte from the matrix. However, the 329 

use of basic reagents have enabled the application of preparation procedures such as 330 

extractions and digestions,
57

 that can reduce costs, negative impacts on environment and 331 

occupational hazards. Furthermore, these alternative strategies can contribute to the 332 

establishment of green chemistry principles for analytical chemistry (Fig. 4, item 4).  333 

An example of basic digestion is the determination of Ca, Fe, Mg, Mn and Zn in 334 

lignocellulosic biomass by atomic absorption spectrometry with good accuracy and 335 

precision, where the sample is treated for the extraction of analytes with carbonate and 336 

sodium hydroxide and ethylenediaminetetraacetic acid (EDTA),
58

 which can be 337 

extended to another spectrometric atomic techniques, as graphite furnace absorption 338 

(GFAAS) and inductively coupled plasma-optical emission (ICP-OES). Determination 339 

of these elements is important: in catalytic processes of biomass conversion
3
 such 340 

metals could influence on the catalyst performance and alter the reaction kinetics. Na, 341 

K, Ca and Mg can be determined in biodiesel using the same analytical technique, but 342 

with a sample preparation through formation of microemulsions, providing an increase 343 

in the stability of the signal.
59

 344 

An example of time optimization is the determination of glucose for second-345 

generation ethanol production from lignocellulosic biomass, by using Raman 346 

spectroscopy. In this case, it requires little sample preparation, with this being only 347 

filtrated.
60

 Thus, the extent of the preparation procedures will depend directly on the 348 
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physical characteristics of the analytical instrument, as well as the phenomenon that 349 

allows the taking of the measurement. 350 

Typically, methods and preparation procedures are the focus of constant 351 

improvement and optimization, aiming to achieve higher effectiveness in determining 352 

the real concentration of an analyte, or higher accuracy. A technology that permits 353 

hyphenation mode (preparation-separation-detection), as solid-phase extraction (SPE) 354 

and microextraction (SPME), etc.,
61

 provides an advance on biomass knowledge and 355 

use. 356 

Ionic liquids (IL) have drawn attention in recent years due to their special 357 

properties, which can be used advantageously in analytical chemistry as an alternative 358 

for organic solvents for preparative step. Their properties as high thermal stability, 359 

negligible vapor pressure, and non-flammability, in addition to varying viscosities, 360 

conductivity, and miscibility in different solvents can be used to dissolve samples for 361 

analyses by means chromatographic, electrophoretic and electrochemical techniques.
62 362 

Besides, IL can promote a green analytical process and improve the extraction 363 

efficiency,
63

 reducing time and solvent consumption.          364 

 365 

3.6. Relevant considerations 366 

It is vital to have a management plan for the analytical process to be applied. As 367 

considered in the item 3.2, the plan should be structured according to procedures from 368 

GLP, including studies on environmental impacts of chemical species and data control 369 

to determine reliability and reproducibility.
37

 In some cases, it is necessary also to 370 

follow the norm ISO 17025,
64

 which establishes the criteria and procedures for 371 

accreditation of the analytical laboratory. 372 
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The use of chemometrics for planning and data treatment can be seen as a 373 

powerful mathematic tool in cases where only analytical technique is not enough to 374 

provide qualitative or quantitative information. This is very common when a large 375 

amount of variables is present (e.g., chemical composition, concentration, wavelength, 376 

absorption intensity, etc.) requiring a multivariate analysis. Some examples are the use 377 

of partial least square (PLS) regression method in the MID analysis of biodiesel
65

 and 378 

the use of principal component analysis (PCA) model in the NIR analysis to determine 379 

chemical composition of biomass based on exploratory analysis.
66

 380 

In respect to the most recent technological development for time otimization, 381 

miniaturization techniques as lab-on-a-chip and microfabrication offer personalized 382 

analytical systems, lower energy demands, ultra-fast analysis, and high throughput; but 383 

this is not completely ready to use
67

 and overcoming of technical challenges related to 384 

fabrication will determine their applications for biomass and other complex samples. 385 

However, this is a good opportunity to improve separation sciences, and to access data 386 

in real time and mobile mode. Additionally, the use of smaller columns and ultra-high-387 

pressure pumps for ultra-high performance liquid chromatography (UHPLC) has 388 

promoted liquid chromatography achieves separation efficiency near to GC,
61

 what can 389 

help in time optimization, mainly, for QC.           390 

 391 

4. Green analyses for a sustainable analytical chemistry  392 

Armenta and colleagues discussed broadly the creation of the term green analytical 393 

chemistry, its milestones and examples of application, namely: (i) sample treatment; (ii) 394 

oriented scanning methodologies; (iii) alternatives to toxic reagents; (iv) waste 395 

minimization; (v) recovery of reagents; (vi) on-line  decontamination of wastes; and 396 
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(vii) reagent-free methodologies.
61

 Thus, it should be considered that the analysis of 397 

biomass should be based on the 12 principles of green chemistry,
68

 since the context of 398 

their application is reflected in the sustainability of raw materials and processes. For 399 

instance, the application of 7 from the most representative principles for analytical 400 

chemistry will contribute to achieve a more sustainable analytical methodology, what is 401 

presented in Fig. 4. 402 

 403 
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A 

greener 

method 

A green 

analysis 
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sample 

 404 

Fig. 4 Application of 7 most representative principles from 12 green chemistry principles to 405 

develop a green analysis of biomass 406 

 407 

Waste prevention, safe solvents and auxiliaries, energy efficiency and inherently 408 

safer chemistry for accident prevention are obvious for all chemical operations. Safer 409 
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chemicals, reduction of derivatives, and use of catalysts should be taken in account for 410 

each analysis because each analytical process has its technical particularities; the use of 411 

real time analysis for pollution control is a good opportunity for technology 412 

development in analytical chemistry, by means an in situ systems for effluent analyses 413 

(gaseous and liquids). In a large number of cases is not possible to apply all of these 414 

principles due to sample or medium particularities, but is very important to consider one 415 

by one in an analytical process. This exercise will ensure the ―greener‖ of the analysis. 416 

As a practical guidance, De la Guardia and Garrigues established the main 417 

objectives to be considered for a green analytical chemistry:
69

 (i) simplification; (ii) 418 

reagents selection to avoid based on toxicity, renewability or degradability data; (iii) 419 

maximization of information; (iv) minimization of consumes, considering number of 420 

samples, volumes or masses of reagents, energy consumption; and (v) detoxification of 421 

wastes. These objects will define the best strategy to be applied, as a result of the 422 

principles presented in the Fig. 4. We can consider as an example based on these green 423 

objectives the supercritical-fluid chromatography in the analysis of fatty acid ethyl 424 

esters,
70

 where a supercritical fluid is used as the mobile phase to reduce time of 425 

analysis, solvent quantity and effluent generation.      426 

 427 

5. Conclusions and trends 428 

Chemical analysis of biomass is an enthusiastic branch of analytical chemistry because 429 

it can provide information about constitution of raw material, conversion processes, 430 

products, by-products and residues. Then, this can be applied on a whole production 431 

chain to solve many technical, scientific and economic problems. 432 
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Currently, we have a lot of sophisticated techniques and methods and the 433 

understanding of their principles is very necessary to take all potential for a better 434 

application. On the other hand, process analytical chemistry enables monitoring 435 

processes in real time, what can promote a gain in time for information collection in 436 

industrial processes. In both cases, is fundamental to establish a management plan to 437 

ensure the data reliability, besides to consider the use of chemometrics for multivariate 438 

analysis.  439 

Sample preparation in a state that permits its analysis can bring difficulties to the 440 

analyst, because biomass is highly heterogeneous. So, the analyst needs to see the 441 

sample as a challenge to be attacked with strategies that favors a use of greener 442 

reagents, little volume of solvents, and hyphenation or automation possibilities.                443 

Green chemistry and sustainability of processes and products are themes that 444 

passed from academic discussion to industrial usage. Then, analytical chemistry as part 445 

of chemical sciences should follow this current trend, what can contribute for a 446 

bioeconomy based on biomass usage instead non-renewable raw sources, as the oil, 447 

contributing to reduce negative environmental impacts from the modern society.  448 

Regarding to trends for chemical analyses of biomass, some points can be 449 

highlighted: 450 

 451 

 Increasing in the use of spectroscopic probes to monitoring conversion 452 

processes, as Raman and FTIR; these techniques can reduce time and costs 453 

without previous treatment or with minimal sample processing;  454 

 Decreasing in invasive techniques, due to the necessity to study raw 455 

material components without modification on their chemical structure - 456 
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this is the case of lignin; here is a good business opportunity for compact 457 

systems (e.g., NMR and NIR);  458 

 Increasing in the use of hyphenated techniques for complex samples, to 459 

possibility a better detection and quantification of products and by-460 

products from conversion processes and raw material;  461 

 Increasing in the miniaturization and automation of analytical systems, to 462 

achieve larger analytical capacity in laboratories; an automated laboratory 463 

can run analyses 24 hours per day; 464 

 Establishment of recognized worldwide methodology for the quality 465 

control of raw material and products, as oleaginous biomass and biodiesel 466 

or sugarcane and ethanol; this is very important for a biobased global 467 

economy; 468 

 Increasing in the use of green methods, to reduce negative impacts on 469 

environment and health.        470 

 471 
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