Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

Analyzing carbon isotope of CO_2 of fluid inclusions in minerals using decrepitation by sealed tube coupled to continuous-flow mass spectrometry.

Analytical Methods

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

COMMUNICATION

Combination of a sealed-tube decrepitation with continuous-flow isotope ratio mass spectrometry for carbon isotope analyses of CO₂ from fluid inclusions in minerals

Hong-Wei Li,^a Lian-Jun Feng,^{*a} Tie-Jun Li,^a Jian Chen^a and Wei Liu^a

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A method was presented to perform carbon isotope analyses of CO₂ from fluid inclusions in minerals, using decrepitation by the sealed tube ¹⁰ method followed by cryogenic separation of the resultant CO₂ in a high-vacuum line, coupled via GasBench II to a DELTA V isotope ratio mass spectrometry. The proposed method greatly reduces the sample size and the laboratory time ¹⁵ without compromising the precision of the results. 1 Fluid inclusions are small liquid- or vapor-filled 2 vacuoles in minerals. Combined studies of stable 3 isotopes and fluid inclusions in minerals that 4 precipitated in different geological environments (e.g., 5 ⁵ magmatic, hydrothermal, and sedimentary) may 6 provide valuable information regarding the origin, 7 generation of these minerals^{1, 2}. CO_2 is a common 8 component in fluid inclusions. Carbon isotope 9 analysis of CO₂ found in inclusions may provide 10 ¹⁰ direct information concerning past geological 11 processes³. 12 Conventional techniques for determination of 13 carbon isotope of the CO₂ trapped in inclusions are 14 based on off-line thermal decrepitation or vacuum 15 15 crushing methods followed by dual-inlet mass 16 spectrometric analyses³. The advantage of offline 17 18 preparation coupled with the dual-inlet system is that good precision can be achieved, whereas the 19 20 disadvantage is that a relatively large amount of CO₂ 21 ²⁰ is needed, necessitating extraction from 22 approximately 1 g (or even more) of sample material. 23 In addition, due to the complex mixtures of various 24 components of the sample gases in fluid inclusions, 25 the precision of the carbon isotope analysis of CO₂ 26 ²⁵ from fluid inclusions is poor. In recent years, the 27 method of continuous-flow isotope ratio mass 28 spectrometry (CF-IRMS) has been well developed. 29 This technique was employed to transport the 30 released gas in an inert gas stream directly to mass 31 ³⁰ spectrometer. As a result, CF-IRMS allows utilization 32 of much smaller sample amounts. Furthermore, the 33 various components of the sample gas from fluid 34 inclusions can be effectively separated in the gas 35 chromatographic column in the continuous flow 36 35 system. Based on continuous flow techniques, 37 commercial continuous units, such as the Elemental 38 Analyzer or continuous gas/chromatography (GC/C), 39 have been modified for the analysis of the carbon 40 isotope ratios of CO_2 in smaller samples⁴⁻⁶. 41 In the present paper, we demonstrate an off-line 40 42 sealed tube decrepitation preparation method 43 combined with continuous-flow isotope ratio mass 44 spectrometry (CF-IRMS) using a Thermo Fisher 45 GasBench II (GB II) unit (designed for automated 46 45 carbonate and water analyses) as the inlet device 47 leading to a mass spectrometer. 48 The sealed-tube method has been used for the 49 analysis of hydrogen isotopes in H₂O or hydrogen 50 and carbon isotopes in organic matter⁷⁻⁹. In this study, 51 ⁵⁰ the method was employed to release the volatiles 52 from the fluid inclusions in the samples by thermal 53 54 decrepitation. A quartz tube loaded with the sample 55 was flame-sealed to produce an approximately 8-cm-

long ampoule and was placed into a resistance ⁵⁵ furnace heated to 600°C for 15 min. In contrast to conventional decrepitation in a tube furnace, the advantage of this method is that a batch of samples can be decrepitated in the resistance furnace at the same time.

Fig. 1 Schematic diagram and photographs of the high-vacuum line and interface with the GasBench II.

To transfer the released gases into the continuous flow system, we designed a metal, lowblank vacuum extraction/purification line, which was 65 built at the Institute of Geology and Geophysics of the Chinese Academy of Sciences. The high-vacuum line also includes an interface built for the transfer of small samples of CO₂ into the GB II in a He stream, as is illustrated schematically in Fig. 1. The design is ⁷⁰ similar in several ways to those constructed for analyses of nanomolar quantities of N_2^{10} . The vacuum line was composed of a 1/4 inch stainless steel (ss) tube and a needle valve (Swagelok Inc.). In addition, to release the volatiles from the sealed tube, ⁷⁵ we designed a tube cracker device made of a quartz tube (12 mm OD×25 cm, closed on one end). Following the decrepitation of the samples, the sealed tube was loaded into the cracker tube, which was connected to the vacuum line with a magnetic breaker 80 (Fig. 1).

The vacuum extraction/purification line was coupled with a Thermo GasBench II carrier-gas system through a Valco type valve (VICI inc; 4 port 2-position valve) with a He stream system (Fig. 1). ⁸⁵ Furthermore, we have modified the configuration of the GB II somewhat to allow the use of a U-trap (7, 1/16-inch ss tubing, Fig. 1) for transferring CO₂ from our extraction/purification line into the GB II. The main modification is that we have substituted the

- ⁹⁰ aliquoting loop attached to the main Valco valve with the U-trap (11 on Fig. 1) to transfer the CO₂ samples from our vacuum line into the GB II. In the GB II system, a porous layer open tubular (PLOT) fused silica chromatographic column PoraPLOT Q 25x0.32
 ⁹⁵ (Varian MD-24-12-1) is held at 50°C for effective
- separation of the various components of the sample gas. An isotope-ratio mass spectrometer (Thermo Fisher Delta V Advantage) with GB II is employed to couple sample and reference CO₂ flow via two open

2 | Anal. Methods, [2014], [6], 00-00

56

57

58

59 60

Analytical Methods Accepted Manuscrij

60

1

splits, and to analyze the isotope ratio of CO_2 in conjunction with software ISODAT 3.0.

All carbon isotope results are reported against VPDB (Pee Dee Belemnite). The isotope ratios of s carbon was represented by the δ -notion: $\delta^{13}C(\%) = [(^{13}C/^{12}C)_{sample}/(^{13}C/^{12}C)_{VPDB} - 1] \times 1000.$

In the absence of a well-determined and internationally accepted fluid inclusion standard, the precision and accuracy of the method can be to estimated by analyzing IAEA-CH-6 (Sucrose, δ^{13} C=-10.45±0.04, VPDB) and IAEA-CH-7 (Polyethylene foil, δ^{13} C=-32.15±0.05, VPDB). To analyze a "real" sample in this study, we chose a quartz sample (zk104-90, donated by Ping Shen, IGGCAS) which the porphyry copper deposits in Xinjiang Province. The gas composition of the sample mainly consists of CO₂, CH₄ and other gases (personal communication with Ping Shen).

Ca. 100 mg of the sample (zk104-90, ca. 50 20 mesh) was placed into quartz tubes (6 mm $OD \times 16$ cm, closed on one end) that were previously combusted in atmosphere at 900°C for 12 h to remove organic and other contaminants. Along with 0.5 g of the CuO 25 reagent, the international references IAEA-CH-6 and IAEA-CH-7 were placed into quartz tubes (8 mm $OD \times 20$ cm, closed on one end). The quartz tubes with the sample and the standards were then attached to another vacuum line composed of a glass tube and ³⁰ pumped for at least half an hour at $<10^{-2}$ Pa. After evacuation, the quartz tubes were flame-sealed to produce 8-cm-long ampoules and were placed into a furnace set to 600°C for 15 minutes (for the mineral sample) and 850°C for 4 h (for IAEA-CH-6 and 35 IAEA-CH-7). Then, the sealed quartz tubes were placed into the cracker tube, which was fitted vertically to the vacuum line (Fig. 1). After the whole extraction/purification line was evacuated to a vacuum level lower than 10^{-2} Pa, we cracked the ⁴⁰ sealed guartz tube, which led to the volatiles being liberated (Fig. 1). To remove the released water, the cold finger (3, Fig. 1) was placed in a mixture of alcohol and liquid N₂. After the trap for H₂O was assumed to be complete, when no decrease in

- ⁴⁵ pressure was observed with a capacitance manometer, the U trap (7, Fig. 1) was placed into liquid N_2 to collect the released gases. After the transfer of the gases, liquid N_2 was removed from the trap (7, Fig. 1), and the gases were released again. The final
- ⁵⁰ procedure in the vacuum line is to change the position of the 4-port 2-position valve. To prevent the backdiffusion of the atmosphere into the GB II system, the meter valve was used to control the optimal He Gas flow rate (4, Fig. 1) before changing the position of ⁵⁵ the 4-port 2-position valve. Next, the He stream was
- flushed into the U-trap (7, Fig. 1), and it carried the

released gases into the U-trap (11, Fig. 1) in the GB II system (Fig. 1). Using the ISODAT program for the GB II, the carbon isotope of CO₂ was analyzed ⁶⁰ through mass spectrometer.

The first three and the last peaks presented in Fig. ⁶⁵ 2 are the reference gas peaks for CO₂, and the fourth peak is the CO₂ peak of the natural gas released from the fluid inclusion by thermal decrepitation. ¹³C/¹²C ratios were measured in the gases relative to a working standard CO₂ gas (99.999%; Beiwen Gas ⁷⁰ Corp., Beijing, China), which was calibrated against VPDB using the international carbon isotope standard NBS19 (Limestone, $\delta^{13}C=+1.95\%$, VPDB). The international references IAEA-CH-6 and IAEA-CH-7 that monitor the whole analysis procedure show good

- ⁷⁵ precision (0.09‰, 0.07‰, 1 σ), indicating that the whole analysis procedure is reliable. The analyzed average δ^{13} C values of IAEA-CH-6 and IAEA-CH-7 show values that are heavier than those of the recommended values. The offsets (0.49‰ and 0.38‰) ⁸⁰ were used to correct the values of the samples.
- The δ^{13} C values of gases released from fluid inclusions are shown in Table S1[†] with a precision of 0.6‰. The excellent reproducibility of the δ^{13} C values for CO₂ indicates complete gas separation. In
- ⁸⁵ addition, by subtracting the offset between the measured values and the given values of IAEA-CH-6, we obtained the corrected values of the samples (-12.01‰, VPDB).

Compared to the conventional tube furnace ⁹⁰ decrepitation method coupled to a dual inlet analysis, the method described here can save significant sample preparation time. In fact, primarily due to the use of the quartz tube decrepitation, a batch of samples (nine samples) can be simultaneously

- ⁹⁵ decrepitated in 15 min. Thus, 120 minutes can be saved for the decrepitation of all nine samples. In addition, due to the use of the continuous flow technique, the sample size (100 mg) can be lowered by approximately an order of magnitude relative to
- ¹⁰⁰ the conventional method (1000 mg). Using GasBench II coupled to isotope ratio mass spectrometry, for measuring CO₂ smaller than 100 nmol, the precision of measurements deteriorates rapidly and becomes unacceptably large for most interpretations of
 ¹⁰⁵ isotopic compositions¹¹. Therefore, in order to get

55

36

37

38

39 40

41

42

43

44

45

46 47

48

49 50

51

52

53

54 55

56

high-precision carbon isotope results (< 0.1%), lower limit for measuring CO₂ should be 100 nmol^{11, 12}.

Conclusions

This paper presents a coupled extraction and ¹³C/¹²C analysis procedure for CO₂ from inclusions in minerals. This approach uses off-line decrepitation by the sealed tube method followed by cryogenic separation of the resultant CO₂ in a high-vacuum line, ¹⁰ coupled to continuous-flow mass spectrometry to measure the ¹³C/¹²C ratio. The application of this method was demonstrated for two international standards (IAEA-CH-6 and IAEA-CH-7), exhibiting excellent reproducibility and precision for the ratios ¹⁵ of ¹³C/¹²C in samples with fluid inclusions. In addition, the measurement of a real sample that contains inclusions (zk104-90) indicates good reproducibility (0.6%), reflecting the good separation of the mixing gas through the GC column in GB II.

²⁰ The proposed method greatly reduces the sample size and the laboratory time without compromising the precision of the final results.

Acknowledgements

This study was financially supported by Chinese ²⁵ Academy of Sciences. Thanks Associate Professor Ping Shen (IGGCAS) donates the sample.

Notes and references

- 1 R. Kerrich, R. D. Beckinsale and N. J. Shackleton, *Abhandlungen*, 1978, 131, 225-239.
- ³⁰ 2 D. Selby and B. E. Nesbitt, in *Sixth biennial Pan-American Conference on Research on Fluid Inclusions; Program and Abstracts*, 1996.
- 3 L. Dallai, L. Lucchini and Z. D. Sharp, in Handbook of Stable Isotope Analytical Techniques, ed. P. A. de Groot, Elsevier, Amsterdam, 2004, vol. 1, pp. 62-87.
- 4 J. Potter and F. J. Longstaffe, *Chem. Geol.*, 2007, 244, 186-201.
- 5 V. Lüders, B. Plessen and R. di Primio, *Mar. Petrol. Geol.*, 2012, 30, 174-183.
- 6 B. Plessen and V. Lüders, *Rapid Commun. Mass Spectrom.*, 2012, 26, 1157-1161.
- 7 D. Rumble III and T. C. Hoering, *Geochim. Cosmochim. Ac.*, 1986, 50, 1239-1247.
- ⁴⁵ 8 T. W. Vennemann and J. R. O'Neil, *Chem. Geol.*, 1993, 103, 227-234.

- 9 C. Kendall and E. Grim, *Anal. Chem.*, 1990, 62, 526-529.
- 10 G. E. Bebout, B. D. Idleman, L. Li and A. Hilkert, *Chem. Geol.*, 2007, 240, 1-10.
- 11 C. Spötl and T. W. Vennemann, *Rapid Commun.* Mass Spectrom., 2003, 17, 1004-1006.
- 12 J. Fiebig, B. R. Schöne and W. Oschmann, *Rapid Commun. Mass Spectrom.*, 2005, 19, 2355-2358.

^a Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China. Fax: 86 1082998578; Tel: 86 1082998596; E-mail:feng.lian.jun@gmail.com

 † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

4 | Anal. Methods, [2014], **[6]**, 00–00